Skip to content
2000
Volume 3, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Milk is a good source of bioactive peptides of high nutritive/ pharmaceutical value. In recent decades, the curiosity about bioactive milk peptides has been increasing because of their positive impact on physiological and metabolic functions in human health. A variety of naturally acquired bioactive peptides have been found in fermented dairy products like sour milk and cheese. Initially, these bioactive peptides are found as inactive forms within the precursor protein sequence and can be released in different ways. They can be generated by gastrointestinal digestion of milk, fermentation of milk with proteolytic microorganisms, or hydrolysis proteolytic enzymes. Once they are released from the precursor protein sequence, they influence body functions and human health. Peptides derived from cow milk exert multifunctional properties, including antimicrobial, antidiabetic, antihypertensive, anti-inflammatory, immune-modulatory, antioxidant activities, . Bioactive antimicrobial peptides are observed in the Cow milk proteins. The cow milk peptides afford the non-immune-based defense and control for various microbial infections. These activities depend upon their amino acid composition/ sequence. Potential pathogens are constantly exposed to mucosal surfaces (lungs and small intestine). The risk of chronic disease was inhibited by antimicrobial peptides, which may afford natural immune protection with the avoidance of microbial resistance. In this regimen, the present review summarizes the milk-derived antimicrobial peptides obtained from casein/ whey protein, along with their future perspectives in the pharmaceutical and dairy industries.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629294763240603125136
2024-06-28
2025-10-29
Loading full text...

Full text loading...

References

  1. MohantyD. JenaR. ChoudhuryP.K. PattnaikR. MohapatraS. SainiM.R. Milk derived antimicrobial bioactive peptides: A review.Int. J. Food Prop.201619483784610.1080/10942912.2015.1048356
    [Google Scholar]
  2. MohantyD.P. MohapatraS. MisraS. SahuP.S. Milk derived bioactive peptides and their impact on human health - A review.Saudi J. Biol. Sci.201623557758310.1016/j.sjbs.2015.06.005 27579006
    [Google Scholar]
  3. EsmaeilpourM. EhsaniM.R. AminlariM. ShekarforoushS. HoseiniE. Antimicrobial activity of peptides derived from enzymatic hydrolysis of goat milk caseins.Comp. Clin. Pathol.201625359960510.1007/s00580‑016‑2237‑x
    [Google Scholar]
  4. BeheraR. SahuA. MandalA. RaiS. KarunakaranM. DuttaT. A1 versus A2 milk- impact on human health.Int. J. Livest. Res.201820181710.5455/ijlr.20170810113426
    [Google Scholar]
  5. MeurantG. Handbook of Milk Composition.Amsterdam, NetherlandsElsevier1995
    [Google Scholar]
  6. SéverinS. WenshuiX. Milk biologically active components as nutraceuticals: Review.Crit. Rev. Food Sci. Nutr.2005457-864565610.1080/10408690490911756 16371332
    [Google Scholar]
  7. BoquienC.Y. Human milk: An ideal food for nutrition of preterm newborn.Front Pediatr.2018629510.3389/fped.2018.00295 30386758
    [Google Scholar]
  8. MølgaardC. LarnkjærA. ArnbergK. MichaelsenK.F. Milk and growth in children: Effects of whey and casein.Nestle Nutr. Inst. Workshop Ser.201167677810.1159/000325576 21335991
    [Google Scholar]
  9. JohnsenL.B. RasmussenL.K. PetersenT.E. BerglundL. Characterization of three types of human α s1-casein mRNA transcripts.Biochem. J.1995309123724210.1042/bj3090237 7619062
    [Google Scholar]
  10. NagpalR. BehareP. RanaR. Bioactive peptides derived from milk proteins and their health beneficial potentials: An update.Food Funct.201121182710.1039/C0FO00016G 21773582
    [Google Scholar]
  11. MillsS. RossR.P. HillC. FitzgeraldG.F. StantonC. Milk intelligence: Mining milk for bioactive substances associated with human health.Int. Dairy J.201121637740110.1016/j.idairyj.2010.12.011
    [Google Scholar]
  12. GopalP.K. GillH.S. Oligosaccharides and glycoconjugates in bovine milk and colostrum.Br. J. Nutr.200084S1Suppl. 1697410.1017/S0007114500002270 11242449
    [Google Scholar]
  13. JennessR. The composition of human milk.Semin. Perinatol.197933225239 392766
