Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Type II diabetes mellitus is a chronic disorder characterized by pancreatic beta cell dysfunction, insulin resistance, and hyperglycemia. Administration of different classes of anti-diabetic drugs over the long term is essential to maintain normoglycemic levels in affected individuals. This study is focused on natural analogs as substitutes for the most marketed synthetic and semi-synthetic anti-diabetic drugs. This study aimed to review phytoconstituents with their mechanism of action, which are comparatively equivalent to that of the allopathic anti-diabetic marketed drugs, like biguanides, sulphonylurea, and thiazolidinediones. The methodology used for the review involved using the keywords collected from online sites, like PubMed, ScienceDirect, and Google Scholar. At present, different drugs are available for the treatment of diabetes and work with different mechanisms, like metformin induces the AMPK pathway in hepatocytes and muscle fibers with increased glucose uptake in peripheral tissues, whereas the phytoconstituents, like quercetin (flavonoid), mahanimbine, and koenidine (carbazole alkaloids) involve same mechanism as metformin. Sulfonylureas drugs bind to specific receptors in hepatocytes, resulting in glucose-independent insulin release. The phytomolecule amyrins (pentacyclic triterpenoid) and kaempferol (flavonoid) have similar effects as that of sulphonylureas. Thiazoglinediones target adipocytes and cause GLUT-4 translocation and up-regulation of PPAR and adiponectin gene expression. Phytoconstituents, like cyanidin-3-glucoside (anthocyanin) and protocatechuic acid (tannin), exhibit a similar mechanism of action to that of thiazolidinediones. In this review, it can be concluded that the selected compounds have the same antidiabetic activity as the synthetic drugs. In the future, a new polyherbal formulation can be developed with these selected molecules having the same mechanisms of action, with significant therapeutic value without side effects.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629340212241203065223
2024-12-27
2025-11-29
Loading full text...

Full text loading...

References

  1. FeingoldK.R. Oral and injectable (non-insulin) pharmacological agents for the treatment of type 2 diabetes. In: Endotext. South Dartmouth (MA): MDText.com, Inc.;2000 25905364
    [Google Scholar]
  2. GanesanK. RanaM.B.M. SultanS. Oral Hypoglycemic Medications.In: StatPearls. StatPearls Publishing, Treasure Island (FL);2025 29494008
    [Google Scholar]
  3. McMackenM. ShahS. A plant-based diet for the prevention and treatment of type 2 diabetes.J. Geriatr. Cardiol.2017145342354 28630614
    [Google Scholar]
  4. MenesesM. SilvaB. SousaM. SáR. OliveiraP. AlvesM. Antidiabetic drugs: Mechanisms of action and potential outcomes on cellular metabolism.Curr. Pharm. Des.201521253606362010.2174/1381612821666150710145753 26166608
    [Google Scholar]
  5. AimanR. ChaudharyN. Mechanism of action of oral antidiabetic drugs.Br. J. Pharmacol. Chemother.195914337737910.1111/j.1476‑5381.1959.tb00261.x 13792172
    [Google Scholar]
  6. NazR. SaqibF. AwadallahS. Food polyphenols and type II diabetes mellitus: Pharmacology and mechanisms.Molecules20232810399610.3390/molecules28103996 37241737
    [Google Scholar]
  7. VinayagamR. XuB. Antidiabetic properties of dietary flavonoids: A cellular mechanism review.Nutr. Metab.20151216010.1186/s12986‑015‑0057‑7 26705405
    [Google Scholar]
  8. SinghS. BansalA. SinghV. ChopraT. PoddarJ. Flavonoids, alkaloids and terpenoids: A new hope for the treatment of diabetes mellitus.J. Diabetes Metab. Disord.202221194195010.1007/s40200‑021‑00943‑8 35673446
    [Google Scholar]
