Skip to content
2000
image of Identification of Novel Dual-targeting Inhibitors of Aminoacyl-tRNA Synthetases in Mycobacterium tuberculosis

Abstract

Introduction

Tuberculosis is a life-threatening infectious disease and a major public health concern. The recent emergence of extensively and totally resistant strains of has driven the search for new antituberculosis agents with previously unexploited mechanisms of action. The main aim of this study is to develop inhibitors with dual-targeted activity toward leucyl-tRNA synthetase (LeuRS) and methionyl-tRNA synthetase (MetRS).

Methods

In order to find LeuRS and MetRS inhibitors, virtual screening was performed with AutoDock software. The top-scoring compounds were then evaluated in aminoacylation assay using radioactive [14C]-L-leucine.

Results

The low molecular weight inhibitors targeting LeuRS were identified among Benzo[b]oxepine-4-carboxylic acid (5-benzyl-thiazol-2-yl)-amide derivatives.

Discussion

The most active compound – 7-Methoxy-benzo[b]oxepine-4-carboxylic acid [5-(2-fluoro-benzyl)-thiazol-2-yl]-amide, inhibited mycobacterial LeuRS with IC value of 19.7 µM. It was found that this compound inhibits MetRS by 96.5% at the concentration of 100 µM. Based on molecular docking results, the compounds from this class bind simultaneously to adenine recognition region and amino acid acceptor region of aminoacyl-tRNA synthetases synthetic sites.

Conclusion

Benzo[b]oxepine-4-carboxylic acid (5-benzyl-thiazol-2-yl)-amide derivatives can be the basis for chemical optimization and biological investigations.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080401691251001061104
2025-11-10
2025-12-24
Loading full text...

Full text loading...