    [Google Scholar]
  14. DavoodiS.H. ShahbaziR. EsmaeiliS. Health-related aspects of milk proteins.Iran. J. Pharm. Res.2016153573591 27980594
    [Google Scholar]
  15. Cabrera-ChávezF. de la BarcaA.M.C. Bovine milk intolerance in celiac disease is related to IgA reactivity to α- and β-caseins.Nutrition200925671571610.1016/j.nut.2009.01.006 19268534
    [Google Scholar]
  16. FarrellH.M.Jr Jimenez-FloresR. BleckG.T. Nomenclature of the proteins of cows’ milk--sixth revision.J. Dairy Sci.20048761641167410.3168/jds.S0022‑0302(04)73319‑6 15453478
    [Google Scholar]
  17. ErhardtG. A new α S1 ‐casein allele in bovine milk and its occurrence in different breeds.Anim. Genet.1993241656610.1111/j.1365‑2052.1993.tb00922.x 8498715
    [Google Scholar]
  18. DonnellyW.J. McNeillG.P. BuchheimW. McGannT.C.A. A comprehensive study of the relationship between size and protein composition in natural bovine casein micelles.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.1984789213614310.1016/0167‑4838(84)90197‑3 6477926
    [Google Scholar]
  19. EigelW.N. ButlerJ.E. ErnstromC.A. Nomenclature of proteins of cow’s milk: Fifth revision.J. Dairy Sci.19846781599163110.3168/jds.S0022‑0302(84)81485‑X
    [Google Scholar]
  20. GordonW.G. GrovesM.L. GreenbergR. Probable identification of -, TS-, R- and S-caseins as fragments of -casein.J. Dairy Sci.197255226126310.3168/jds.S0022‑0302(72)85469‑9 4672741
    [Google Scholar]
  21. MicińskiJ. KowalskiI.M. ZwierzchowskiG. SzarekJ. PierożyńskiB. ZabłockaE. Characteristics of cow’s milk proteins including allergenic properties and methods for its reduction.Polish Ann Med2013201697610.1016/j.poamed.2013.07.006
    [Google Scholar]
  22. AkinN. Health benefits of whey protein: A review.J. Food Sci. Eng.20122312913710.17265/2159‑5828/2012.03.001
    [Google Scholar]
  23. KorhonenH.J. Bioactive components in bovine milk.Bioactive components in milk and dairy products.Hoboken, New JerseyWiley-Blackwell2009154210.1002/9780813821504.ch2
    [Google Scholar]
  24. ShindeG. KumarR. ChauhanS.K. ShindeG. SubramanianV. NadanasabapathiS. Whey Proteins: A potential ingredient for food industry- A review.J. Dairy. Foods Home Sci.20182018138910.18805/ajdfr.DR‑1389
    [Google Scholar]
  25. SchanbacherF.L. GoodmanR.E. TalhoukR.S. Bovine mammary lactoferrin: Implications from messenger ribonucleic acid (mRNA) sequence and regulation contrary to other milk proteins.J. Dairy Sci.199376123812383110.3168/jds.S0022‑0302(93)77725‑5 8132889
    [Google Scholar]
  26. WardP.P. Uribe-LunaS. ConneelyO.M. Lactoferrin and host defense.Biochem. Cell Biol.20028019510210.1139/o01‑214 11908649
    [Google Scholar]
  27. BruniN. CapucchioM. BiasibettiE. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine.Molecules201621675210.3390/molecules21060752 27294909
    [Google Scholar]
  28. KoksalZ. GulcinI. OzdemirH. An important milk enzyme: Lactoperoxidase.Milk proteins-From structure to biological properties and health aspects.LondonIntechOpen201610.5772/64416
    [Google Scholar]
  29. CoulsonE.J. StevensH. The serological relationship of bovine whey albumin to serum albumin.J. Biol. Chem.1950187135536310.1016/S0021‑9258(19)50960‑7 14794720
    [Google Scholar]
  30. HirayamaK. AkashiS. FuruyaM. FukuharaK. Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and frit-FAB LC/MS.Biochem. Biophys. Res. Commun.1990173263964610.1016/S0006‑291X(05)80083‑X 2260975
    [Google Scholar]
  31. Diez-OzaetaI. AstiazaranO.J. Fermented foods: An update on evidence-based health benefits and future perspectives.Food Res. Int.202215611113310.1016/j.foodres.2022.111133 35651092
    [Google Scholar]
  32. Segura-CamposM. Chel-GuerreroL. Betancur-AnconaD. Hernandez-EscalanteV.M. Bioavailability of bioactive peptides.Food Rev. Int.201127321322610.1080/87559129.2011.563395
    [Google Scholar]
  33. Abd El-SalamM.H. El-ShibinyS. Preparation, properties, and uses of enzymatic milk protein hydrolysates.Crit. Rev. Food Sci. Nutr.20175761119113210.1080/10408398.2014.899200 25880259
    [Google Scholar]
  34. ClementeA. Enzymatic protein hydrolysates in human nutrition.Trends Food Sci. Technol.200011725426210.1016/S0924‑2244(01)00007‑3
    [Google Scholar]
