Skip to content
2000
image of In Vitro Investigation of Acetylcholinesterase Inhibition by Methanolic Extract of Muntingia calabura Bark

Abstract

Introduction

The present study aimed at studying the potential of methanolic extract of bark (MBE) to inhibit acetylcholinesterase (AChE)

Methods

Acetylcholinesterase (AChE) activity was assessed using chicken brain homogenate as the enzyme source. The assay was performed using acetylthiocholine iodide as a chromogenic substrate, and the reaction was monitored kinetically at 412 nm by measuring the rate of substrate hydrolysis.

Results

MBE was found to inhibit the AChE activity with an IC value of 78.6 ± 2.3 mg/mL. Analysis of the double reciprocal Lineweaver-Burk plot revealed that the rate of substrate hydrolysis by the brain homogenate was characterized by the Km and Vmax values of 93.7 ± 18.8 mM and 0.145±0.009 (delta OD/min at 412nm), respectively. In the presence of the MBE, we observed Km and Vmax values of 76.5 ± 8.9 (without statistical difference compared to the control) and 0.07 ± 0.007 (delta OD/min at 412 nm, statistically lower than the control), respectively, indicating that the MBE non-competitively inhibits AChE.

Discussion

The data presented herein suggest that MBE inhibits AChE . Additional experiments are required to establish oral availability, toxicity, and efficacy

Conclusion

Our work demonstrates the potential of MBE to inhibit AChE and suggests that the extract warrants further exploration for molecular characterization and potential usefulness in mitigating pathologies in animal models of Alzheimer’s disease.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080401748250711113148
2025-07-22
2025-09-15
Loading full text...

Full text loading...

