Skip to content
2000
Volume 26, Issue 3
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Aims

This study aimed to identify potential therapeutic targets in the progression from non-alcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC), with a focus on genes that could influence disease development and progression.

Background

Hepatocellular carcinoma, significantly driven by non-alcoholic fatty liver disease, represents a major global health challenge due to late-stage diagnosis and limited treatment options. This study utilized bioinformatics to analyze data from GEO and TCGA, aiming to uncover molecular biomarkers that bridge NAFLD to HCC. Through identifying critical genes and pathways, our research seeks to advance early detection and develop targeted therapies, potentially improving prognosis and personalizing treatment for NAFLD-HCC patients.

Objectives

Identify key genes that differ between NAFLD and HCC; Analyze these genes to understand their roles in disease progression; Validate the functions of these genes in NAFLD to HCC transition.

Methods

Initially, we identified a set of genes differentially expressed in both NAFLD and HCC using second-generation sequencing data from the GEO and TCGA databases. We then employed a Cox proportional hazards model and a Lasso regression model, applying machine learning techniques to the large sample data from TCGA. This approach was used to screen for key disease-related genes, and an external dataset was utilized for model validation. Additionally, pseudo-temporal sequencing analysis of single-cell sequencing data was performed to further examine the variations in these genes in NAFLD and HCC.

Results

The machine learning analysis identified IGSF3, CENPW, CDT1, and CDC6 as key genes. Furthermore, constructing a machine learning model for CDT1 revealed it to be the most critical gene, with model validation yielding an ROC value greater than 0.80. The single-cell sequencing data analysis confirmed significant variations in the four predicted key genes between the NAFLD and HCC groups.

Conclusion

Our study underscores the pivotal role of CDT1 in the progression from NAFLD to HCC. This finding opens new avenues for early diagnosis and targeted therapy of HCC, highlighting CDT1 as a potential therapeutic target.

Loading

Article metrics loading...

/content/journals/cg/10.2174/0113892029313473240919105819
2024-10-04
2025-12-08
Loading full text...

Full text loading...