  35. HolzapfelW.H. GeisenR. SchillingerU. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes.Int. J. Food Microbiol.199524334336210.1016/0168‑1605(94)00036‑6 7710912
    [Google Scholar]
  36. LeiJ. SunL. HuangS. The antimicrobial peptides and their potential clinical applications.Am. J. Transl. Res.201911739193931 31396309
    [Google Scholar]
  37. ZhangQ.Y. YanZ.B. MengY.M. Antimicrobial peptides: Mechanism of action, activity and clinical potential.Mil. Med. Res.2021814810.1186/s40779‑021‑00343‑2 34496967
    [Google Scholar]
  38. VanzoliniT. BruschiM. RinaldiA.C. MagnaniM. FraternaleA. Multitalented synthetic antimicrobial peptides and their antibacterial, antifungal and antiviral mechanisms.Int. J. Mol. Sci.202223154510.3390/ijms23010545 35008974
    [Google Scholar]
  39. LuY. Govindasamy-LuceyS. LuceyJ.A. Angiotensin-I-converting enzyme-inhibitory peptides in commercial Wisconsin Cheddar cheeses of different ages.J. Dairy Sci.2016991415210.3168/jds.2015‑9569 26506550
    [Google Scholar]
  40. MatarC. LeBlancJ.G. MartinL. Active peptides released in fermented milk: Role and functions.Handbook of Fermented Functional Foods.Boca Raton, USACRC Press2003
    [Google Scholar]
  41. Muro UristaC. Álvarez FernándezR. Riera RodriguezF. Arana CuencaA. Téllez JuradoA. Review: Production and functionality of active peptides from milk.Food Sci. Technol. Int.201117429331710.1177/1082013211398801 21917640
    [Google Scholar]
  42. TidonaF. CriscioneA. GuastellaA.M. ZuccaroA. BordonaroS. MarlettaD. Bioactive peptides in dairy products.Ital. J. Anim. Sci.20098331534010.4081/ijas.2009.315
    [Google Scholar]
  43. ZuchtH.D. RaidaM. AdermannK. MägertH.J. ForssmannW.G. Casocidin‐I: A casein‐α s2 derived peptide exhibits antibacterial activity.FEBS Lett.19953722-318518810.1016/0014‑5793(95)00974‑E 7556666
    [Google Scholar]
  44. RizzelloC.G. LositoI. GobbettiM. CarbonaraT. De BariM.D. ZamboninP.G. Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties.J. Dairy Sci.20058872348236010.3168/jds.S0022‑0302(05)72913‑1 15956298
    [Google Scholar]
  45. MorenoE. AndreuA. PigrauC. KuskowskiM.A. JohnsonJ.R. PratsG. Relationship between Escherichia coli strains causing acute cystitis in women and the Fecal E. coli population of the host.J. Clin. Microbiol.20084682529253410.1128/JCM.00813‑08 18495863
    [Google Scholar]
  46. MangesA.R. JohnsonJ.R. FoxmanB. O’BryanT.T. FullertonK.E. RileyL.W. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group.N. Engl. J. Med.2001345141007101310.1056/NEJMoa011265 11586952
    [Google Scholar]
  47. SvanborgC. BergstenG. FischerH. Uropathogenic Escherichia coli as a model of host-parasite interaction.Curr. Opin. Microbiol.200691333910.1016/j.mib.2005.12.012 16406777
    [Google Scholar]
  48. MorenoE. AndreuA. PérezT. SabatéM. JohnsonJ.R. PratsG. Relationship between Escherichia coli strains causing urinary tract infection in women and the dominant faecal flora of the same hosts.Epidemiol. Infect.200613451015102310.1017/S0950268806005917 16438745
    [Google Scholar]
  49. CiumacD. GongH. HuX. LuJ.R. Membrane targeting cationic antimicrobial peptides.J. Colloid Interface Sci.201953716318510.1016/j.jcis.2018.10.103 30439615
    [Google Scholar]
  50. López-ExpósitoI. RecioI. Protective effect of milk peptides: Antibacterial and antitumor properties.Adv. Exp. Med. Biol.200860627129410.1007/978‑0‑387‑74087‑4_11 18183934
    [Google Scholar]
  51. BougherraF. Dilmi-BourasA. BaltiR. Antibacterial activity of new peptide from bovine casein hydrolyzed by a serine metalloprotease of Lactococcus lactis subsp lactis BR16.J. Funct. Foods20173211212210.1016/j.jff.2017.02.026
    [Google Scholar]
  52. ZhaoQ. ShiY. WangX. HuangA. Characterization of a novel antimicrobial peptide from buffalo casein hydrolysate based on live bacteria adsorption.J. Dairy Sci.202010312111161112810.3168/jds.2020‑18577 33222850
    [Google Scholar]
  53. OuertaniA. ChaabouniI. MosbahA. Two new secreted proteases generate a casein-derived antimicrobial peptide in Bacillus cereus food born isolate leading to bacterial competition in milk.Front. Microbiol.20189114810.3389/fmicb.2018.01148 29915567
    [Google Scholar]