  9. KanetoH. KimuraT. ObataA. ShimodaM. KakuK. Multifaceted mechanisms of action of metformin which have been unraveled one after another in the long history.Int. J. Mol. Sci.2021225259610.3390/ijms22052596 33807522
    [Google Scholar]
  10. LaMoiaT.E. ShulmanG.I. Cellular and molecular mechanisms of metformin action.Endocr. Rev.2021421779610.1210/endrev/bnaa023 32897388
    [Google Scholar]
  11. HaunerH. The mode of action of thiazolidinediones.Diabetes Metab. Res. Rev.200218Suppl. 2S10S1510.1002/dmrr.249 11921433
    [Google Scholar]
  12. DuboisM. VantyghemM.C. SchoonjansK. PattouF. Thiazolidinediones in type 2 diabetes. Role of peroxisome proliferator-activated receptor gamma (PPARgamma).Ann. Endocrinol.2002636 Pt 1511523 12527853
    [Google Scholar]
  13. HerbstK.J. ColtharpC. AmzelL.M. ZhangJ. Direct activation of epac by sulfonylurea is isoform selective.Chem. Biol.201118224325110.1016/j.chembiol.2010.12.007 21338921
    [Google Scholar]
  14. AshcroftF. Mechanisms of the glycaemic effects of sulfonylureas.Horm. Metab. Res.199628945646310.1055/s‑2007‑979837 8911983
    [Google Scholar]
  15. EldamarawiM. AbdelazeemM. Effect of quercetin and metformin on glucose transporter – 4 expression, oxidative stress, inflammation markers, and insulin resistance in type 2 diabetes mellitus.Bulletin Egypt Soc Physiol Sci2020402708510.21608/besps.2020.22519.1041
    [Google Scholar]
  16. DhanyaR. AryaA.D. NishaP. JayamurthyP. Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line.Front. Pharmacol.20178833610.3389/fphar.2017.00336 28642704
    [Google Scholar]
  17. DhanyaR. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy.Biomed. Pharmacother.202214611256010.1016/j.biopha.2021.112560 34953390
    [Google Scholar]
  18. CermakR. LandgrafS. WolfframS. Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum.Br. J. Nutr.200491684985510.1079/BJN20041128 15182388
    [Google Scholar]
  19. Torres-PiedraM. Ortiz-AndradeR. Villalobos-MolinaR. A comparative study of flavonoid analogues on streptozotocin–nicotinamide induced diabetic rats: Quercetin as a potential antidiabetic agent acting via 11β-Hydroxysteroid dehydrogenase type 1 inhibition.Eur. J. Med. Chem.20104562606261210.1016/j.ejmech.2010.02.049 20346546
    [Google Scholar]
  20. BatubaraI. SupartoI.H. WulandariN.S. The best extraction technique for kaempferol and quercetin isolation from guava leaves (Psidium guajava).IOP Conf. Ser. Earth Environ. Sci.20175801206010.1088/1755‑1315/58/1/012060
    [Google Scholar]
  21. CiardiM. IanniF. SaedellaR. Effective and selective extraction of quercetin from onion (Allium cepa L.) skin waste using water dilutions of acid-based deep eutectic solvents.Materials20211421646510.3390/ma14216465 34771995
    [Google Scholar]
  22. LiJ. ZhaoY. CaoL. ZhengQ. GaoJ. AMPK activation of flavonoids from Psidium guajava leaves in l6 rat myoblast cells and L02 human hepatic cells.Evid. Based Complement. Alternat. Med.201920191610.1155/2019/9209043 31929823
    [Google Scholar]
  23. Herranz-LópezM. Olivares-VicenteM. Rodríguez GallegoE. Quercetin metabolites from Hibiscus sabdariffa contribute to alleviate glucolipotoxicity-induced metabolic stress in vitro .Food Chem. Toxicol.202014411160610.1016/j.fct.2020.111606
    [Google Scholar]
  24. ChellianJ. MakK.K. ChellappanD.K. KrishnappaP. PichikaM.R. Quercetin and metformin synergistically reverse endothelial dysfunction in the isolated aorta of streptozotocin-nicotinamide- induced diabetic rats.Sci. Rep.20221212139310.1038/s41598‑022‑25739‑5 36496468
    [Google Scholar]
  25. AfshariH. NooriS. ZarghiA. Hepatic steatosis alleviated by a novel metformin and quercetin combination activating autophagy through the cAMP/AMPK/SIRT1 pathway.Iran. J. Pharm. Res.2023221e13695210.5812/ijpr‑136952 38116565
    [Google Scholar]