References

  1. FitzmauriceC. AllenC. BarberR.M. BarregardL. BhuttaZ.A. BrennerH. DickerD.J. Chimed-OrchirO. DandonaR. DandonaL. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study.JAMA Oncol.20173452454810.1001/jamaoncol.2016.5688
    [Google Scholar]
  2. EstesC. AnsteeQ.M. Arias-LosteM.T. BantelH. BellentaniS. CaballeriaJ. ColomboM. CraxiA. CrespoJ. DayC.P. EguchiY. GeierA. KondiliL.A. KroyD.C. LazarusJ.V. LoombaR. MannsM.P. MarchesiniG. NakajimaA. NegroF. PettaS. RatziuV. Romero-GomezM. SanyalA. SchattenbergJ.M. TackeF. TanakaJ. TrautweinC. WeiL. ZeuzemS. RazaviH. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030.J. Hepatol.201869489690410.1016/j.jhep.2018.05.03629886156
    [Google Scholar]
  3. YounossiZ.M. KoenigA.B. AbdelatifD. FazelY. HenryL. WymerM. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes.Hepatology2016641738410.1002/hep.2843126707365
    [Google Scholar]
  4. DanfordC.J. JiangZ.G. SalomaaV. FärkkiläM. JulaA. MännistöS. LundqvistA. ValstaL. PerolaM. ÅbergF. Insulin Resistance and Genetic Risk Predict Liver-Related Outcomes and Death in Nonalcoholic Fatty Liver Disease.Hepatol. Commun.20193121704170510.1002/hep4.143731832576
    [Google Scholar]
  5. YangJ.D. HainautP. GoresG.J. AmadouA. PlymothA. RobertsL.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management.Nat. Rev. Gastroenterol. Hepatol.2019161058960410.1038/s41575‑019‑0186‑y31439937
    [Google Scholar]
  6. LawalG. XiaoY. Rahnemai-AzarA.A. TsilimigrasD.I. KuangM. BakopoulosA. PawlikT.M. The Immunology of Hepatocellular Carcinoma.Vaccines (Basel)2021910118410.3390/vaccines910118434696292
    [Google Scholar]
  7. HuangD.Q. El-SeragH.B. LoombaR. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention.Nat. Rev. Gastroenterol. Hepatol.202118422323810.1038/s41575‑020‑00381‑633349658
    [Google Scholar]
  8. AhnS.Y. KimS.B. SongI.H. Clinical Patterns and Outcome of Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease.Can. J. Gastroenterol. Hepatol.202020201910.1155/2020/487387532566546
    [Google Scholar]
  9. GalleP.R. FornerA. LlovetJ.M. MazzaferroV. PiscagliaF. RaoulJ.L. SchirmacherP. VilgrainV. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma.J. Hepatol.201869118223610.1016/j.jhep.2018.03.01929628281
    [Google Scholar]
  10. FoersterF. GairingS.J. MüllerL. GalleP.R. NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options.J. Hepatol.202276244645710.1016/j.jhep.2021.09.00734555422
    [Google Scholar]
  11. HoraS. WuestefeldT. Liver Injury and Regeneration: Current Understanding, New Approaches, and Future Perspectives.Cells20231217212910.3390/cells1217212937681858
    [Google Scholar]
  12. PibiriM. SimbulaG. Role of the Hippo pathway in liver regeneration and repair: Recent advances.Inflamm. Regen.20224215910.1186/s41232‑022‑00235‑536471376
    [Google Scholar]
  13. HeZ. YangH.Y. Mechanism of hepatocytes differentiation and dedifferentiation in liver regeneration: Process and exploration.Hepatobiliary Pancreat. Dis. Int.202322433133210.1016/j.hbpd.2022.11.00836456429
    [Google Scholar]
  14. MarengoA. RossoC. BugianesiE. Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis.Annu. Rev. Med.201667110311710.1146/annurev‑med‑090514‑01383226473416
    [Google Scholar]
  15. MoayedfardZ. SaniF. AlizadehA. Bagheri LankaraniK. ZareiM. AzarpiraN. The role of the immune system in the pathogenesis of NAFLD and potential therapeutic impacts of mesenchymal stem cell-derived extracellular vesicles.Stem Cell Res. Ther.202213124210.1186/s13287‑022‑02929‑635672797
    [Google Scholar]
  16. PuengelT. LiuH. GuillotA. HeymannF. TackeF. PeiselerM. Nuclear Receptors Linking Metabolism, Inflammation, and Fibrosis in Nonalcoholic Fatty Liver Disease.Int. J. Mol. Sci.2022235266810.3390/ijms2305266835269812
