Skip to content
2000
image of A Mechanism-Based Comparative Review on Functional Food with Phytomolecules and Marketed Formulation for Type II Diabetes Mellitus

Abstract

Type II diabetes mellitus is a chronic disorder characterized by pancreatic beta cell dysfunction, insulin resistance, and hyperglycemia. Administration of different classes of anti-diabetic drugs over the long term is essential to maintain normoglycemic levels in affected individuals. This study is focused on natural analogs as substitutes for the most marketed synthetic and semi-synthetic anti-diabetic drugs. This study aimed to review phytoconstituents with their mechanism of action, which are comparatively equivalent to that of the allopathic anti-diabetic marketed drugs, like biguanides, sulphonylurea, and thiazolidinediones. The methodology used for the review involved using the keywords collected from online sites, like PubMed, ScienceDirect, and Google Scholar. At present, different drugs are available for the treatment of diabetes and work with different mechanisms, like metformin induces the AMPK pathway in hepatocytes and muscle fibers with increased glucose uptake in peripheral tissues, whereas the phytoconstituents, like quercetin (flavonoid), mahanimbine, and koenidine (carbazole alkaloids) involve same mechanism as metformin. Sulfonylureas drugs bind to specific receptors in hepatocytes, resulting in glucose-independent insulin release. The phytomolecule amyrins (pentacyclic triterpenoid) and kaempferol (flavonoid) have similar effects as that of sulphonylureas. Thiazoglinediones target adipocytes and cause GLUT-4 translocation and up-regulation of PPAR and adiponectin gene expression. Phytoconstituents, like cyanidin-3-glucoside (anthocyanin) and protocatechuic acid (tannin), exhibit a similar mechanism of action to that of thiazolidinediones. In this review, it can be concluded that the selected compounds have the same antidiabetic activity as the synthetic drugs. In the future, a new polyherbal formulation can be developed with these selected molecules having the same mechanisms of action, with significant therapeutic value without side effects.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629340212241203065223
2024-12-27
2025-09-27
Loading full text...

Full text loading...

References

  1. Kenneth R. Feingold M.D. Feingold K.R. Anawalt B. Blackman M.R. Oral and injectable (non-insulin) pharmacological agents for the treatment of type 2 diabetes. Endotext MDText.com, Inc. South Dartmouth (MA) 2000 25905364
    [Google Scholar]
  2. Ganesan K. Rana M.B.M. Sultan S. Oral Hypoglycemic Medications. StatPearls StatPearls Publishing Treasure Island (FL)
    [Google Scholar]
  3. McMacken M. Shah S. A plant-based diet for the prevention and treatment of type 2 diabetes. J. Geriatr. Cardiol. 2017 14 5 342 354 28630614
    [Google Scholar]
  4. Meneses M. Silva B. Sousa M. Sá R. Oliveira P. Alves M. Antidiabetic drugs: Mechanisms of action and potential outcomes on cellular metabolism. Curr. Pharm. Des. 2015 21 25 3606 3620 10.2174/1381612821666150710145753 26166608
    [Google Scholar]
  5. Aiman R. Chaudhary N. Mechanism of action of oral antidiabetic drugs. Br. J. Pharmacol. Chemother. 1959 14 3 377 379 10.1111/j.1476‑5381.1959.tb00261.x 13792172
    [Google Scholar]
  6. Naz R. Saqib F. Awadallah S. Wahid M. Latif M.F. Iqbal I. Mubarak M.S. Food polyphenols and type ii diabetes mellitus: Pharmacology and mechanisms. Molecules 2023 28 10 3996 10.3390/molecules28103996 37241737
    [Google Scholar]
  7. Vinayagam R. Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr. Metab. 2015 12 1 60 10.1186/s12986‑015‑0057‑7 26705405