  26. AnsariP. ChoudhuryS.T. SeidelV. Therapeutic potential of quercetin in the management of type-2 diabetes mellitus.Life2022128114610.3390/life12081146 36013325
    [Google Scholar]
  27. DesmiatyY. AlatasF. Determination of quercetin in hibiscus sabdariffa l. calyces by high-performance liquid chromatography (HPLC). Proceeding of The International Seminar on Chemistry. Jatinangor,2008385388
    [Google Scholar]
  28. SiddiquaS. JyotiF.H. SaffoonN. Ethanolic extract of coccinia grandis prevented glucose intolerance, hyperlipidemia and oxidative stress in high fat diet fed rats.Phytomed. Plus20211410004610.1016/j.phyplu.2021.100046
    [Google Scholar]
  29. PatelO.P.S. MishraA. MauryaR. Naturally occurring carbazole alkaloids from Murraya koenigii as potential antidiabetic agents.J. Nat. Prod.20167951276128410.1021/acs.jnatprod.5b00883 27136692
    [Google Scholar]
  30. MitraA. MahadevappaM. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murrayakoenigii (Rutaceae) leaves.Int. J. Phytomed.201022230
    [Google Scholar]
  31. PanditS. KumarM. PonnusankarS. PalB.C. MukherjeeP.K. RP‐HPLC‐DAD for simultaneous estimation of mahanine and mahanimbine in Murraya koenigii.Biomed. Chromatogr.201125995996210.1002/bmc.1561 21381062
    [Google Scholar]
  32. JoshiT MaharR SinghSK Quantitative analysis of bioactive carbazole alkaloids in Murraya koenigii.Nat Prod Commun20151021934578X150100022010.1177/1934578X1501000220 25920265
    [Google Scholar]
  33. GrandeF. IoeleG. CarusoA. Carbazoles: Role and functions in fighting diabetes.Appl. Sci.202213134910.3390/app13010349
    [Google Scholar]
  34. SampathS.N. JayasingheS. AttanayakeA.P. KarunaratneV. YaddehigeM.L. WatkinsD.L. A new dimeric carbazole alkaloid from Murraya koenigii (L.) leaves with α-amylase and α-glucosidase inhibitory activities.Phytochem. Lett.2022528991
    [Google Scholar]
  35. ScazzocchioB. VarìR. FilesiC. Cyanidin-3-o-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes.Diabetes20116092234224410.2337/db10‑1461 21788573
    [Google Scholar]
  36. BartelI. KoszarskaM. StrzałkowskaN. Cyanidin-3-o-glucoside as a nutrigenomic factor in type 2 diabetes and its prominent impact on health.Int. J. Mol. Sci.20232411976510.3390/ijms24119765 37298715
    [Google Scholar]
  37. MatsukawaT. InagumaT. HanJ. VillarealM.O. IsodaH. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes.J. Nutr. Biochem.201526886086710.1016/j.jnutbio.2015.03.006 25940979
    [Google Scholar]
  38. SasakiR. NishimuraN. HoshinoH. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice.Biochem. Pharmacol.200774111619162710.1016/j.bcp.2007.08.008 17869225
    [Google Scholar]
  39. YeX. ChenW. HuangX.F. Anti-diabetic effect of anthocyanin cyanidin-3-o-glucoside: Data from insulin resistant hepatocyte and diabetic mouse.Nutr. Diabetes2024141710.1038/s41387‑024‑00265‑7 38429305
    [Google Scholar]
  40. ZhengH.X. QiS.S. HeJ. Cyanidin-3-glucoside from black rice ameliorates diabetic nephropathy via reducing blood glucose, suppressing oxidative stress and inflammation, and regulating transforming growth factor β1/smad expression.J. Agric. Food Chem.202068154399441010.1021/acs.jafc.0c00680 32192334
    [Google Scholar]
  41. ShozibH.B. IslamM.M. MahmudS.A.S. Application of cyanidin-3-glucosides as a functional food ingredient in rice-based bakery products.Saudi J. Biol. Sci.202128127472748010.1016/j.sjbs.2021.08.042 34867052
    [Google Scholar]
  42. WahyuniA. MunawarohR. DaiM. Antidiabetic mechanism of ethanol extract of black rice bran on diabetic rats.Natl. J. Physiol. Pharm. Pharmacol.20166210610.5455/njppp.2015.5.1111201590
    [Google Scholar]
  43. HutabaratR.P. XiaoY.D. WuH. WangJ. LiD.J. HuangW.Y. Identification of anthocyanins and optimization of their extraction from rabbiteye blueberry fruits in Nanjing.J. Food Qual.201920191680679010.1155/2019/6806790