    [Google Scholar]
  17. LeP. PayneJ.Y. ZhangL. DeshpandeA. RothbergM.B. AlkhouriN. HermanW. HernandezA.V. SchleicherM. YeW. DasarathyS. Disease State Transition Probabilities Across the Spectrum of NAFLD: A Systematic Review and Meta-Analysis of Paired Biopsy or Imaging Studies.Clin. Gastroenterol. Hepatol.20232151154116810.1016/j.cgh.2022.07.03335933075
    [Google Scholar]
  18. ChenT. DaltonG. OhS.H. Maeso-DiazR. DuK. MeyersR.A. GuyC. AbdelmalekM.F. HenaoR. GuarnieriP. PullenS.S. GregoryS. LockerJ. BrownJ.M. DiehlA.M. Hepatocyte Smoothened Activity Controls Susceptibility to Insulin Resistance and Nonalcoholic Fatty Liver Disease.Cell. Mol. Gastroenterol. Hepatol.202315494997010.1016/j.jcmgh.2022.12.00836535507
    [Google Scholar]
  19. FujiwaraN. KubotaN. CrouchetE. KoneruB. MarquezC.A. JajoriyaA.K. PandaG. QianT. ZhuS. GoossensN. WangX. LiangS. ZhongZ. LewisS. TaouliB. SchwartzM.E. FielM.I. SingalA.G. MarreroJ.A. FobarA.J. ParikhN.D. RamanI. LiQ.Z. TaguriM. OnoA. AikataH. NakaharaT. NakagawaH. MatsushitaY. TateishiR. KoikeK. KobayashiM. HigashiT. NakagawaS. YamashitaY. BeppuT. BabaH. KumadaH. ChayamaK. BaumertT.F. HoshidaY. Molecular signatures of long-term hepatocellular carcinoma risk in nonalcoholic fatty liver disease.Sci. Transl. Med.202214650eabo447410.1126/scitranslmed.abo447435731891
    [Google Scholar]
  20. LarsenF.T. HansenD. TerkelsenM.K. BendixenS.M. AvolioF. WernbergC.W. LauridsenM.M. GrønkjaerL.L. JacobsenB.G. KlinggaardE.G. MandrupS. Di CaterinoT. SiersbækM.S. ChandranV.I. GraversenJ.H. KragA. GrøntvedL. RavnskjaerK. Stellate cell expression of SPARC-related modular calcium-binding protein 2 is associated with human non-alcoholic fatty liver disease severity.JHEP Reports20235210061510.1016/j.jhepr.2022.10061536687468
    [Google Scholar]
  21. AlvarezM. BenhammouJ.N. Darci-MaherN. FrenchS.W. HanS.B. SinsheimerJ.S. AgopianV.G. PisegnaJ.R. PajukantaP. Human liver single nucleus and single cell RNA sequencing identify a hepatocellular carcinoma-associated cell-type affecting survival.Genome Med.20221415010.1186/s13073‑022‑01055‑535581624
    [Google Scholar]
  22. LoveM.I. HuberW. AndersS. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biol.2014151255010.1186/s13059‑014‑0550‑825516281
    [Google Scholar]
  23. LiberzonA. BirgerC. ThorvaldsdóttirH. GhandiM. MesirovJ.P. TamayoP. The Molecular Signatures Database (MSigDB) hallmark gene set collection.Cell Syst.20151641742510.1016/j.cels.2015.12.00426771021
    [Google Scholar]
  24. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑630944313
    [Google Scholar]
  25. WickhamH. The Split-Apply-Combine Strategy for Data Analysis.J. Stat. Softw.201140110.18637/jss.v040.i01
    [Google Scholar]
  26. YuG. WangL.G. HeQ.Y. ChIPseeker: An R/Bioconductor package for ChIP peak annotation, comparison and visualization.Bioinformatics201531142382238310.1093/bioinformatics/btv14525765347
    [Google Scholar]
  27. FriedmanJ. HastieT. TibshiraniR. Regularization Paths for Generalized Linear Models via Coordinate Descent.J. Stat. Softw.201033112210.18637/jss.v033.i0120808728
    [Google Scholar]
  28. HeagertyP.J. LumleyT. PepeM.S. Time-dependent ROC curves for censored survival data and a diagnostic marker.Biometrics200056233734410.1111/j.0006‑341X.2000.00337.x10877287
    [Google Scholar]
  29. ZhaoX. WuS. FangN. SunX. FanJ. Evaluation of single- cell classifiers for single-cell RNA sequencing data sets.Brief. Bioinform.20202151581159510.1093/bib/bbz09631675098
    [Google Scholar]
  30. ZhangX. LanY. XuJ. QuanF. ZhaoE. DengC. LuoT. XuL. LiaoG. YanM. PingY. LiF. ShiA. BaiJ. ZhaoT. LiX. XiaoY. CellMarker: A manually curated resource of cell markers in human and mouse.Nucleic Acids Res.201947D1D721D72810.1093/nar/gky90030289549