    [Google Scholar]
  8. Singh S. Bansal A. Singh V. Chopra T. Poddar J. Flavonoids, alkaloids and terpenoids: A new hope for the treatment of diabetes mellitus. J. Diabetes Metab. Disord. 2022 21 1 941 950 10.1007/s40200‑021‑00943‑8 35673446
    [Google Scholar]
  9. Kaneto H. Kimura T. Obata A. Shimoda M. Kaku K. Multifaceted mechanisms of action of metformin which have been unraveled one after another in the Long History. Int. J. Mol. Sci. 2021 22 5 2596 10.3390/ijms22052596 33807522
    [Google Scholar]
  10. LaMoia T.E. Shulman G.I. Cellular and molecular mechanisms of metformin action. Endocr. Rev. 2021 42 1 77 96 10.1210/endrev/bnaa023 32897388
    [Google Scholar]
  11. Hauner H. The mode of action of thiazolidinediones. Diabetes Metab. Res. Rev. 2002 18 S2 Suppl. 2 S10 S15 10.1002/dmrr.249 11921433
    [Google Scholar]
  12. Dubois M. Vantyghem M.C. Schoonjans K. Pattou F. Thiazolidinediones in type 2 diabetes. Role of peroxisome proliferator-activated receptor gamma (PPARgamma). Ann. Endocrinol. 2002 63 6 Pt 1 511 523 12527853
    [Google Scholar]
  13. Herbst K.J. Coltharp C. Amzel L.M. Zhang J. Direct activation of epac by sulfonylurea is isoform selective. Chem. Biol. 2011 18 2 243 251 10.1016/j.chembiol.2010.12.007 21338921
    [Google Scholar]
  14. Ashcroft F. Mechanisms of the glycaemic effects of sulfonylureas. Horm. Metab. Res. 1996 28 9 456 463 10.1055/s‑2007‑979837 8911983
    [Google Scholar]
  15. Magdi A. El-Damarawi M. Abdelazeem A. Effect of quercetin and metformin on glucose transporter – 4 expression, oxidative stress, inflammation markers, and insulin resistance in type 2 diabetes mellitus. J. Egypt. Soci. 2020 40 2 70 85 10.21608/besps.2020.22519.1041
    [Google Scholar]
  16. Dhanya R. Arya A.D. Nisha P. Jayamurthy P. Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in Skeletal Muscle Cell Line. Front. Pharmacol. 2017 8 8 336 10.3389/fphar.2017.00336 28642704
    [Google Scholar]
  17. Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed. Pharmacother. 2022 146 112560 10.1016/j.biopha.2021.112560 34953390
    [Google Scholar]
  18. Cermak R. Landgraf S. Wolffram S. Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum. Br. J. Nutr. 2004 91 6 849 855 10.1079/BJN20041128 15182388
    [Google Scholar]
  19. Torres-Piedra M. Ortiz-Andrade R. Villalobos-Molina R. Singh N. Medina-Franco J.L. Webster S.P. Binnie M. Navarrete-Vázquez G. Estrada-Soto S. A comparative study of flavonoid analogues on streptozotocin–nicotinamide induced diabetic rats: Quercetin as a potential antidiabetic agent acting via 11β-Hydroxysteroid dehydrogenase type 1 inhibition. Eur. J. Med. Chem. 2010 45 6 2606 2612 10.1016/j.ejmech.2010.02.049 20346546
    [Google Scholar]
  20. Batubara I. Suparto I.H. Wulandari N.S. The best extraction technique for kaempferol and quercetin isolation from guava leaves ( Psidium guajava ). IOP Conf. Ser. Earth Environ. Sci. 2017 58 012060 10.1088/1755‑1315/58/1/012060
    [Google Scholar]
  21. Al-Ansari M M Quercetin extraction from small onion skin (Allium cepa L. var. aggregatum Don.) and its antioxidant activity. Environ. Res. 2023 224 115497 10.1016/j.envres.2023.115497
    [Google Scholar]
  22. Li J. Zhao Y. Cao L. Zheng Q. Gao J. AMPK activation of flavonoids from Psidium guajava leaves in l6 rat myoblast cells and L02 human hepatic cells. Evid. Based Complement. Alternat. Med. 2019 2019 1 6 10.1155/2019/9209043 31929823
    [Google Scholar]
  23. Herranz-López M. Olivares-Vicente M. Rodríguez Gallego E. Encinar J.A. Pérez-Sánchez A. Ruiz-Torres V. Joven J. Roche E. Micol V. Quercetin metabolites from hibiscus sabdariffa contribute to alleviate glucolipotoxicity-induced metabolic stress in vitro. Food Chem. Toxicol. 2020 144 111606 10.1016/j.fct.2020.111606