    [Google Scholar]
  44. AboonabiA. AboonabiA. Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR-γ gene expression in metabolic syndrome subjects.Free Radic. Biol. Med.2020150303910.1016/j.freeradbiomed.2020.02.004 32061902
    [Google Scholar]
  45. ChoungM.G. BaekI.Y. KangS.T. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.).J. Agric. Food Chem.200149125848585110.1021/jf010550w 11743773
    [Google Scholar]
  46. KimJ.N. HanS.N. KimH.K. Anti-inflammatory and anti-diabetic effect of black soybean anthocyanins: Data from a dual cooperative cellular system.Molecules20212611336310.3390/molecules26113363 34199668
    [Google Scholar]
  47. RóżańskaD. Regulska-IlowB. The significance of anthocyanins in the prevention and treatment of type 2 diabetes.Adv. Clin. Exp. Med.201827113514210.17219/acem/64983 29521054
    [Google Scholar]
  48. NizamutdinovaI.T. JinY.C. ChungJ.I. The anti‐diabetic effect of anthocyanins in streptozotocin‐induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis.Mol. Nutr. Food Res.200953111419142910.1002/mnfr.200800526 19785000
    [Google Scholar]
  49. ChoM.J. HowardL.R. PriorR.L. ClarkJ.R. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high‐performance liquid chromatography/mass spectrometry.J. Sci. Food Agric.200484131771178210.1002/jsfa.1885
    [Google Scholar]
  50. SarbiniD. The effect of Rosella (Hibiscus sabdariffa Linn) on insulin resistance in patients with type 2 diabetes mellitus: A randomized clinical trial.International Summit on Science Technology and Humanity2019572575
    [Google Scholar]
  51. HariniR. PugalendiK.V. Antihyperglycemic effect of protocatechuic acid on streptozotocin-diabetic rats.J. Basic Clin. Physiol. Pharmacol.2010211799210.1515/JBCPP.2010.21.1.79 20506690
    [Google Scholar]
  52. SemamingY. KukongviriyapanU. KongyingyoesB. ThukhammeeW. PannangpetchP. Protocatechuic acid restores vascular responses in rats with chronic diabetes induced by streptozotocin.Phytother. Res.201630222723310.1002/ptr.5520 26575211
    [Google Scholar]
  53. ChookC.Y.B. CheungY.M. MaK.Y. Physiological concentration of protocatechuic acid directly protects vascular endothelial function against inflammation in diabetes through Akt/eNOS pathway.Front. Nutr.202310106022610.3389/fnut.2023.1060226 37025617
    [Google Scholar]
  54. AlegbeE.O. TeralıK. OlofinsanK.A. SurgunS. OgbagaC.C. AjiboyeT.O. Antidiabetic activity‐guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes.J. Food Biochem.2019437e1292710.1111/jfbc.12927 31353728
    [Google Scholar]
  55. LinW.L. HsiehY.J. ChouF.P. WangC.J. ChengM.T. TsengT.H. Hibiscus protocatechuic acid inhibits lipopolysaccharide-induced rat hepatic damage.Arch. Toxicol.2003771424710.1007/s00204‑002‑0404‑0 12491040
    [Google Scholar]
  56. KakkarS. BaisS. A review on protocatechuic acid and its pharmacological potential.ISRN Pharmacol.20142014121910.1155/2014/952943 25006494
    [Google Scholar]
  57. SongJ. HeY. LuoC. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily.Pharmacol. Res.202016110510910.1016/j.phrs.2020.105109 32738494
    [Google Scholar]
  58. ShanB. CaiY.Z. SunM. CorkeH. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents.J. Agric. Food Chem.200553207749775910.1021/jf051513y 16190627
    [Google Scholar]
  59. DingH. HuangS. ChookC.Y. Blood glucose-lowering activity of protocatechuic acid is mediated by inhibiting A -glucosidase.Food Sci. Hum. Wellness20241331212121910.26599/FSHW.2022.9250101
    [Google Scholar]
  60. ShakoorH. HusseinH. Al-HassanN. AlketbiM. KizhakkayilJ. PlatatC. The muscle-conditioned medium containing protocatechuic acid improves insulin resistance by modulating muscle communication with liver and adipose tissue.Int. J. Mol. Sci.20232411949010.3390/ijms24119490 37298440