    [Google Scholar]
  31. CaoJ. SpielmannM. QiuX. HuangX. IbrahimD.M. HillA.J. ZhangF. MundlosS. ChristiansenL. SteemersF.J. TrapnellC. ShendureJ. The single-cell transcriptional landscape of mammalian organogenesis.Nature2019566774549650210.1038/s41586‑019‑0969‑x30787437
    [Google Scholar]
  32. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  33. AliH.R. ChlonL. PharoahP.D.P. MarkowetzF. CaldasC. Patterns of Immune Infiltration in Breast Cancer and Their Clinical Implications: A Gene-Expression-Based Retrospective Study.PLoS Med.20161312e100219410.1371/journal.pmed.100219427959923
    [Google Scholar]
  34. KleinerD.E. BruntE.M. Van NattaM. BehlingC. ContosM.J. CummingsO.W. FerrellL.D. LiuY.C. TorbensonM.S. Unalp-AridaA. YehM. McCulloughA.J. SanyalA.J. NetworkN.S.C.R. Design and validation of a histological scoring system for nonalcoholic fatty liver disease.Hepatology20054161313132110.1002/hep.2070115915461
    [Google Scholar]
  35. TanD.J.H. NgC.H. LinS.Y. PanX.H. TayP. LimW.H. TengM. SynN. LimG. YongJ.N. QuekJ. XiaoJ. DanY.Y. SiddiquiM.S. SanyalA.J. MuthiahM.D. LoombaR. HuangD.Q. Clinical characteristics, surveillance, treatment allocation, and outcomes of non-alcoholic fatty liver disease-related hepatocellular carcinoma: A systematic review and meta-analysis.Lancet Oncol.202223452153010.1016/S1470‑2045(22)00078‑X35255263
    [Google Scholar]
  36. TakinoJ. NagamineK. HoriT. Sakasai-SakaiA. TakeuchiM. Contribution of the toxic advanced glycation end-products-receptor axis in nonalcoholic steatohepatitis-related hepatocellular carcinoma.World J. Hepatol.20157232459246910.4254/wjh.v7.i23.245926483867
    [Google Scholar]
  37. ZollerH. TilgH. Nonalcoholic fatty liver disease and hepatocellular carcinoma.Metabolism20166581151116010.1016/j.metabol.2016.01.01026907206
    [Google Scholar]
  38. FriedmanS.L. Neuschwander-TetriB.A. RinellaM. SanyalA.J. Mechanisms of NAFLD development and therapeutic strategies.Nat. Med.201824790892210.1038/s41591‑018‑0104‑929967350
    [Google Scholar]
  39. JouJ. ChoiS. DiehlA. Mechanisms of disease progression in nonalcoholic fatty liver disease.Semin. Liver Dis.200828437037910.1055/s‑0028‑109198118956293
    [Google Scholar]
  40. KotsilitiE. LeoneV. SchuehleS. GovaereO. LiH. WolfM.J. HorvaticH. BierwirthS. HundertmarkJ. InversoD. ZizmareL. Sarusi-PortuguezA. GuptaR. O’ConnorT. GiannouA.D. ShiriA.M. SchlesingerY. BeccariaM.G. RennertC. PfisterD. ÖllingerR. GadjalovaI. RamadoriP. RahbariM. RahbariN. HealyM.E. Fernández-VaqueroM. YahooN. JanzenJ. SinghI. FanC. LiuX. RauM. FeuchtenbergerM. SchwaneckE. WallaceS.J. CockellS. Wilson-KanamoriJ. RamachandranP. KhoC. KendallT.J. LeblondA.L. KepplerS.J. BieleckiP. SteigerK. HofmannM. RippeK. ZitzelsbergerH. WeberA. MalekN. LueddeT. VucurM. AugustinH.G. FlavellR. ParnasO. RadR. PabstO. HendersonN.C. HuberS. MacphersonA. KnolleP. ClaassenM. GeierA. TrautweinC. UngerK. ElinavE. WaismanA. AbdullahZ. HallerD. TackeF. AnsteeQ.M. HeikenwalderM. IntestinalB. Intestinal B cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling.J. Hepatol.202379229631310.1016/j.jhep.2023.04.03737224925
    [Google Scholar]
  41. PalmaR. PronioA. RomeoM. ScognamiglioF. VentrigliaL. OrmandoV.M. LamazzaA. PontoneS. FedericoA. DallioM. The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications.J. Clin. Med.20221113364910.3390/jcm1113364935806934
    [Google Scholar]