    [Google Scholar]
  24. Chellian J. Mak K.K. Chellappan D.K. Krishnappa P. Pichika M.R. Quercetin and metformin synergistically reverse endothelial dysfunction in the isolated aorta of streptozotocin-nicotinamide- induced diabetic rats. Sci. Rep. 2022 12 1 21393 10.1038/s41598‑022‑25739‑5 36496468
    [Google Scholar]
  25. Afshari H. Noori S. Zarghi A. Hepatic steatosis alleviated by a novel metformin and quercetin combination activating autophagy through the cAMP/AMPK/SIRT1 pathway. Iran. J. Pharm. Res. 2023 22 1 e136952 10.5812/ijpr‑136952 38116565
    [Google Scholar]
  26. Ansari P. Choudhury S.T. Seidel V. Rahman A.B. Aziz M.A. Richi A.E. Rahman A. Jafrin U.H. Hannan J.M.A. Abdel-Wahab Y.H.A. Therapeutic potential of quercetin in the management of type-2 diabetes mellitus. Life 2022 12 8 1146 10.3390/life12081146 36013325
    [Google Scholar]
  27. Desmiaty Y. Alatas F. Determination of quercetin in hibiscus sabdariffa l. calyces by high-performance liquid chromatography (HPLC). Proceeding of The International Seminar on Chemistry Jatinangor, 30-31 October 2008, pp. 385-388
    [Google Scholar]
  28. Siddiqua S. Jyoti F.H. Saffoon N. Miah P. Lasker S. Hossain H. Akter R. Ahmed M.I. Alam M.A. Ethanolic extract of coccinia grandis prevented glucose intolerance, hyperlipidemia and oxidative stress in high fat diet fed rats. Phytomed. Plus 2021 1 4 100046 10.1016/j.phyplu.2021.100046
    [Google Scholar]
  29. Patel O.P.S. Mishra A. Maurya R. Saini D. Pandey J. Taneja I. Raju K.S.R. Kanojiya S. Shukla S.K. Srivastava M.N. Wahajuddin M. Tamrakar A.K. Srivastava A.K. Yadav P.P. Naturally occurring carbazole alkaloids from Murraya koenigii as potential antidiabetic agents. J. Nat. Prod. 2016 79 5 1276 1284 10.1021/acs.jnatprod.5b00883 27136692
    [Google Scholar]
  30. Dineshkumar B. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murrayakoenigii(Rutaceae) leaves. Int. J. Phytomed. 2010 2 22 30
    [Google Scholar]
  31. Pandit S. Kumar M. Ponnusankar S. Pal B.C. Mukherjee P.K. Rp‐hplc‐dad for simultaneous estimation of mahanine and mahanimbine in Murraya koenigii. Biomed. Chromatogr. 2011 25 9 959 962 10.1002/bmc.1561 21381062
    [Google Scholar]
  32. Joshi T. Mahar R. Singh S.K. Srivastava P. Shukla S.K. Mishra D.K. Bhatta R.S. Kanojiya S. Quantitative analysis of bioactive carbazole alkaloids in murraya koenigii. Nat. Prod. Commun. 2015 10 2 1934578X1501000220 10.1177/1934578X1501000220 25920265
    [Google Scholar]
  33. Grande F. Ioele G. Caruso A. Occhiuzzi M.A. El-Kashef H. Saturnino C. Sinicropi M.S. Carbazoles: Role and functions in fighting diabetes. Appl. Sci. 2022 13 1 349 10.3390/app13010349
    [Google Scholar]
  34. L. Watkins Davita A new dimeric carbazole alkaloid from murrayakoenigii (l.) leaves with α-amylase and α-glucosidase inhibitory activities. Phytochem. Lett. 2022 52 89 91
    [Google Scholar]
  35. Scazzocchio B. Varì R. Filesi C. D’Archivio M. Santangelo C. Giovannini C. Iacovelli A. Silecchia G. Volti G.L. Galvano F. Masella R. Cyanidin-3-o-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes 2011 60 9 2234 2244 10.2337/db10‑1461 21788573
    [Google Scholar]
  36. Bartel I. Koszarska M. Strzałkowska N. Tzvetkov N.T. Wang D. Horbańczuk J.O. Wierzbicka A. Atanasov A.G. Jóźwik A. Cyanidin-3-o-glucoside as a nutrigenomic factor in type 2 diabetes and its prominent impact on health. Int. J. Mol. Sci. 2023 24 11 9765 10.3390/ijms24119765 37298715
    [Google Scholar]
  37. Matsukawa T. Inaguma T. Han J. Villareal M.O. Isoda H. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. J. Nutr. Biochem. 2015 26 8 860 867 10.1016/j.jnutbio.2015.03.006 25940979