    [Google Scholar]
  61. XuK. LuG. FengQ. ChenS. WangY. Hepatoprotective effect of protocatechuic acid against type 2 diabetes-induced liver injury.Pharm. Biol.202361173774510.1080/13880209.2023.2181359 37129023
    [Google Scholar]
  62. PushparajP.N. LowH.K. ManikandanJ. TanB.K.H. TanC.H. Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats.J. Ethnopharmacol.2007111243043410.1016/j.jep.2006.11.028 17197141
    [Google Scholar]
  63. AbdelmageedM.E. ShehatouG.S.G. SuddekG.M. SalemH.A. Protocatechuic acid improves hepatic insulin resistance and restores vascular oxidative status in type-2 diabetic rats.Environ. Toxicol. Pharmacol.20218310357710.1016/j.etap.2020.103577 33383195
    [Google Scholar]
  64. ImK. IssacA. NmJ. NinanE. MaliakelB. KuttanR. Effects of the polyphenol content on the anti-diabetic activity of Cinnamomum zeylanicum extracts.Food Funct.2014592208222010.1039/C4FO00130C 25051315
    [Google Scholar]
  65. RossettoM. LanteA. VanzaniP. SpettoliP. ScarpaM. RigoA. Red chicories as potent scavengers of highly reactive radicals: A study on their phenolic composition and peroxyl radical trapping capacity and efficiency.J. Agric. Food Chem.200553218169817510.1021/jf051116n 16218660
    [Google Scholar]
  66. AmtaghriS. QaboucheA. SlaouiM. EddouksM. Antidiabetic effect of star anise (Illicium verum) in streptozotocin-induced diabetic rats.Cardiovasc. Hematol. Disord. Drug Targets2023232929810.2174/1871529X23666230823112113 37612867
    [Google Scholar]
  67. OrmazabalP. ScazzocchioB. VarìR. Carmela santangelo, massimo d’archivio.effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: Possible role for PTB1B.Int. J. Obes.201842122012202110.1038/s41366‑018‑0075‑4 29769704
    [Google Scholar]
  68. WanL. ChenW-B. WuG-Q. WuG.Q. Beneficial effects of protocatechuic acid on diabetic retinopathy in streptozocin-induced diabetic rats.Int. J. Ophthalmol.202316685586210.18240/ijo.2023.06.04 37332540
    [Google Scholar]
  69. MabhidaS.E. DludlaP.V. JohnsonR. Protective effect of triterpenes against diabetes-induced β-cell damage: An overview of in vitro and in vivo studies.Pharmacol. Res.201813717919210.1016/j.phrs.2018.10.004 30315968
    [Google Scholar]
  70. Giacoman-MartínezA. Alarcón-AguilarF.J. ZamilpaA. α-amyrin induces GLUT4 translocation mediated by AMPK and PPARΔ/γ in C2C12 myoblasts.Can. J. Physiol. Pharmacol.202199993594210.1139/cjpp‑2021‑0027 33596122
    [Google Scholar]
  71. Gomes da Silva FerreiraR Guilhon-SimplicioF de Lima YamaguchiKK The selective obtaining of amyrins from Amazonian Protium oleoresins.Colomb J Chem-Pharma Sci2020492Available from https://revistas.unal.edu.co/index.php/rccquifa/article/view/89923
    [Google Scholar]
  72. XuW. ZhangH. ZhangQ. XuJ. β‐amyrin ameliorates diabetic nephropathy in mice and regulates the MIR ‐181B‐5P/HMGB2 axis in high glucose‐stimulated HK ‐2 cells.Environ. Toxicol.202237363764910.1002/tox.23431 34894065
    [Google Scholar]
  73. SantosF.A. FrotaJ.T. ArrudaB.R. Antihyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from protium heptaphyllum in mice.Lipids Health Dis.20121119810.1186/1476‑511X‑11‑98 22867128
    [Google Scholar]
  74. EngeliS. Central and peripheral cannabinoid receptors as therapeutic targets in the control of food intake and body weight.Handb. Exp. Pharmacol.201220920935738110.1007/978‑3‑642‑24716‑3_17 22249824
    [Google Scholar]
  75. VietT.D. XuanT.D. AnhL.H. α-amyrin and β-amyrin isolated from Celastrus hindsii leaves and their antioxidant, anti-xanthine oxidase, and anti-tyrosinase potentials.Molecules20212623724810.3390/molecules26237248 34885832
    [Google Scholar]
  76. BajzerM. OlivieriM. HaasM.K. Cannabinoid receptor 1 (cb1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet-induced obese mice.Diabetologia201154123121313110.1007/s00125‑011‑2302‑6 21987346