References

  1. Vasiliauskaitė L. Bakuła Z. Vasiliauskienė E. Detection of multidrug-resistance in Mycobacterium tuberculosis by phenotype- and molecular-based assays. Ann. Clin. Microbiol. Antimicrob. 2024 23 1 81 10.1186/s12941‑024‑00741‑z 39198827
    [Google Scholar]
  2. Serajian M. Marini S. Alanko J.N. Noyes N.R. Prosperi M. Boucher C. Scalable de novo classification of antibiotic resistance of Mycobacterium tuberculosis. Bioinformatics 2024 40 Suppl. 1 i39 i47 10.1093/bioinformatics/btae243 38940175
    [Google Scholar]
  3. Zhang Y. Chen X. Wang S. Jiang N. Shao L. Chen J. Identification of drug resistance-related virulence gene mutations in 667 clinical Mycobacterium tuberculosis isolates. J. Infect. Dev. Ctries. 2024 18 9 1404 1412 10.3855/jidc.18081 39436849
    [Google Scholar]
  4. Chong Y. Li X. Long Y. Identification of novel resistance-associated mutations and discrimination within whole-genome sequences of fluoroquinolone-resistant Mycobacterium tuberculosis isolates. Microbiol. Spectr. 2024 12 6 e03930 e23 10.1128/spectrum.03930‑23 38687077
    [Google Scholar]
  5. Nehru V.J. Jose Vandakunnel M. Brammacharry U. Risk assessment and transmission of fluoroquinolone resistance in drug-resistant pulmonary tuberculosis: A retrospective genomic epidemiology study. Sci. Rep. 2024 14 1 19719 10.1038/s41598‑024‑70535‑y 39181942
    [Google Scholar]
  6. Nimmo C. Bionghi N. Cummings M.J. Opportunities and limitations of genomics for diagnosing bedaquiline-resistant tuberculosis: A systematic review and individual isolate meta-analysis. Lancet Microbe 2024 5 2 e164 e172 10.1016/S2666‑5247(23)00317‑8 38215766
    [Google Scholar]
  7. Brown T.S. Tang L. Omar S.V. Genotype-phenotype characterization of serial Mycobacterium tuberculosis isolates in bedaquiline-resistant tuberculosis. Clin. Infect. Dis. 2024 78 2 269 276 10.1093/cid/ciad596 37874928
    [Google Scholar]
  8. Putra O.N. Indah N. Purnamasari T. Larasanti A. Pyrazinamide resistance: A major cause of switching shorter to longer bedaquiline-based regimens in multidrug-resistant tuberculosis patients. Int. J. Mycobacteriol. 2024 13 4 430 435 10.4103/ijmy.ijmy_164_24 39700165
    [Google Scholar]
  9. Gaensbauer J.T. Dash N. Verma S. Multidrug-resistant tuberculosis in children: A practical update on epidemiology, diagnosis, treatment and prevention. J. Clin. Tuberc. Other Mycobact. Dis. 2024 36 100449 10.1016/j.jctube.2024.100449 38757115
    [Google Scholar]
  10. Negi A. Perveen S. Gupta R. Singh P.P. Sharma R. Unraveling dilemmas and lacunae in the escalating drug resistance of Mycobacterium tuberculosis to bedaquiline, delamanid, and pretomanid. J. Med. Chem. 2024 67 4 2264 2286 10.1021/acs.jmedchem.3c01892 38351709
    [Google Scholar]
  11. Pang L. Weeks S.D. Van Aerschot A. Aminoacyl-tRNA synthetases as valuable targets for antimicrobial drug discovery. Int. J. Mol. Sci. 2021 22 4 1750 10.3390/ijms22041750 33578647
    [Google Scholar]
  12. Bouz G. Zitko J. Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: An up-to-date review. Bioorg. Chem. 2021 110 104806 10.1016/j.bioorg.2021.104806 33799176
    [Google Scholar]
  13. Cai Z. Chen B. Yu Y. Design, synthesis, and proof-of-concept of triple-site inhibitors against aminoacyl-tRNA synthetases. J. Med. Chem. 2022 65 7 5800 5820 10.1021/acs.jmedchem.2c00134 35363470
    [Google Scholar]
  14. Xie S.C. Griffin M.D.W. Winzeler E.A. Ribas de Pouplana L. Tilley L. Targeting aminoacyl tRNA synthetases for antimalarial drug development. Annu. Rev. Microbiol. 2023 77 1 111 129 10.1146/annurev‑micro‑032421‑121210 37018842
    [Google Scholar]
  15. Ho J.M. Bakkalbasi E. Söll D. Miller C.A. Drugging tRNA aminoacylation. RNA Biol. 2018 15 4-5 667 677 10.1080/15476286.2018.1429879 29345185
    [Google Scholar]
  16. Luo Z. Qiu H. Peng X. Development of potent inhibitors targeting bacterial prolyl-tRNA synthetase through fluorine scanning-directed activity tuning. Eur. J. Med. Chem. 2025 291 117647 10.1016/j.ejmech.2025.117647 40253792
    [Google Scholar]
  17. Li A. He S. Jia Y. LeuRS-targeting prodrug, MRX-5, expresses anti-Mycobacterium abscessus activity. Clin. Exp. Pharmacol. Physiol. 2025 52 4 e70024 10.1111/1440‑1681.70024 39929481
    [Google Scholar]
  18. Šlechta P. Needle A.A. Jand’ourek O. Design, synthesis and antimicrobial evaluation of new N-(1-Hydroxy-1,3- dihydrobenzo[c][1,2]oxaborol-6-yl)(hetero)aryl-2-carboxamides as potential inhibitors of Mycobacterial Leucyl-tRNA synthetase. Int. J. Mol. Sci. 2023 24 3 2951 10.3390/ijms24032951 36769275
    [Google Scholar]
  19. Diacon A.H. Barry C.E. Carlton A. A first-in-class leucyl-tRNA synthetase inhibitor, ganfeborole, for rifampicin-susceptible tuberculosis: A phase 2a open-label, randomized trial. Nat. Med. 2024 30 3 896 904 10.1038/s41591‑024‑02829‑7 38365949