    [Google Scholar]
  38. Sasaki R. Nishimura N. Hoshino H. Isa Y. Kadowaki M. Ichi T. Tanaka A. Nishiumi S. Fukuda I. Ashida H. Horio F. Tsuda T. Cyanidin 3-glucoside ameliorates hyperglycemia and insulin sensitivity due to downregulation of retinol binding protein 4 expression in diabetic mice. Biochem. Pharmacol. 2007 74 11 1619 1627 10.1016/j.bcp.2007.08.008 17869225
    [Google Scholar]
  39. Ye X. Chen W. Huang X.F. Yan F.J. Deng S.G. Zheng X.D. Shan P.F. Anti-diabetic effect of anthocyanin cyanidin-3-o-glucoside: Data from insulin resistant hepatocyte and diabetic mouse. Nutr. Diabetes 2024 14 1 7 10.1038/s41387‑024‑00265‑7 38429305
    [Google Scholar]
  40. Zheng H.X. Qi S.S. He J. Hu C.Y. Han H. Jiang H. Li X.S. Cyanidin-3-glucoside from black rice ameliorates diabetic nephropathy via reducing blood glucose, suppressing oxidative stress and inflammation, and regulating transforming growth factor β1/smad expression. J. Agric. Food Chem. 2020 68 15 4399 4410 10.1021/acs.jafc.0c00680 32192334
    [Google Scholar]
  41. Shozib H.B. Islam M.M. Mahmud S.A.S. Bari M.N. Akter N. Jahan S. Hosen S. Hossain M.N. Nabi A.H.M.N. Siddiquee M.A. Haque M.M. Application of cyanidin-3-glucosides as a functional food ingredient in rice-based bakery products. Saudi J. Biol. Sci. 2021 28 12 7472 7480 10.1016/j.sjbs.2021.08.042 34867052
    [Google Scholar]
  42. Wahyuni A. Munawaroh R. Dai M. Antidiabetic mechanism of ethanol extract of black rice bran on diabetic rats. Natl. J. Physiol. Pharm. Pharmacol. 2016 6 2 106 10.5455/njppp.2015.5.1111201590
    [Google Scholar]
  43. Hutabarat R.P. Xiao Y.D. Wu H. Wang J. Li D.J. Huang W.Y. Identification of anthocyanins and optimization of their extraction from rabbiteye blueberry fruits in Nanjing. J. Food Qual. 2019 2019 1 10 10.1155/2019/6806790
    [Google Scholar]
  44. Aboonabi A. Aboonabi A. Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR-γ gene expression in metabolic syndrome subjects. Free Radic. Biol. Med. 2020 150 30 39 10.1016/j.freeradbiomed.2020.02.004 32061902
    [Google Scholar]
  45. Choung M.G. Baek I.Y. Kang S.T. Han W.Y. Shin D.C. Moon H.P. Kang K.H. Isolation and determination of anthocyanins in seed coats of black soybean (glycine max (L.) Merr.). J. Agric. Food Chem. 2001 49 12 5848 5851 10.1021/jf010550w 11743773
    [Google Scholar]
  46. Kim J.N. Han S.N. Kim H.K. Anti-inflammatory and anti-diabetic effect of black soybean anthocyanins: Data from a dual cooperative cellular system. Molecules 2021 26 11 3363 10.3390/molecules26113363 34199668
    [Google Scholar]
  47. Różańska D. Regulska-Ilow B. The significance of anthocyanins in the prevention and treatment of type 2 diabetes. Adv. Clin. Exp. Med. 2018 27 1 135 142 10.17219/acem/64983 29521054
    [Google Scholar]
  48. Nizamutdinova I.T. Jin Y.C. Chung J.I. Shin S.C. Lee S.J. Seo H.G. Lee J.H. Chang K.C. Kim H.J. The anti‐diabetic effect of anthocyanins in streptozotocin‐induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Mol. Nutr. Food Res. 2009 53 11 1419 1429 10.1002/mnfr.200800526 19785000
    [Google Scholar]
  49. Cho M.J. Howard L.R. Prior R.L. Clark J.R. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high‐performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2004 84 13 1771 1782 10.1002/jsfa.1885
    [Google Scholar]
  50. Sarbini D. The effect of Rosella (Hibiscus sabdariffa Linn) on insulin resistance in patients with type 2 diabetes mellitus: A randomized clinical trial. International Summit on Science Technology and Humanity 2019 572 575
    [Google Scholar]