    [Google Scholar]
  77. QuanN.V. XuanT.D. TranH.D. Antioxidant, α-amylase and α-glucosidase inhibitory activities and potential constituents of Canarium tramdenum Bark.Molecules201924360510.3390/molecules24030605 30744084
    [Google Scholar]
  78. KamtchouingP. KahpuiS.M. DzeufietP.D.D. TédongL. AsongalemE.A. DimoT. Anti-diabetic activity of methanol/methylene chloride stem bark extracts of Terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic rats.J. Ethnopharmacol.2006104330630910.1016/j.jep.2005.08.075 16271836
    [Google Scholar]
  79. YangY. ChenZ. ZhaoX. Mechanisms of kaempferol in the treatment of diabetes: A comprehensive and latest review.Front. Endocrinol.20221399029910.3389/fendo.2022.990299 36157449
    [Google Scholar]
  80. ZhaiH. WangD. WangY. Kaempferol alleviates adipose tissue inflammation and insulin resistance in db/db mice by inhibiting the STING/NLRP3 signaling pathway.Endocr. Connect.2024135e23037910.1530/EC‑23‑0379 38466634
    [Google Scholar]
  81. YaoY. YuY. DaiS. Kaempferol efficacy in metabolic diseases: Molecular mechanisms of action in diabetes mellitus, obesity, non-alcoholic fatty liver disease, steatohepatitis, and atherosclerosis.Biomed. Pharmacother.202417511669410.1016/j.biopha.2024.116694 38713943
    [Google Scholar]
  82. RenJ. LuY. QianY. ChenB. WuT. JiG. Recent progress regarding kaempferol for the treatment of various diseases. (review)Exp. Ther. Med.20191842759277610.3892/etm.2019.7886 31572524
    [Google Scholar]
  83. Al-NumairK.S. VeeramaniC. AlsaifM.A. ChandramohanG. Influence of kaempferol, a flavonoid compound, on membrane-bound atpases in streptozotocin-induced diabetic rats.Pharm. Biol.20155391372137810.3109/13880209.2014.982301 25853957
    [Google Scholar]
  84. Calderón-MontañoJ.M. Burgos-MorónE. Pérez-GuerreroC. López-LázaroM. A review on the dietary flavonoid kaempferol.Mini Rev. Med. Chem.201111429834410.2174/138955711795305335 21428901
    [Google Scholar]
  85. PatelD.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits.Cardiovasc. Hematol. Disord. Drug Targets202121210411410.2174/1871529X21666210812111931 34387174
    [Google Scholar]
  86. AlkhalidyH. MooreW. WangA. Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice.J. Nutr. Biochem.2018589010110.1016/j.jnutbio.2018.04.014 29886193
    [Google Scholar]
  87. BarberE. HoughtonM.J. WilliamsonG. Flavonoids as human intestinal α-glucosidase inhibitors.Foods2021108193910.3390/foods10081939 34441720
    [Google Scholar]
  88. OhW.K. LeeC.H. LeeM.S. Antidiabetic effects of extracts from Psidium guajava.J. Ethnopharmacol.200596341141510.1016/j.jep.2004.09.041 15619559
    [Google Scholar]
  89. GalaviA. HosseinzadehH. RazaviB.M. The effects of Allium cepa L. (onion) and its active constituents on metabolic syndrome: A review.Iran. J. Basic Med. Sci.2021241316 33643564
    [Google Scholar]
  90. Tsanova-SavovaS. Biologically active composition and health impact of Allium cepa.Acta Med. Bulg.201138199104
    [Google Scholar]
  91. IkechukwuO.J. IfeanyiO.S. The antidiabetic effects of the bioactive flavonoid (kaempferol-3-o-β-d-6p- coumaroyl glucopyranoside) isolated from Allium cepa.Recent Pat Antiinfect Drug Discov2016111445210.2174/1574891X11666151105130233 26536892
    [Google Scholar]
  92. AgadaR. UsmanW.A. ShehuS. ThagarikiD. In vitro and in vivo inhibitory effects of Carica papaya seed on α-amylase and α-glucosidase enzymes.Heliyon202063e0361810.1016/j.heliyon.2020.e03618 32258473
    [Google Scholar]
  93. RoyJ.R. JanakiC.S. JayaramanS. Carica papaya reduces muscle insulin resistance via ir/GLUT4 mediated signaling mechanisms in high fat diet and streptozotocin-induced type-2 diabetic rats.Antioxidants20221110208110.3390/antiox11102081 36290804
    [Google Scholar]