  54. LiuY. EichlerJ. PischetsriederM. Virtual screening of a milk peptide database for the identification of food‐derived antimicrobial peptides.Mol. Nutr. Food Res.201559112243225410.1002/mnfr.201500182 26202586
    [Google Scholar]
  55. FitzGeraldR.J. MeiselH. Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme.Br. J. Nutr.200084S1Suppl. 1333710.1017/S0007114500002221 11242444
    [Google Scholar]
  56. VercruysseL. Van CampJ. SmaggheG. ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: A review.J. Agric. Food Chem.200553218106811510.1021/jf0508908 16218651
    [Google Scholar]
  57. NakamuraY. YamamotoN. SakaiK. TakanoT. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme.J. Dairy Sci.19957861253125710.3168/jds.S0022‑0302(95)76745‑5 7673515
    [Google Scholar]
  58. MurakamiM. TonouchiH. TakahashiR. Structural analysis of a new anti-hypertensive peptide (β-lactosin B) isolated from a commercial whey product.J. Dairy Sci.20048771967197410.3168/jds.S0022‑0302(04)70013‑2 15328207
    [Google Scholar]
  59. SeppoL. JauhiainenT. PoussaT. KorpelaR. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects.Am. J. Clin. Nutr.200377232633010.1093/ajcn/77.2.326 12540390
    [Google Scholar]
  60. SatakeM. EnjohM. NakamuraY. Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers.Biosci. Biotechnol. Biochem.200266237838410.1271/bbb.66.378 11999412
    [Google Scholar]
  61. NagaokaS. FutamuraY. MiwaK. Identification of novel hypocholesterolemic peptides derived from bovine milk β-lactoglobulin.Biochem. Biophys. Res. Commun.20012811111710.1006/bbrc.2001.4298 11178953
    [Google Scholar]
  62. HeJ.F. JinD.X. LuoX.G. ZhangT.C. LHH1, a novel antimicrobial peptide with anti-cancer cell activity identified from Lactobacillus casei HZ1.AMB Express202010120410.1186/s13568‑020‑01139‑8 33175275
    [Google Scholar]
  63. BerrocalR. ChantonS. JuilleratM.A. FavillareB. ScherzJ.C. JostR. Tryptic phosphopeptides from whole casein. II. Physicochemical properties related to the solubilization of calcium.J. Dairy Res.198956333534110.1017/S0022029900028776 2760299
    [Google Scholar]
  64. PeregoS. CosentinoS. FiorilliA. TettamantiG. FerrarettoA. Casein phosphopeptides modulate proliferation and apoptosis in HT-29 cell line through their interaction with voltage-operated L-type calcium channels.J. Nutr. Biochem.201223780881610.1016/j.jnutbio.2011.04.004 21840696
    [Google Scholar]
  65. Devi AvaiyarasiN. David RavindranA. VenkateshP. ArulV. In vitro selection, characterization and cytotoxic effect of bacteriocin of Lactobacillus sakei GM3 isolated from goat milk.Food Control20166912413310.1016/j.foodcont.2016.04.036
    [Google Scholar]
  66. Aguilar-ToaláJ.E. Hernández-MendozaA. González-CórdovaA.F. Vallejo-CordobaB. LiceagaA.M. Potential role of natural bioactive peptides for development of cosmeceutical skin products.Peptides201912217017010.1016/j.peptides.2019.170170 31574281
    [Google Scholar]
  67. Homayouni-TabriziM. AsoodehA. SoltaniM. Cytotoxic and antioxidant capacity of camel milk peptides: Effects of isolated peptide on superoxide dismutase and catalase gene expression.J Food Drug Anal201725356757510.1016/j.jfda.2016.10.014 28911643
    [Google Scholar]
  68. AhmedA.S. El-BassionyT. ElmaltL.M. IbrahimH.R. Identification of potent antioxidant bioactive peptides from goat milk proteins.Food Res. Int.201574808810.1016/j.foodres.2015.04.032 28412006
    [Google Scholar]
  69. IbrahimH.R. IsonoH. MiyataT. Potential antioxidant bioactive peptides from camel milk proteins.Anim. Nutr.20184327328010.1016/j.aninu.2018.05.004 30175255
    [Google Scholar]
  70. ElnagdyS. AlKhazindarM. The potential of antimicrobial peptides as an antiviral therapy against COVID-19.ACS Pharmacol. Transl. Sci.20203478078210.1021/acsptsci.0c00059 32821884
    [Google Scholar]
  71. LaiC.C. ShihT.P. KoW.C. TangH.J. HsuehP.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.Int. J. Antimicrob. Agents202055310592410.1016/j.ijantimicag.2020.105924 32081636
    [Google Scholar]
  72. ÇakırB. OkuyanB. ŞenerG. Tunali-AkbayT. Investigation of beta-lactoglobulin derived bioactive peptides against SARS-CoV-2 (COVID-19): In silico analysis.Eur. J. Pharmacol.2021891173781110.1016/j.ejphar.2020.173781 33271151
    [Google Scholar]