  51. Harini R. Pugalendi K.V. Antihyperglycemic effect of protocatechuic acid on streptozotocin-diabetic rats. J. Basic Clin. Physiol. Pharmacol. 2010 21 1 79 92 10.1515/JBCPP.2010.21.1.79 20506690
    [Google Scholar]
  52. Semaming Y. Kukongviriyapan U. Kongyingyoes B. Thukhammee W. Pannangpetch P. Protocatechuic acid restores vascular responses in rats with chronic diabetes induced by streptozotocin. Phytother. Res. 2016 30 2 227 233 10.1002/ptr.5520 26575211
    [Google Scholar]
  53. Chook C.Y.B. Cheung Y.M. Ma K.Y. Leung F.P. Zhu H. Niu Q.J. Wong W.T. Chen Z.Y. Physiological concentration of protocatechuic acid directly protects vascular endothelial function against inflammation in diabetes through Akt/eNOS pathway. Front. Nutr. 2023 10 1060226 10.3389/fnut.2023.1060226 37025617
    [Google Scholar]
  54. Alegbe E.O. Teralı K. Olofinsan K.A. Surgun S. Ogbaga C.C. Ajiboye T.O. Antidiabetic activity‐guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. J. Food Biochem. 2019 43 7 e12927 10.1111/jfbc.12927 31353728
    [Google Scholar]
  55. Lin W.L. Hsieh Y.J. Chou F.P. Wang C.J. Cheng M.T. Tseng T.H. Hibiscus protocatechuic acid inhibits lipopolysaccharide-induced rat hepatic damage. Arch. Toxicol. 2003 77 1 42 47 10.1007/s00204‑002‑0404‑0 12491040
    [Google Scholar]
  56. Kakkar S. Bais S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. 2014 2014 12 1 9 10.1155/2014/952943 25006494
    [Google Scholar]
  57. Song J. He Y. Luo C. Feng B. Ran F. Xu H. Ci Z. Xu R. Han L. Zhang D. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol. Res. 2020 161 105109 10.1016/j.phrs.2020.105109 32738494
    [Google Scholar]
  58. Shan B. Cai Y.Z. Sun M. Corke H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem. 2005 53 20 7749 7759 10.1021/jf051513y 16190627
    [Google Scholar]
  59. Ding H. Huang S. Chook C.Y. Kwek E. Yan C. Ma K. Liu J. Zhu H. Chen Z. Blood glucose-lowering activity of protocatechuic acid is mediated by inhibiting Α -glucosidase. Food Sci. Hum. Wellness 2024 13 3 1212 1219 10.26599/FSHW.2022.9250101
    [Google Scholar]
  60. Shakoor H. Hussein H. Al-Hassan N. Alketbi M. Kizhakkayil J. Platat C. The muscle-conditioned medium containing protocatechuic acid improves insulin resistance by modulating muscle communication with liver and adipose tissue. Int. J. Mol. Sci. 2023 24 11 9490 10.3390/ijms24119490 37298440
    [Google Scholar]
  61. Xu K. Lu G. Feng Q. Chen S. Wang Y. Hepatoprotective effect of protocatechuic acid against type 2 diabetes-induced liver injury. Pharm. Biol. 2023 61 1 737 745 10.1080/13880209.2023.2181359 37129023
    [Google Scholar]
  62. Pushparaj P.N. Low H.K. Manikandan J. Tan B.K.H. Tan C.H. Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2007 111 2 430 434 10.1016/j.jep.2006.11.028 17197141
    [Google Scholar]
  63. Abdelmageed M.E. Shehatou G.S.G. Suddek G.M. Salem H.A. Protocatechuic acid improves hepatic insulin resistance and restores vascular oxidative status in type-2 diabetic rats. Environ. Toxicol. Pharmacol. 2021 83 103577 10.1016/j.etap.2020.103577 33383195
    [Google Scholar]
  64. Im K. Issac A. Nm J. Ninan E. Maliakel B. Kuttan R. Effects of the polyphenol content on the anti-diabetic activity of cinnamomum zeylanicum extracts. Food Funct. 2014 5 9 2208 2220 10.1039/C4FO00130C 25051315
    [Google Scholar]
  65. Rossetto M. Lante A. Vanzani P. Spettoli P. Scarpa M. Rigo A. Red chicories as potent scavengers of highly reactive radicals: A study on their phenolic composition and peroxyl radical trapping capacity and efficiency. J. Agric. Food Chem. 2005 53 21 8169 8175 10.1021/jf051116n 16218660
    [Google Scholar]