References

  1. Wiesner J. Kříž Z. Kuča K. Jun D. Koča J. Acetylcholinesterases – The structural similarities and differences. J. Enzyme Inhib. Med. Chem. 2007 22 4 417 424 10.1080/14756360701421294 17847707
    [Google Scholar]
  2. Fukuto T.R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 1990 87 245 254 10.1289/ehp.9087245 2176588
    [Google Scholar]
  3. Kovarova M. Khan M.T.H. Komers K. Kinetics of in vitro inhibition of acetylcholinesterase by nineteen new carbamates. Curr. Enzym. Inhib. 2012 7 4 236 243 10.2174/157340811799860560
    [Google Scholar]
  4. Lionetto M.G. Caricato R. Calisi A. Giordano M.E. Schettino T. Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. BioMed Res. Int. 2013 2013 1 8 10.1155/2013/321213 23936791
    [Google Scholar]
  5. De Bleecker J.L. Organophosphate and carbamate poisoning. Handb. Clin. Neurol. 2008 91 401 432 10.1016/S0072‑9752(07)01513‑8 18631851
    [Google Scholar]
  6. Moreta M.P.G. Burgos-Alonso N. Torrecilla M. Marco-Contelles J. Bruzos-Cidón C. Efficacy of acetylcholinesterase inhibitors on cognitive function in alzheimer’s disease. Review of reviews. Biomedicines 2021 9 11 1689 10.3390/biomedicines9111689 34829917
    [Google Scholar]
  7. Greathouse B. Zahra F. Brady M. Acetylcholinesterase Inhibitors Toxicity. Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  8. Giacobini E. Cuello A.C. Fisher A. Reimagining cholinergic therapy for Alzheimer’s disease. Brain 2022 145 7 2250 2275 10.1093/brain/awac096 35289363
    [Google Scholar]
  9. Chen Z.R. Huang J.B. Yang S.L. Role of cholinergic signaling in Alzheimer’s disease. In: Mol. 2022 27 (6)1816 10.3390/molecules27061816 35335180
    [Google Scholar]
  10. Majdi A. Sadigh-Eteghad S. Rahigh Aghsan S. Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: Seeking direction in a tangle of clues. Rev. Neurosci. 2020 31 4 391 413 10.1515/revneuro‑2019‑0089 32017704
    [Google Scholar]
  11. Khan S. Barve K.H. Kumar M.S. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr. Neuropharmacol. 2020 18 11 1106 1125 10.2174/1570159X18666200528142429 32484110
    [Google Scholar]
  12. Onor M.L. Trevisiol M. Aguglia E. Rivastigmine in the treatment of Alzheimer’s disease: An update. Clin. Interv. Aging 2007 2 1 17 32 10.2147/ciia.2007.2.1.17 18044073
    [Google Scholar]
  13. Basnet R. Khadka S. Basnet B.B. Gupta R. Perspective on acetylcholinesterase: A potential target for Alzheimer’s disease intervention. Curr. Enzym. Inhib. 2020 16 3 181 188 10.2174/1573408016999200801021329
    [Google Scholar]
  14. Lowry O. Rosebrough N. Farr A.L. Randall R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951 193 1 265 275 10.1016/S0021‑9258(19)52451‑6 14907713
    [Google Scholar]
  15. Ellman G.L. Courtney K.D. Andres V. Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961 7 2 88 95 10.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  16. Liao Y. Mai X. Wu X. Hu X. Luo X. Zhang G. Exploring the inhibition of quercetin on acetylcholinesterase by multispectroscopic and in silico approaches and evaluation of its neuroprotective effects on PC12 cells. Molecules 2022 27 22 7971 10.3390/molecules27227971 36432070
    [Google Scholar]
  17. Mahmood N.D. Nasir N.L.M. Rofiee M.S. Muntingia calabura: A review of its traditional uses, chemical properties, and pharmacological observations. Pharm. Biol. 2014 52 12 1598 1623 10.3109/13880209.2014.908397 25068675
    [Google Scholar]
  18. Jisha N. Vysakh A. Vijeesh V. Latha M.S. Anti-inflammatory efficacy of methanolic extract of Muntingia calabura L. leaves in Carrageenan induced paw edema model. Pathophysiology 2019 26 3-4 323 330 10.1016/j.pathophys.2019.08.002 31439385
    [Google Scholar]
  19. Zolkeflee N.K.Z. Ramli N.S. Azlan A. In vitro anti-diabetic activities and UHPLC-ESI-MS/MS profile of Muntingia calabura leaves extract. Molecules 2022 27 1 287 7 10.3390/molecules27010287
    [Google Scholar]
  20. Solikhah T.I. Solikhah G.P. Solikhah G. Effect of Muntingia calabura L. leaf extract on blood glucose levels and body weight of alloxan-induced diabetic mice. Pharmacogn. J. 2021 13 6 1450 1455 10.5530/pj.2021.13.184
    [Google Scholar]
  21. Prayitno S.A. Rahim A.R. The comparison of extracts (Ethanol And Aquos Solvents) muntingia calabura leaves on total phenol, flavonid and antioxidant (Ic50) properties. Kontribusia 2020 3 2 319 325 10.30587/kontribusia.v3i2.1451