  73. LiuJ. WangZ. Diverse array-designed modes of combination therapies in Fangjiomics.Acta Pharmacol. Sin.201536668068810.1038/aps.2014.125 25864646
    [Google Scholar]
  74. NongoniermaA.B. FitzGeraldR.J. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins.Anal. Bioanal. Chem.2018410153407342310.1007/s00216‑017‑0793‑9 29260283
    [Google Scholar]
  75. ŞanlierN. GökcenB.B. SezginA.C. Health benefits of fermented foods.Crit. Rev. Food Sci. Nutr.201959350652710.1080/10408398.2017.1383355 28945458
    [Google Scholar]
  76. ZhuY. YuD. YanH. ChongH. HeY. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity.J. Virol.20209414e00635e2010.1128/JVI.00635‑20 32376627
    [Google Scholar]
  77. DivsalarE. TajikH. MoradiM. ForoughM. LotfiM. KuswandiB. Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese.Int. J. Biol. Macromol.20181091311131810.1016/j.ijbiomac.2017.11.145 29175522
    [Google Scholar]
  78. JonesF.S. SimmsH.S. The bacterial growth inhibitor (lactenin) of milk.J. Exp. Med.193051232733910.1084/jem.51.2.327 19869694
    [Google Scholar]
  79. FlorisR. RecioI. BerkhoutB. VisserS. Antibacterial and antiviral effects of milk proteins and derivatives thereof.Curr. Pharm. Des.20039161257127510.2174/1381612033454810 12769735
    [Google Scholar]
  80. McCannK.B. ShiellB.J. MichalskiW.P. Isolation and characterisation of antibacterial peptides derived from the f(164-207) region of bovine αS2-casein.Int. Dairy J.200515213314310.1016/j.idairyj.2004.06.008
    [Google Scholar]
  81. López ExpósitoI. RecioI. Antibacterial activity of peptides and folding variants from milk proteins.Int. Dairy J.200616111294130510.1016/j.idairyj.2006.06.002
    [Google Scholar]
  82. GuantarioB. GiribaldiM. DevirgiliisC. A comprehensive evaluation of the impact of bovine milk containing different beta-casein profiles on gut health of ageing mice.Nutrients2020127214710.3390/nu12072147 32707687
    [Google Scholar]
  83. PalS. WoodfordK. KukuljanS. HoS. Milk intolerance, beta-casein and lactose.Nutrients2015797285729710.3390/nu7095339 26404362
    [Google Scholar]
  84. ZoghbiS. TrompetteA. ClaustreJ. β-Casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a μ-opioid pathway.Am. J. Physiol. Gastrointest. Liver Physiol.20062906G1105G111310.1152/ajpgi.00455.2005 16357059
    [Google Scholar]
  85. Brooke-TaylorS. DwyerK. WoodfordK. KostN. Systematic review of the gastrointestinal effects of A1 compared with A2 β-Casein.Adv. Nutr.20178573974810.3945/an.116.013953 28916574
    [Google Scholar]
  86. JianqinS. LeimingX. LuX. YellandG.W. NiJ. ClarkeA. Erratum to: ‘Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk’.Nutr. J.20151514510.1186/s12937‑016‑0164‑y 27130280
    [Google Scholar]
  87. WuH.B. ZhongJ.M. HuR.Y. Rapidly rising incidence of Type 1 diabetes in children and adolescents aged 0-19 years in Zhejiang, China, 2007 to 2013.Diabet. Med.201633101339134610.1111/dme.13010 26499360
    [Google Scholar]
  88. HummelS. ZieglerA.G. Early determinants of type 1 diabetes: Experience from the BABYDIAB and BABYDIET studies.American J. Clin. Nutr.2011946S1821S182310.3945/ajcn.110.000646
    [Google Scholar]
  89. BarnettM.P.G. McNabbW.C. RoyN.C. WoodfordK.B. ClarkeA.J. Dietary A1 β -casein affects gastrointestinal transit time, dipeptidyl peptidase-4 activity, and inflammatory status relative to A2 β -casein in Wistar rats.Int. J. Food Sci. Nutr.201465672072710.3109/09637486.2014.898260 24649921
    [Google Scholar]
  90. FanM. GuoT. LiW. Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus.Food Sci. Hum. Wellness20198215617610.1016/j.fshw.2019.03.010
    [Google Scholar]
  91. Ledesma-MartínezE. Aguíñiga-SánchezI. Weiss-SteiderB. Rivera-MartínezA.R. Santiago-OsorioE. Casein and peptides derived from casein as antileukaemic agents.J. Oncol.2019201911410.1155/2019/8150967 31582978
    [Google Scholar]
  92. Ramos-MandujanoG. Weiss-SteiderB. MeloB. Alpha-, beta- and kappa-caseins inhibit the proliferation of the myeloid cell lines 32D cl3 and WEHI-3 and exhibit different differentiation properties.Immunobiology2008213213314110.1016/j.imbio.2007.07.004 18241697
    [Google Scholar]