  66. Amtaghri S. Qabouche A. Slaoui M. Eddouks M. Antidiabetic effect of star anise (illicium verum) in streptozotocin-induced Diabetic Rats. Cardiovasc. Hematol. Disord. Drug Targets 2023 23 2 92 98 10.2174/1871529X23666230823112113 37612867
    [Google Scholar]
  67. Ormazabal P. Scazzocchio B. Varì R. Carmela santangelo, massimo d’archivio.effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: Possible role for PTB1B. Int. J. Obes. 2018 42 12 2012 2021 10.1038/s41366‑018‑0075‑4 29769704
    [Google Scholar]
  68. Wan L. Chen W-B. Wu G-Q. Wu G.Q. Beneficial effects of protocatechuic acid on diabetic retinopathy in streptozocin-induced diabetic rats. Int. J. Ophthalmol. 2023 16 6 855 862 10.18240/ijo.2023.06.04 37332540
    [Google Scholar]
  69. Mabhida S.E. Dludla P.V. Johnson R. Ndlovu M. Louw J. Opoku A.R. Mosa R.A. Protective effect of triterpenes against diabetes-induced β-cell damage: An overview of in vitro and in vivo studies. Pharmacol. Res. 2018 137 179 192 10.1016/j.phrs.2018.10.004 30315968
    [Google Scholar]
  70. Giacoman-Martínez A. Alarcón-Aguilar F.J. Zamilpa A. Huang F. Romero-Nava R. Román-Ramos R. Almanza-Pérez J.C. α-amyrin induces GLUT4 translocation mediated by AMPK and PPARΔ/γ in C2C12 myoblasts. Can. J. Physiol. Pharmacol. 2021 99 9 935 942 10.1139/cjpp‑2021‑0027 33596122
    [Google Scholar]
  71. da Silva Ferreira Rosilene Gomes The selective obtaining of amyrins from Amazonian Protium oleoresins.Colomb. J. Chem. Pharm. Sci. 2020 49 2 1 6 10.15446/rcciquifa.v49n2.89923
    [Google Scholar]
  72. Xu W. Zhang H. Zhang Q. Xu J. β‐amyrin ameliorates diabetic nephropathy in mice and regulates the MIR ‐181B‐5P/ HMGB2 axis in high glucose‐stimulated HK ‐2 cells. Environ. Toxicol. 2022 37 3 637 649 10.1002/tox.23431 34894065
    [Google Scholar]
  73. Santos F.A. Frota J.T. Arruda B.R. de Melo T.S. da Silva A.A.C.A. Brito G.A.C. Chaves M.H. Rao V.S. Antihyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from protium heptaphyllum in mice. Lipids Health Dis. 2012 11 1 98 10.1186/1476‑511X‑11‑98 22867128
    [Google Scholar]
  74. Engeli S. Central and peripheral cannabinoid receptors as therapeutic targets in the control of food intake and body weight. Handb. Exp. Pharmacol. 2012 209 209 357 381 10.1007/978‑3‑642‑24716‑3_17 22249824
    [Google Scholar]
  75. Viet T.D. Xuan T.D. Anh L.H. α-amyrin and β-amyrin isolated from Celastrus hindsii leaves and their antioxidant, anti-xanthine oxidase, and anti-tyrosinase potentials. Molecules 2021 26 23 7248 10.3390/molecules26237248 34885832
    [Google Scholar]
  76. Bajzer M. Olivieri M. Haas M.K. Pfluger P.T. Magrisso I.J. Foster M.T. Tschöp M.H. Krawczewski-Carhuatanta K.A. Cota D. Obici S. Cannabinoid receptor 1 (cb1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet-induced obese mice. Diabetologia 2011 54 12 3121 3131 10.1007/s00125‑011‑2302‑6 21987346
    [Google Scholar]
  77. Quan N.V. Xuan T.D. Tran H.D. Thuy N.T.D. Trang L.T. Huong C.T. Andriana Y. Tuyen P.T. Antioxidant, α-amylase and α-glucosidase inhibitory activities and potential constituents of Canarium tramdenum Bark. Molecules 2019 24 3 605 10.3390/molecules24030605 30744084
    [Google Scholar]
  78. Kamtchouing P. Kahpui S.M. Dzeufiet P.D.D. Tédong L. Asongalem E.A. Dimo T. Anti-diabetic activity of methanol/methylene chloride stem bark extracts of terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2006 104 3 306 309 10.1016/j.jep.2005.08.075 16271836
    [Google Scholar]
  79. Yang Y. Chen Z. Zhao X. Xie H. Du L. Gao H. Xie C. Mechanisms of kaempferol in the treatment of diabetes: A comprehensive and latest review. Front. Endocrinol. 2022 13 990299 10.3389/fendo.2022.990299 36157449
    [Google Scholar]