  42. BustorosM. Sklavenitis-PistofidisR. ParkJ. ReddR. ZhitomirskyB. DunfordA.J. SalemK. TaiY.T. AnandS. MouhieddineT.H. ChavdaS.J. BoehnerC. ElaginaL. NeuseC.J. ChaJ. RahmatM. Taylor-WeinerA. Van AllenE. KumarS. KastritisE. LeshchinerI. MorganE.A. LaubachJ. CasneufT. RichardsonP. MunshiN.C. AndersonK.C. TrippaL. AguetF. StewartC. DimopoulosM.A. YongK. BergsagelP.L. ManierS. GetzG. GhobrialI.M. Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression.J. Clin. Oncol.202038212380238910.1200/JCO.20.0043732442065
    [Google Scholar]
  43. MortazaviA. WilliamsB.A. McCueK. SchaefferL. WoldB. Mapping and quantifying mammalian transcriptomes by RNA-Seq.Nat. Methods20085762162810.1038/nmeth.122618516045
    [Google Scholar]
  44. MontgomeryS.B. SammethM. Gutierrez-ArcelusM. LachR.P. IngleC. NisbettJ. GuigoR. DermitzakisE.T. Transcriptome genetics using second generation sequencing in a Caucasian population.Nature2010464728977377710.1038/nature0890320220756
    [Google Scholar]
  45. NagalakshmiU. WaernK. SnyderM. RNA-Seq: A method for comprehensive transcriptome analysis.Curr Protoc Mol Biol201011310.1002/0471142727.mb0411s89
    [Google Scholar]
  46. WangY. TongZ. ZhangW. ZhangW. BuzdinA. MuX. YanQ. ZhaoX. ChangH.H. DuhonM. ZhouX. ZhaoG. ChenH. LiX. FDA-Approved and Emerging Next Generation Predictive Biomarkers for Immune Checkpoint Inhibitors in Cancer Patients.Front. Oncol.20211168341910.3389/fonc.2021.68341934164344
    [Google Scholar]
  47. MoisseevA. AlbertE. LubarskyD. SchroederD. ClarkJ. Transcriptomic and Genomic Testing to Guide Individualized Treatment in Chemoresistant Gastric Cancer Case.Biomedicines2020836710.3390/biomedicines803006732210001
    [Google Scholar]
  48. BortA. SánchezB.G. de MiguelI. Mateos-GómezP.A. Diaz-LaviadaI. Dysregulated lipid metabolism in hepatocellular carcinoma cancer stem cells.Mol. Biol. Rep.20204742635264710.1007/s11033‑020‑05352‑332125560
    [Google Scholar]
  49. BlencoweM. KarunanayakeT. WierJ. HsuN. YangX. Network Modeling Approaches and Applications to Unravelling Non-Alcoholic Fatty Liver Disease.Genes (Basel)2019101296610.3390/genes1012096631771247
    [Google Scholar]
  50. LiN. LiX. DingY. LiuX. DiggleK. KisselevaT. BrennerD.A. SREBP Regulation of Lipid Metabolism in Liver Disease, and Therapeutic Strategies.Biomedicines20231112328010.3390/biomedicines1112328038137501
    [Google Scholar]
  51. TenenD.G. ChaiL. TanJ.L. Metabolic alterations and vulnerabilities in hepatocellular carcinoma.Gastroenterol. Rep. (Oxf.)20219111310.1093/gastro/goaa06633747521
    [Google Scholar]
  52. VituloM. GnodiE. RosiniG. MeneveriR. GiovannoniR. BarisaniD. Current Therapeutical Approaches Targeting Lipid Metabolism in NAFLD.Int. J. Mol. Sci.202324161274810.3390/ijms24161274837628929
    [Google Scholar]
  53. SozioM. LiangpunsakulS. CrabbD. The role of lipid metabolism in the pathogenesis of alcoholic and nonalcoholic hepatic steatosis.Semin. Liver Dis.201030437839010.1055/s‑0030‑126753820960377
    [Google Scholar]
  54. FanJ. WangL. ChenM. ZhangJ. LiJ. SongF. GuA. YinD. YiY. Analysis of the expression and prognosis for leukocyte immunoglobulin-like receptor subfamily B in human liver cancer.World J. Surg. Oncol.20222019210.1186/s12957‑022‑02562‑w35321724
    [Google Scholar]
  55. CaillatC. PerrakisA. Cdt1 and geminin in DNA replication initiation.Subcell Biochem201262618710.1007/978‑94‑007‑4572‑8_5
    [Google Scholar]
  56. FujitaM. Cdt1 revisited: Complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells.Cell Div.2006112210.1186/1747‑1028‑1‑2217042960
    [Google Scholar]
  57. WalmsleyS.R. Pressure regulates immune-cell function.Nature20195737772414210.1038/d41586‑019‑02339‑431481766
    [Google Scholar]
  58. CheonY. LeeS. CENP-W inhibits CDC25A degradation by destabilizing the SCFβ-TrCP-1 complex at G2/M.FASEB J201810.1096/fj.201701358RRR
    [Google Scholar]
