Skip to content
2000
Volume 9, Issue 7
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Molecular cytogenetics is a promising field of biomedical research that has recently revolutionized our thinking on genome structure and behavior. This is in part due to discoveries of human genomic variations and their contribution to biodiversity and disease. Since these studies were primarily targeted at variation of the genome structure, it appears apposite to cover them by molecular cytogenomics. Human brain diseases, which encompass pathogenic conditions from severe neurodegenerative diseases and major psychiatric disorders to brain tumors, are a heavy burden for the patients and their relatives. It has been suggested that most of them, if not all, are of genetic nature and several recent studies have supported the hypothesis assuming them to be associated with genomic instabilities (i.e. single-gene mutations, gross and subtle chromosome imbalances, aneuploidy). The present review is focused on the intriguing relationship between genomic instability and human brain diseases. Looking through the data, we were able to conclude that both interindividual and intercellular genomic variations could be pathogenic representing, therefore, a possible mechanism for human brain malfunctioning. Nevertheless, there are still numerous gaps in our knowledge concerning the link between genomic variations and brain diseases, which, hopefully, will be filled by forthcoming studies. In this light, the present review considers perspectives of this dynamically developing field of neurogenetics and genomics.

Loading

Article metrics loading...

/content/journals/cg/10.2174/138920208786241216
2008-11-01
2025-09-21
Loading full text...

Full text loading...

/content/journals/cg/10.2174/138920208786241216
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test