  80. Zhai H. Wang D. Wang Y. Gu H. Jv J. Yuan L. Wang C. Chen L. Kaempferol alleviates adipose tissue inflammation and insulin resistance in db/db mice by inhibiting the STING/NLRP3 signaling pathway. Endocr. Connect. 2024 13 5 e230379 10.1530/EC‑23‑0379 38466634
    [Google Scholar]
  81. Yao Y. Yu Y. Dai S. Zhang C. Xue X. Zhou M. Yao C. Li Y. Kaempferol efficacy in metabolic diseases: Molecular mechanisms of action in diabetes mellitus, obesity, non-alcoholic fatty liver disease, steatohepatitis, and atherosclerosis. Biomed. Pharmacother. 2024 175 116694 10.1016/j.biopha.2024.116694 38713943
    [Google Scholar]
  82. Ren J. Lu Y. Qian Y. Chen B. Wu T. Ji G. Recent progress regarding kaempferol for the treatment of various diseases (review). Exp. Ther. Med. 2019 18 4 2759 2776 10.3892/etm.2019.7886 31572524
    [Google Scholar]
  83. Al-Numair K.S. Veeramani C. Alsaif M.A. Chandramohan G. Influence of kaempferol, a flavonoid compound, on membrane-bound atpases in streptozotocin-induced diabetic rats. Pharm. Biol. 2015 53 9 1372 1378 10.3109/13880209.2014.982301 25853957
    [Google Scholar]
  84. Calderón-Montaño J.M. Burgos-Morón E. Pérez-Guerrero C. López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011 11 4 298 344 10.2174/138955711795305335 21428901
    [Google Scholar]
  85. Patel D.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits. Cardiovasc. Hematol. Disord. Drug Targets 2021 21 2 104 114 10.2174/1871529X21666210812111931 34387174
    [Google Scholar]
  86. Alkhalidy H. Moore W. Wang A. Luo J. McMillan R.P. Wang Y. Zhen W. Hulver M.W. Liu D. Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. J. Nutr. Biochem. 2018 58 90 101 10.1016/j.jnutbio.2018.04.014 29886193
    [Google Scholar]
  87. Barber E. Houghton M.J. Williamson G. Flavonoids as human intestinal α-glucosidase inhibitors. Foods 2021 10 8 1939 10.3390/foods10081939 34441720
    [Google Scholar]
  88. Oh W.K. Lee C.H. Lee M.S. Bae E.Y. Sohn C.B. Oh H. Kim B.Y. Ahn J.S. Antidiabetic effects of extracts from psidium guajava. J. Ethnopharmacol. 2005 96 3 411 415 10.1016/j.jep.2004.09.041 15619559
    [Google Scholar]
  89. Galavi A. Hosseinzadeh H. Razavi B.M. The effects of Allium cepa l. (onion) and its active constituents on metabolic syndrome: A review. Iran. J. Basic Med. Sci. 2021 24 1 3 16 33643564
    [Google Scholar]
  90. Tsanova-Savova S. Biologically active composition and health impact of allium cepa. Acta Med. Bulg. 2011 38 1 99 104
    [Google Scholar]
  91. Ikechukwu O.J. Ifeanyi O.S. The antidiabetic effects of the bioactive flavonoid (kaempferol-3-o-β-d-6p- coumaroyl glucopyranoside) isolated from allium cepa. Recent Pat Antiinfect Drug Discov 2016 11 1 44 52 10.2174/1574891X11666151105130233 26536892
    [Google Scholar]
  92. Agada R. Usman W.A. Shehu S. Thagariki D. In vitro and in vivo inhibitory effects of Carica papaya seed on α-amylase and α-glucosidase enzymes. Heliyon 2020 6 3 e03618 10.1016/j.heliyon.2020.e03618 32258473
    [Google Scholar]
  93. Roy J.R. Janaki C.S. Jayaraman S. Periyasamy V. Balaji T. Vijayamalathi M. Veeraraghavan V.P. Carica papaya reduces muscle insulin resistance via ir/GLUT4 mediated signaling mechanisms in high fat diet and streptozotocin-induced type-2 diabetic rats. Antioxidants 2022 11 10 2081 10.3390/antiox11102081 36290804
    [Google Scholar]
  94. Jamrozik D. Borymska W. Kaczmarczyk-Żebrowska I. Hibiscus sabdariffa in diabetes prevention and treatment—does it work? an evidence-based review. Foods 2022 11 14 2134 10.3390/foods11142134 35885378
    [Google Scholar]
  95. Luo Y. Peng B. Wei W. Tian X. Wu Z. Antioxidant and anti-diabetic activities of polysaccharides from guava leaves. Molecules 2019 24 7 1343 10.3390/molecules24071343 30959759