  93. SütasY. SoppiE. KorhonenH. Suppression of lymphocyte proliferation in vitro by bovine caseins hydrolyzed with Lactobacillus casei GG-derived enzymes.J. Allergy Clin. Immunol.199698121622410.1016/S0091‑6749(96)70245‑2 8765837
    [Google Scholar]
  94. LaffineurE. GenetetN. LeonilJ. Immunomodulatory activity of β-casein permeate medium fermented by lactic acid bacteria.J. Dairy Sci.199679122112212010.3168/jds.S0022‑0302(96)76585‑2 9029350
    [Google Scholar]
  95. AzevedoR.A. FerreiraA.K. AuadaA.V.V. Antitumor effect of Cationic INKKI Peptide from Bovine β-Casein on Melanoma B16F10.J. Cancer Ther.20123423724410.4236/jct.2012.34034
    [Google Scholar]
  96. Migliore-SamourD. JollèsP. Casein, a prohormone with an immunomodulating role for the newborn?Experientia198844318819310.1007/BF01941703 3280338
    [Google Scholar]
  97. SilvaS.V. MalcataF.X. Caseins as source of bioactive peptides.Int. Dairy J.200515111510.1016/j.idairyj.2004.04.009
    [Google Scholar]
  98. MalkoskiM. DashperS.G. O’Brien-SimpsonN.M. Kappacin, a novel antibacterial peptide from bovine milk.Antimicrob. Agents Chemother.20014582309231510.1128/AAC.45.8.2309‑2315.2001 11451690
    [Google Scholar]
  99. Córdova-DávalosL. JiménezM. SalinasE. Glycomacropeptide bioactivity and health: A review highlighting action mechanisms and signaling pathways.Nutrients201911359810.3390/nu11030598 30870995
    [Google Scholar]
  100. Thomä-WorringerC. SørensenJ. López-FandiñoR. Health effects and technological features of caseinomacropeptide.Int. Dairy J.200616111324133310.1016/j.idairyj.2006.06.012
    [Google Scholar]
  101. WardP.P. PazE. ConneelyO.M. Lactoferrin.Cell. Mol. Life Sci.200562222540254810.1007/s00018‑005‑5369‑8 16261256
    [Google Scholar]
  102. FarnaudS. EvansR.W. Lactoferrin—a multifunctional protein with antimicrobial properties.Mol. Immunol.200340739540510.1016/S0161‑5890(03)00152‑4 14568385
    [Google Scholar]
  103. UlvatneH. SamuelsenØ. HauklandH.H. KrämerM. VorlandL.H. LactoferricinB. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis.FEMS Microbiol. Lett.2004237237738410.1111/j.1574‑6968.2004.tb09720.x 15321686
    [Google Scholar]
  104. VogelH.J. SchibliD.J. JingW. Lohmeier-VogelE.M. EpandR.F. EpandR.M. Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides.Biochem. Cell Biol.2002801496310.1139/o01‑213 11908643
    [Google Scholar]
  105. van der KraanM.I.A. GroeninkJ. NazmiK. VeermanE.C.I. BolscherJ.G.M. Nieuw AmerongenA.V. Lactoferrampin: A novel antimicrobial peptide in the N1-domain of bovine lactoferrin.Peptides200425217718310.1016/j.peptides.2003.12.006 15062998
    [Google Scholar]
  106. PellegriniA. ThomasU. BramazN. HunzikerP. von FellenbergR. Isolation and identification of three bactericidal domains in the bovine I. lactalbumin molecule.Biochim. Biophys. Acta, Gen. Subj.19991426343944810.1016/S0304‑4165(98)00165‑2 10076060
    [Google Scholar]
  107. PellegriniA. DettlingC. ThomasU. HunzikerP. Isolation and characterization of four bactericidal domains in the bovine β-lactoglobulin.Biochim. Biophys. Acta, Gen. Subj.20011526213114010.1016/S0304‑4165(01)00116‑7 11325534
    [Google Scholar]
  108. JaziriM. Migliore-SamourD. Casabianca-PignèdeM.R. KeddadK. MorgatJ.L. JollèsP. Specific binding sites on human phagocytic blood cells for Gly-Leu-Phe and Val-Glu-Pro-Ile-Pro-Tyr, immunostimulating peptides from human milk proteins.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.19921160325126110.1016/0167‑4838(92)90085‑R 1477096
    [Google Scholar]
  109. BellamyW. YamauchiK. WakabayashiH. Antifungal properties of lactoferricin B, a peptide derived from the N-terminal region of bovine lactoferrin.Lett. Appl. Microbiol.199418423023310.1111/j.1472‑765X.1994.tb00854.x
    [Google Scholar]
  110. UmJ. ManguyJ. AnesJ. Enriching antimicrobial peptides from milk hydrolysates using pectin/alginate food-gels.Food Chem.2021352129220010.1016/j.foodchem.2021.129220 33684717
    [Google Scholar]
  111. AnnunziatoG. CostantinoG. Antimicrobial peptides (AMPs): A patent review (2015-2020).Expert Opin. Ther. Pat.2020301293194710.1080/13543776.2020.1851679 33187458
    [Google Scholar]
  112. AgyeiD. DanquahM.K. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides.Biotechnol. Adv.201129327227710.1016/j.biotechadv.2011.01.001 21238564
    [Google Scholar]