  94. JamrozikD. BorymskaW. Kaczmarczyk-ŻebrowskaI. Hibiscus sabdariffa in diabetes prevention and treatment—does it work? An evidence-based review.Foods20221114213410.3390/foods11142134 35885378
    [Google Scholar]
  95. LuoY. PengB. WeiW. TianX. WuZ. Antioxidant and anti-diabetic activities of polysaccharides from guava leaves.Molecules2019247134310.3390/molecules24071343 30959759
    [Google Scholar]
  96. SantanaL.F. InadaA.C. Espirito SantoB.L.S. Nutraceutical potential of Carica papaya in metabolic syndrome.Nutrients2019117160810.3390/nu11071608 31315213
    [Google Scholar]
  97. KianianF. MarefatiN. BoskabadyM. GhasemiS.Z. BoskabadyM.H. Pharmacological properties of Allium cepa, preclinical and clinical evidences; a review.Iran. J. Pharm. Res.2021202107134 34567150
    [Google Scholar]
  98. JoachimM. Neutraceutical value of Carica papaya: A review.Sci. Afr.202113e0093310.1016/j.sciaf.2021.e00933
    [Google Scholar]
  99. Da-Costa-RochaI. BonnlaenderB. SieversH. PischelI. HeinrichM. Hibiscus sabdariffa L. – a phytochemical and pharmacological review.Food Chem.201416516542444310.1016/j.foodchem.2014.05.002 25038696
    [Google Scholar]
  100. AL-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels.Biomolecules20199943010.3390/biom9090430 31480505
    [Google Scholar]
  101. GuptaJ. GuptaA. Flavonoids: It’s working mechanism and various protective roles.Int. J. Chem. Stud.201644190198
    [Google Scholar]
  102. de AraújoF.F. de Paulo FariasD. Neri-NumaI.A. PastoreG.M. Polyphenols and their applications: An approach in food chemistry and innovation potential.Food Chem.2021338312753510.1016/j.foodchem.2020.127535 32798817
    [Google Scholar]
  103. ShamsudinN.F. AhmedQ.U. MahmoodS. Flavonoids as antidiabetic and anti-inflammatory agents: A review on structural activity relationship-based studies and meta-analysis.Int. J. Mol. Sci.202223201260510.3390/ijms232012605 36293459
    [Google Scholar]
  104. McCallaG. SmithB. Physiologic effects of Hibiscus sabdariffa (sorrel) on biological systems: Advances in sorrel research.Nat. Prod. J.20241471635
    [Google Scholar]
  105. ChechaniB. RoatP. HadaS. YadavD.K. KumariN. Psidium guajava: An insight into ethnomedicinal uses, phytochemistry, and pharmacology.Comb. Chem. High Throughput Screen.202427123910.2174/1386207326666230426093315 37170987
    [Google Scholar]
  106. NadeemF. HanifM.A. El Zerey-BelaskriA. MajeedM.I. NawazH. Anti-diabetic and anti-hypertensive potentials of essential oil bearing medicinal plants.Phytother Manag Diab Hypert20203619410.2174/9789811459139120030005
    [Google Scholar]
  107. RamakrishnamurthyS. SingaraveluG. DevadasanV. PrakasaraoA. In vitro and in silico analysis of the anti-diabetic and anti-microbial activity of Cichorium intybus leaf extracts.Curr. Computeraided Drug Des.202117217318610.2174/1573409916666200129100930
    [Google Scholar]
  108. MominA. ShuklaP. NikambeR. PatilR. AsarU. Anti-inflammatory phytochemicals for the treatment of diabetic nephropathy.Curr Funct Food202321233610.2174/2666862901666230601100713
    [Google Scholar]
  109. RanđelovićS. BipatR. A review of coumarins and coumarin-related compounds for their potential antidiabetic effect.Clin. Med. Insights Endocrinol. Diabetes2021141179551421104202310.1177/11795514211042023 35173509
    [Google Scholar]
  110. LiH. YaoY. LiL. Coumarins as potential antidiabetic agents.J. Pharm. Pharmacol.201769101253126410.1111/jphp.12774 28675434
    [Google Scholar]
/content/journals/cff/10.2174/0126668629340212241203065223
Loading
/content/journals/cff/10.2174/0126668629340212241203065223
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Hyperglycemia; koenidine; mahanimbine; metformin; quercetin; sulphonylurea; thiazolidinediones
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test