    [Google Scholar]
  20. Li X. Hernandez V. Rock F.L. Discovery of a potent and specific M. tuberculosis Leucyl-tRNA synthetase inhibitor: ( S )-3- (Aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2]oxaborol- 1(3 H)-ol (GSK656). J. Med. Chem. 2017 60 19 8011 8026 10.1021/acs.jmedchem.7b00631 28953378
    [Google Scholar]
  21. Liu R.J. Long T. Li H. Molecular basis of the multifaceted functions of human leucyl-tRNA synthetase in protein synthesis and beyond. Nucleic Acids Res. 2020 48 9 4946 4959 10.1093/nar/gkaa189 32232361
    [Google Scholar]
  22. Gudzera O.I. Golub A.G. Bdzhola V.G. Discovery of potent anti-tuberculosis agents targeting leucyl-tRNA synthetase. Bioorg. Med. Chem. 2016 24 5 1023 1031 10.1016/j.bmc.2016.01.028 26822568
    [Google Scholar]
  23. Kovalenko O.P. Volynets G.P. Rybak M.Y. Dual-target inhibitors of mycobacterial aminoacyl-tRNA synthetases among N -benzylidene- N ′-thiazol-2-yl-hydrazines. MedChemComm 2019 10 12 2161 2169 10.1039/C9MD00347A 32206244
    [Google Scholar]
  24. Gudzera OI Golub AG Bdzhola VG Identification of Mycobacterium tuberculosis leucyl-tRNA synthetase (LeuRS) inhibitors among the derivatives of 5-phenylamino-2H-[1,2,4]triazin-3-one. J Enzyme Inhib Med Chem 2016 31 sup2 201 7 10.1080/14756366.2016.1190712 27241561
    [Google Scholar]
  25. Rybak M.Y. Balanda A.O. Yatsyshyna A.P. Discovery of novel antituberculosis agents among 3-phenyl-5-(1-phenyl-1H- [1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives targeting aminoacyl- tRNA synthetases. Sci. Rep. 2021 11 1 7162 10.1038/s41598‑021‑86562‑y 33785838
    [Google Scholar]
  26. Volynets G.P. Gudzera O.I. Lukashov S.S. Identification of novel Mycobacterium tuberculosis leucyl-tRNA synthetase inhibitors with antibacterial activity. Future Med. Chem. 2025 17 7 757 765 10.1080/17568919.2025.2485673 40259683
    [Google Scholar]
  27. Volynets G.P. Starosyla S.A. Rybak M.Y. Dual-targeted hit identification using pharmacophore screening. J. Comput. Aided Mol. Des. 2019 33 11 955 964 10.1007/s10822‑019‑00245‑5 31691918
    [Google Scholar]
  28. Volynets G.P. Usenko M.O. Gudzera O.I. Identification of dual-targeted Mycobacterium tuberculosis aminoacyl-tRNA synthetase inhibitors using machine learning. Future Med. Chem. 2022 14 17 1223 1237 10.4155/fmc‑2022‑0085 35876255
    [Google Scholar]
  29. Otava chemical. 2025 Otava Ltd. Available from: www.otavachemicals.com/.
  30. Morris G.M. Huey R. Lindstrom W. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  31. Cusack S. Yaremchuk A. Tukalo M. The 2 Å crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J. 2000 19 10 2351 2361 10.1093/emboj/19.10.2351 10811626
    [Google Scholar]
  32. Berendsen H.J.C. van der Spoel D. van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995 91 1-3 43 56 10.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  33. Hess B. Kutzner C. van der Spoel D. Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008 4 3 435 447 10.1021/ct700301q 26620784
    [Google Scholar]
  34. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  35. Pedretti A. Villa L. Vistoli G. VEGA – An open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J. Comput. Aided Mol. Des. 2004 18 3 167 173 10.1023/B:JCAM.0000035186.90683.f2 15368917
    [Google Scholar]
  36. BIOVIA discovery studio 2024 client. 2024 Available from: https://discover.3ds.com/discovery-studio-visualizer-download.
  37. Ciganek E. Esters of 2,3-dihydro-3-oxobenzofuran-2-acetic acid and 3,4-dihydro-4-oxo-2H-1-benzopyran-3-acetic acid by intramolecular stetter reactions. Synthesis 1995 1995 10 1311 1314 10.1055/s‑1995‑4100
    [Google Scholar]
  38. Obushak N.D. Matiichuk V.S. Vasylyshin R.Y. Ostapyuk Y.V. Heterocyclic syntheses on the basis of arylation products of unsaturated compounds: X. 3-aryl-2-chloropropanals as reagents for the synthesis of 2-amino-1,3-thiazole derivatives. Russ. J. Org. Chem. 2004 40 3 383 389 10.1023/B:RUJO.0000034976.75646.85
    [Google Scholar]
  39. Pokhodylo N. Finiuk N. Klyuchivska O. Stoika R. Matiychuk V. Obushak M. Bioisosteric replacement of 1H-1,2,3-triazole with 1H-tetrazole ring enhances anti-leukemic activity of (5-benzylthiazol-2-yl)benzamides. Eur. J. Med. Chem. 2023 250 115126 10.1016/j.ejmech.2023.115126 36809707
    [Google Scholar]
  40. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976 72 1-2 248 254 10.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  41. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983 65 1-2 55 63 10.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
/content/journals/cei/10.2174/0115734080401691251001061104
Loading
/content/journals/cei/10.2174/0115734080401691251001061104
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test