  113. KangH.K. KimC. SeoC.H. ParkY. The therapeutic applications of antimicrobial peptides (AMPs): A patent review.J. Microbiol.201755111210.1007/s12275‑017‑6452‑1 28035594
    [Google Scholar]
  114. BellamyW R KawaseK TakaseM Antimicrobial peptide and an antimicrobial agent.A.U. Patent 659440B21995
  115. DashperSG MalkoskiM O’brien-SimpsonNM ReynoldsEC TalboGH Antimicrobial peptides.A.U. Patent 756347B22003
  116. Resio SanchezI Queiroz del BosqueA HernandezludesMAB Bioactive peptides identified in enzymatic hydrolyzates of milk caseins and method of obtaining same.CN Patent 103254278B2015
  117. TomitaM KawasaK TakaseM BellamyWR YamauchiK Antimicrobial peptides..EP Patent 0474506B11998
  118. TomitaM ShimamuraS KawaseK Antibacterial agent and treatment of article therewith.EP Patent 0629347B11995
  119. TomitaM. KawaseK. TakaseM. BellamyW.R. YamauchiK. WakabayashiH. Fragments of lactoferrin having potent antimicrobial activity.US Patent 5304633A1994
  120. AmerongenAVN VeermanECI GroeninkJ KraanMIAVD BolscherJGM Antimicrobial peptide from transferrin family.WO Patent 2004089986A12004
  121. BenkerroumN. Antimicrobial peptides generated from milk proteins: A survey and prospects for application in the food industry. A review.Int. J. Dairy Technol.201063332033810.1111/j.1471‑0307.2010.00584.x
    [Google Scholar]
  122. CraikD.J. FairlieD.P. LirasS. PriceD. The future of peptide-based drugs.Chem. Biol. Drug Des.201381113614710.1111/cbdd.12055 23253135
    [Google Scholar]
  123. BrownL.R. Commercial challenges of protein drug delivery.Expert Opin. Drug Deliv.200521294210.1517/17425247.2.1.29 16296733
    [Google Scholar]
  124. PayneR.W. ManningM. Peptide formulation: Challenges and strategies.Inn Pharmaceut Technol200920096468
    [Google Scholar]
  125. ZapadkaK.L. BecherF.J. Gomes dos SantosA.L. JacksonS.E. Factors affecting the physical stability (aggregation) of peptide therapeutics.Interface Focus2017762017003010.1098/rsfs.2017.0030 29147559
    [Google Scholar]
  126. RichardJ. Challenges in oral peptide delivery: Lessons learnt from the clinic and future prospects.Ther. Deliv.20178866368410.4155/tde‑2017‑0024 28730934
    [Google Scholar]
  127. ZidarM. KuzmanD. RavnikM. Characterisation of protein aggregation with the Smoluchowski coagulation approach for use in biopharmaceuticals.Soft Matter201814296001601210.1039/C8SM00919H 29972188
    [Google Scholar]
  128. MuheemA. ShakeelF. JahangirM.A. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives.Saudi Pharm. J.201624441342810.1016/j.jsps.2014.06.004 27330372
    [Google Scholar]
  129. MeyerJ.D. HoB. ManningM.C. Effects of conformation on the chemical stability of pharmaceutically relevant polypeptides.Rational Design of Stable Protein Formulations.New YorkKluwer academic/Plenum press20028510510.1007/978‑1‑4615‑0557‑0_4
    [Google Scholar]
  130. VadB. ThomsenL.A. BertelsenK. Divorcing folding from function: How acylation affects the membrane-perturbing properties of an antimicrobial peptide.Biochim. Biophys. Acta. Proteins Proteomics20101804480682010.1016/j.bbapap.2009.12.006 20026432
    [Google Scholar]
  131. MoiolaM. MemeoM.G. QuadrelliP. Stapled peptides—a useful improvement for peptide-based drugs.Molecules20192420365410.3390/molecules24203654 31658723
    [Google Scholar]
  132. FosgerauK. HoffmannT. Peptide therapeutics: Current status and future directions.Drug Discov. Today201520112212810.1016/j.drudis.2014.10.003 25450771
    [Google Scholar]
  133. TartagliaG.G. PawarA.P. CampioniS. DobsonC.M. ChitiF. VendruscoloM. Prediction of aggregation-prone regions in structured proteins.J. Mol. Biol.2008380242543610.1016/j.jmb.2008.05.013 18514226
    [Google Scholar]
  134. StillhartC. VučićevićK. AugustijnsP. Impact of gastrointestinal physiology on drug absorption in special populations--An UNGAP review.Eur. J. Pharm. Sci.202014710528010.1016/j.ejps.2020.105280 32109493
    [Google Scholar]
  135. LewisA.L. RichardJ. Challenges in the delivery of peptide drugs: An industry perspective.Ther. Deliv.20156214916310.4155/tde.14.111 25690084
    [Google Scholar]
  136. PerryS.L. McClementsD.J. Recent advances in encapsulation, protection, and oral delivery of bioactive proteins and peptides using colloidal systems.Molecules2020255116110.3390/molecules25051161 32150848