  59. YangC. XieN. LuoZ. RuanX. ZhangY. WangW. HuangY. The Effect of High CDC6 Levels on Predicting Poor Prognosis in Colorectal Cancer.Chemotherapy2022671475610.1159/00051991335034031
    [Google Scholar]
  60. ShengP. ZhuH. ZhangW. XuY. PengW. SunJ. GuM. JiangH. The immunoglobulin superfamily member 3 (IGSF3) promotes hepatocellular carcinoma progression through activation of the NF-κB pathway.Ann. Transl. Med.20208637837810.21037/atm.2020.02.1432355822
    [Google Scholar]
  61. ZhouZ. ZhouZ. HuangZ. HeS. ChenS. Histone-fold centromere protein W (CENP-W) is associated with the biological behavior of hepatocellular carcinoma cells.Bioengineered202011172974210.1080/21655979.2020.178777632635817
    [Google Scholar]
  62. ZhangH. Regulation of DNA Replication Licensing and Re-Replication by Cdt1.Int. J. Mol. Sci.20212210519510.3390/ijms2210519534068957
    [Google Scholar]
  63. CaiC. ZhangY. HuX. HuW. YangS. QiuH. ChuT. CDT1 Is a Novel Prognostic and Predictive Biomarkers for Hepatocellular Carcinoma.Front. Oncol.20211172164410.3389/fonc.2021.72164434631549
    [Google Scholar]
  64. JiaW. XieL. WangX. ZhangQ. WeiB. LiH. QinS. ChenS. LiuJ. TanY. ZhengS. LiangX. YangX. The impact of MCM6 on hepatocellular carcinoma in a Southern Chinese Zhuang population.Biomed. Pharmacother.202012711017110.1016/j.biopha.2020.11017132403044
    [Google Scholar]
  65. KarantzelisN. PetropoulosM. De MarcoV. EganD.A. FishA. ChristodoulouE. WillD.W. LewisJ.D. PerrakisA. LygerouZ. TaravirasS. Small Molecule Inhibitor Targeting CDT1/Geminin Protein Complex Promotes DNA Damage and Cell Death in Cancer Cells.Front. Pharmacol.20221386068210.3389/fphar.2022.86068235548337
    [Google Scholar]
  66. LimN. TownsendP.A. Cdc6 as a novel target in cancer: Oncogenic potential, senescence and subcellular localisation.Int. J. Cancer202014761528153410.1002/ijc.3290032010971
    [Google Scholar]
  67. MoriyamaM. KandaT. MidorikawaY. MatsumuraH. MasuzakiR. NakamuraH. OgawaM. MatsuokaS. ShibataT. YamazakiM. KurodaK. NakayamaH. HigakiT. KanemaruK. MikiT. SugitaniM. TakayamaT. The proliferation of atypical hepatocytes and CDT1 expression in noncancerous tissue are associated with the postoperative recurrence of hepatocellular carcinoma.Sci. Rep.20221212050810.1038/s41598‑022‑25201‑636443564
    [Google Scholar]
  68. HoC.M. LinK.T. ShenR. GuD.L. LeeS.S. SuW.H. JouY.S. Prognostic comparative genes predict targets for sorafenib combination therapies in hepatocellular carcinoma.Comput. Struct. Biotechnol. J.2022201752176310.1016/j.csbj.2022.04.00835495118
    [Google Scholar]
  69. FujiwaraN. NakagawaH. Clinico-histological and molecular features of hepatocellular carcinoma from nonalcoholic fatty liver disease.Cancer Sci.2023114103825383310.1111/cas.1592537545384
    [Google Scholar]
  70. DaiK. LiuC. GuanG. CaiJ. WuL. Identification of immune infiltration-related genes as prognostic indicators for hepatocellular carcinoma.BMC Cancer202222149610.1186/s12885‑022‑09587‑035513781
    [Google Scholar]
  71. WangY. YuanZ. ZhuQ. MaJ. LuQ. XiaoZ. Disulfidptosis-related genes of prognostic signature and immune infiltration features in hepatocellular carcinoma supported by bulk and single- cell RNA sequencing data.J. Gastrointest. Oncol.202415137739610.21037/jgo‑23‑94938482234
    [Google Scholar]
  72. ZhouD. WangY. WeiW. ZhouW. GuJ. KongY. YangQ. WuY. m6A regulator-mediated methylation modification highlights immune infiltration patterns for predicting risk in hepatocellular carcinoma.J. Cancer Res. Clin. Oncol.202314973661368010.1007/s00432‑022‑04255‑z35972694
    [Google Scholar]
/content/journals/cg/10.2174/0113892029313473240919105819
Loading
/content/journals/cg/10.2174/0113892029313473240919105819
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test