    [Google Scholar]
  96. Santana L.F. Inada A.C. Espirito Santo B.L.S. Filiú W.F.O. Pott A. Alves F.M. Guimarães R.C.A. Freitas K.C. Hiane P.A. Nutraceutical potential of Carica papaya in metabolic syndrome. Nutrients 2019 11 7 1608 10.3390/nu11071608 31315213
    [Google Scholar]
  97. Kianian F. Marefati N. Boskabady M. Ghasemi S.Z. Boskabady M.H. Pharmacological properties of Allium cepa, preclinical and clinical evidences; a review. Iran. J. Pharm. Res. 2021 20 2 107 134 34567150
    [Google Scholar]
  98. Joachim M. Neutraceutical value of carica papaya: A review. Sci. Afr. 2021 13 e00933 10.1016/j.sciaf.2021.e00933
    [Google Scholar]
  99. Da-Costa-Rocha I. Bonnlaender B. Sievers H. Pischel I. Heinrich M. Hibiscus sabdariffa l. – a phytochemical and pharmacological review. Food Chem. 2014 165 165 424 443 10.1016/j.foodchem.2014.05.002 25038696
    [Google Scholar]
  100. AL-Ishaq R.K. Abotaleb M. Kubatka P. Kajo K. Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019 9 9 430 10.3390/biom9090430 31480505
    [Google Scholar]
  101. Gupta J. Gupta A. Flavonoids: It’s working mechanism and various protective roles. Int. J. Chem. Stud. 2016 4 4 190 198
    [Google Scholar]
  102. de Araújo F.F. de Paulo Farias D. Neri-Numa I.A. Pastore G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021 338 3 127535 10.1016/j.foodchem.2020.127535 32798817
    [Google Scholar]
  103. Shamsudin N.F. Ahmed Q.U. Mahmood S. Shah S.A.A. Sarian M.N. Khattak M.M.A.K. Khatib A. Sabere A.S.M. Yusoff Y.M. Latip J. Flavonoids as antidiabetic and anti-inflammatory agents: A review on structural activity relationship-based studies and meta-analysis. Int. J. Mol. Sci. 2022 23 20 12605 10.3390/ijms232012605 36293459
    [Google Scholar]
  104. McCalla G. Smith B. Physiologic effects of Hibiscus sabdariffa(sorrel) on biological systems: Advances in sorrel research. Nat. Prod. J. 2024 14 7
    [Google Scholar]
  105. Chechani B. Roat P. Hada S. Yadav D.K. Kumari N. Psidium guajava: An insight into ethnomedicinal uses, phytochemistry, and pharmacology. Comb. Chem. High Throughput Screen. 2024 27 1 2 39 10.2174/1386207326666230426093315 37170987
    [Google Scholar]
  106. Nadeem F. Hanif M.A. El Zerey-Belaskri A. Majeed M.I. Nawaz H. Anti-diabetic and anti-hypertensive potentials of essential oil bearing medicinal plants. Phytother. Manag. Diab. Hypert. 2020 3 61 94 10.2174/9789811459139120030005
    [Google Scholar]
  107. Ramakrishnamurthy S. Singaravelu G. Devadasan V. Prakasarao A. In vitro and in silico analysis of the anti-diabetic and anti-microbial activity of cichorium intybus Leaf extracts. Curr. Computer. Drug Des. 2021 17 2 173 186 10.2174/1573409916666200129100930
    [Google Scholar]
  108. Momin A. Shukla P. Nikambe R. Patil R. Asar U. Anti-inflammatory phytochemicals for the treatment of diabetic nephropathy. Curr. Funct. Food. 2023 2 1 23 36 10.2174/2666862901666230601100713
    [Google Scholar]
  109. Ranđelović S. Bipat R. A review of coumarins and coumarin-related compounds for their potential antidiabetic effect. Clin. Med. Insights Endocrinol. Diabetes 2021 14 11795514211042023 10.1177/11795514211042023 35173509
    [Google Scholar]
  110. Li H. Yao Y. Li L. Coumarins as potential antidiabetic agents. J. Pharm. Pharmacol. 2017 69 10 1253 1264 10.1111/jphp.12774 28675434
    [Google Scholar]
/content/journals/cff/10.2174/0126668629340212241203065223
Loading
/content/journals/cff/10.2174/0126668629340212241203065223
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: mahanimbine ; koenidine ; sulphonylurea ; thiazolidinediones ; metformin ; Hyperglycemia ; quercetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test