    [Google Scholar]
  22. Zolkeflee N.K.Z. Isamail N.A. Maulidiani M. Metabolite variations and antioxidant activity of Muntingia calabura leaves in response to different drying methods and ethanol ratios elucidated by NMR‐based metabolomics. Phytochem. Anal. 2021 32 1 69 83 10.1002/pca.2917 31953888
    [Google Scholar]
  23. Rogers S.L. Farlow M.R. Doody R.S. Mohs R. Friedhoff L.T. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology 1998 50 1 136 145 10.1212/WNL.50.1.136 9443470
    [Google Scholar]
  24. Shintani E.Y. Uchida K.M. Donepezil: An anticholinesterase inhibitor for Alzheimer’s disease. Am. J. Health Syst. Pharm. 1997 54 24 2805 2810 10.1093/ajhp/54.24.2805 9428950
    [Google Scholar]
  25. Dunn N.R. Pearce G.L. Shakir S.A.W. Adverse effects associated with the use of donepezil in general practice in England. J. Psychopharmacol. 2000 14 4 406 408 10.1177/026988110001400410 11198060
    [Google Scholar]
  26. Gottwald M.D. Rozanski R.I. Rivastigmine, a brain-region selective acetylcholinesterase inhibitor for treating Alzheimer’s disease: Review and current status. Expert Opin. Investig. Drugs 1999 8 10 1673 1682 10.1517/13543784.8.10.1673 11139819
    [Google Scholar]
  27. Mukherjee P.K. Kumar V. Mal M. Houghton P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007 14 4 289 300 10.1016/j.phymed.2007.02.002 17346955
    [Google Scholar]
  28. Taqui R. Debnath M. Ahmed S. Ghosh A. Advances on plant extracts and phytocompounds with acetylcholinesterase inhibition activity for possible treatment of Alzheimer’s disease. Phytomed Plus 2022 2 1 100184 10.1016/j.phyplu.2021.100184
    [Google Scholar]
  29. Smyrska-Wieleba N. Mroczek T. Natural inhibitors of cholinesterases: Chemistry, structure–activity and methods of their analysis. Int. J. Mol. Sci. 2023 24 2722 10.3390/ijms24032722
    [Google Scholar]
  30. Murray A. Faraoni M. Castro M. Alza N. Cavallaro V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr. Neuropharmacol. 2013 11 4 388 413 10.2174/1570159X11311040004 24381530
    [Google Scholar]
  31. Pohl F. Lin P.K.T. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/ treatment of neurodegenerative diseases: In vitro, in vivo and clinical trials. In: Molecules 2018 23 (12)3283 3 10.3390/molecules23123283
    [Google Scholar]
  32. ALNasser MN Alboraiy GM, Alsowig EM, Alqattan FM. Cholinesterase inhibitors from plants and their potential in Alzheimer’s treatment: Systematic review. Brain Sci. 2025 15 2 215 10.3390/brainsci15020215 40002547
    [Google Scholar]
  33. Pandey B.P. Pradhan S.P. Adhikari K. Joshi P. Malla S. Extracts of leaves of six locally available plants from bagmati province of nepal as potent inhibitors of Alpha-amylase, lipase, tyrosinase, elastase, and cholinesterases. Curr. Enzym. Inhib. 2020 16 3 214 223 10.2174/1573408016999200624150750
    [Google Scholar]
  34. Ojo O.A. Ojo A.B. Ajiboye B.O. Chromatographic fingerprint analysis, antioxidant properties, and inhibition of cholinergic enzymes (acetylcholinesterase and butyrylcholinesterase) of phenolic extracts from Irvingia gabonensis (Aubry-Lecomte ex O’Rorke) Baill bark. J. Basic Clin. Physiol. Pharmacol. 2018 29 2 217 224 10.1515/jbcpp‑2017‑0063 29381472
    [Google Scholar]
  35. Ardanareswari K. Tan C.Y. Hsu C.K. Chung Y.C. Non-competitive inhibition of acetylcholinesterase by jaboticaba (Myrciaria cauliflora) peel ethanolic extracts. Heliyon 2024 10 11 32322 10.1016/j.heliyon.2024.e32322 38912491
    [Google Scholar]
  36. Balkrishna A. Pokhrel S. Tomer M. Anti-Acetylcholinesterase activities of mono-herbal extracts and exhibited synergistic effects of the phytoconstituents: A biochemical and computational study. Mol 2019 24 22 4175 10.3390/molecules24224175 31752124
    [Google Scholar]
  37. Olatunji OJ Ogundajo AL Oladosu IA Non-competitive inhibition of acetylcholinesterase by bromotyrosine alkaloids. Nat Prod Commun 2014 9 11 1934578X1400901107 10.1177/1934578X1400901107 25532280
    [Google Scholar]
  38. Gholamhoseinian A. Moradi M.N. Sharifi-Far F. Screening the methanol extracts of some Iranian plants for acetylcholinesterase inhibitory activity. Res. Pharm. Sci. 2009 4 2 105 112 21589805
    [Google Scholar]
/content/journals/cei/10.2174/0115734080401748250711113148
Loading
/content/journals/cei/10.2174/0115734080401748250711113148
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test