    [Google Scholar]
  137. VermaS. GoandU.K. HusainA. KatekarR.A. GargR. GayenJ.R. Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability.Drug Dev. Res.202182792794410.1002/ddr.21832 33988872
    [Google Scholar]
  138. RiekR. EisenbergD.S. The activities of amyloids from a structural perspective.Nature2016539762822723510.1038/nature20416 27830791
    [Google Scholar]
  139. MoussaE.M. PanchalJ.P. MoorthyB.S. Immunogenicity of therapeutic protein aggregates.J. Pharm. Sci.2016105241743010.1016/j.xphs.2015.11.002 26869409
    [Google Scholar]
  140. BakA. LeungD. BarrettS.E. Physicochemical and formulation developability assessment for therapeutic peptide delivery--a primer.AAPS J.201517114415510.1208/s12248‑014‑9688‑2 25398427
    [Google Scholar]
  141. OhtakeS. KitaY. PayneR. ManningM. ArakawaT. Structural characteristics of short peptides in solution.Protein Pept. Lett.201320121308132310.2174/092986652012131112121417 24261976
    [Google Scholar]
  142. ClelandJ.L. LangerR. Formulation and Delivery of Proteins and Peptides.WashingtonAmerican Chemical Society199411910.1021/bk‑1994‑0567.ch001
    [Google Scholar]
  143. Roque-BordaC.A. da SilvaP.B. RodriguesM.C. Challenge in the discovery of new drugs: Antimicrobial peptides against WHO-List of critical and high-priority bacteria.Pharmaceutics202113677310.3390/pharmaceutics13060773 34064302
    [Google Scholar]
  144. TesauroD. AccardoA. DiaferiaC. Peptide-based drug-delivery systems in biotechnological applications: Recent advances and perspectives.Molecules201924235110.3390/molecules24020351 30669445
    [Google Scholar]
  145. MahlapuuM. HåkanssonJ. RingstadL. BjörnC. Antimicrobial peptides: An emerging category of therapeutic agents.Front. Cell. Infect. Microbiol.2016619410.3389/fcimb.2016.00194 28083516
    [Google Scholar]
  146. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: Present situation and prospects for the future.Int. J. Nanomedicine2017121227124910.2147/IJN.S121956 28243086
    [Google Scholar]
  147. BiswaroL.S. da Costa SousaM.G. RezendeT.M.B. DiasS.C. FrancoO.L. Antimicrobial peptides and nanotechnology, recent advances and challenges.Front. Microbiol.2018985510.3389/fmicb.2018.00855 29867793
    [Google Scholar]
  148. ZhangL. PornpattananangkulD. HuC.M. HuangC.M. Development of nanoparticles for antimicrobial drug delivery.Curr. Med. Chem.201017658559410.2174/092986710790416290 20015030
    [Google Scholar]
  149. SandreschiS. PirasA.M. BatoniG. ChielliniF. Perspectives on polymeric nanostructures for the therapeutic application of antimicrobial peptides.Nanomedicine (Lond.)201611131729174410.2217/nnm‑2016‑0057 27348155
    [Google Scholar]
  150. HintzenF. PereraG. HauptsteinS. MüllerC. LaffleurF. Bernkop-SchnürchA. In vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin.Int. J. Pharm.20144721-2202610.1016/j.ijpharm.2014.05.047 24879935
    [Google Scholar]
  151. Mohammadi-SamaniS. TaghipourB. PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches.Pharm. Dev. Technol.201520438539310.3109/10837450.2014.882940 24483777
    [Google Scholar]
  152. SinghA. DucheR.T. WandhareA.G. Milk-derived antimicrobial peptides: Overview, applications, and future perspectives.Probiotics Antimicrob. Proteins2023151446210.1007/s12602‑022‑10004‑y 36357656
    [Google Scholar]
  153. DianR.N. AhmadH. WinartoH. RachmaW. TriJ.R. Antibacterial Peptides derived from capra hircus goat milk casein.Bio Chem Chem Bio20249e202304191
    [Google Scholar]
  154. NielsenS.D.H. LiangN. RathishH. Bioactive milk peptides: An updated comprehensive overview and database.Cri. Rev. Food Sci. Nutr.20232023120
    [Google Scholar]
  155. AgoniC. StavropoulosI. KirwanA. Cell-penetrating milk-derived peptides with a non-inflammatory profile.Molecules20232819699910.3390/molecules28196999 37836842
    [Google Scholar]
/content/journals/cff/10.2174/0126668629294763240603125136
Loading
/content/journals/cff/10.2174/0126668629294763240603125136
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Antimicrobial; caseins; dairy; lactoferrin; peptide; protein
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test