Skip to content
2000
image of Caftaric Acid Blunts MMP9 Activity and Expression in CAM Angiogenesis Model: In vitro and In vivo Evaluation by Targeting NFkB/VEGF/MMP-9 Signaling in Diabetic Retinopathy

Abstract

Introduction

Caftaric acid (CFA), a natural product, has been experimentally proven to have diverse pharmacological properties. The nexus of NF-kB/VEGF/MMP9 signaling is believed to be associated with angiogenesis and vascular complications in patients with diabetic retinopathy (DR). The aim and objectives of the study are to explore the therapeutic relevance of CFA in DR, particularly focusing on pathological angiogenesis mechanisms involving the NF-κB / VEGF / MMP-9 signaling pathway associated with DR. To assess the anti-angiogenic potential of CFA using the CAM (Chorioallantoic Membrane) and cell culture-based models.

Methods

The cytotoxicity screening of CFA was performed using Human Retinal Pericyte cells (HRPCs). free radical (DPPH, OH, NO) assays were performed for CFA and standard ascorbic acid. An CAM assay of CFA and standard bevacizumab (15 µg/mL) was performed to assess angiogenesis in the CAM. STZ assay for CFA (100 and 200 mg/kg; oral) and standard epalrestat (150mg/kg/day; oral) were performed to observe the intensity of DR by using male Wistar albino rats. After the last dose of test and standard drug administration, all animals were sacrificed to carry out biochemical, western blotting, and histopathological analysis.

Results

The CFA showed concentration-dependent scavenging activity of DPPH, NO, and OH radicals comparable to that of the standard ascorbic acid. Significant antiangiogenic effects were observed for CFA (100 and 250 µg/mL), with scores of 1 and 1.6, respectively. CFA (200 µg/mL; CAM model) and CFA (200 mg/kg; STZ model) significantly reduce VEGF, MMP9, and NF-κB expressions.

Discussion

VEGF and MMP9 are major drivers of angiogenesis and vascular permeability, and their inhibition by CFA suggests a reduction in retinal angiogenesis and vascular leakage. Its mechanism involves modulation of the NFκB/VEGF/MMP-9 signaling pathway, leading to reduced pathological angiogenesis in both and models. This reinforces the CFA's potential in mitigating the pathological features of DR.

Conclusion

CFA demonstrates significant anti-angiogenic and anti-inflammatory potential by suppressing MMP-9 activity and expression. These findings suggest that CFA could serve as a promising therapeutic candidate for managing diabetic retinopathy by targeting abnormal angiogenesis and inflammation.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080397928251027022247
2025-11-12
2026-01-31
Loading full text...

Full text loading...

References

  1. Kropp M. Golubnitschaja O. Mazurakova A. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications—risks and mitigation. EPMA J. 2023 14 1 21 42 10.1007/s13167‑023‑00314‑8
    [Google Scholar]
  2. Tan T.E. Wong T.Y. Diabetic retinopathy: Looking forward to 2030. Front. Endocrinol. 2023 13 1077669 10.3389/fendo.2022.1077669 36699020
    [Google Scholar]
  3. Nawaz I.M. Rezzola S. Cancarini A. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog. Retin. Eye Res. 2019 72 100756 10.1016/j.preteyeres.2019.03.002 30951889
    [Google Scholar]
  4. Singh V. Panda S.P. Nexus of NFκB/VEGF/MMP9 signaling in diabetic retinopathy-linked dementia: Management by phenolic acid-enabled nanotherapeutics. Life Sci. 2024 358 123123 10.1016/j.lfs.2024.123123 39419266
    [Google Scholar]
  5. Shin E.S. Sorenson C.M. Sheibani N. Diabetes and retinal vascular dysfunction. J. Ophthalmic Vis. Res. 2014 9 3 362 373 10.4103/2008‑322X.143378 25667739
    [Google Scholar]
  6. Caban M. Owczarek K. Lewandowska U. The role of metalloproteinases and their tissue inhibitors on ocular diseases: Focusing on potential mechanisms. Int. J. Mol. Sci. 2022 23 8 4256 10.3390/ijms23084256 35457074
    [Google Scholar]
  7. Liao Z.Y. Liang I.C. Li H.J. Chrysin inhibits high glucose-induced migration on chorioretinal endothelial cells via VEGF and VEGFR down-regulation. Int. J. Mol. Sci. 2020 21 15 5541 10.3390/ijms21155541 32748894
    [Google Scholar]
  8. Zhou L. Li F.F. Wang S.M. Circ-ITCH restrains the expression of MMP-2, MMP-9 and TNF-α in diabetic retinopathy by inhibiting miR-22. Exp. Mol. Pathol. 2021 118 104594 10.1016/j.yexmp.2020.104594 33309614
    [Google Scholar]
  9. Kowluru R.A. Zhong Q. Santos J.M. Matrix metalloproteinases in diabetic retinopathy: Potential role of MMP-9. Expert Opin. Investig. Drugs 2012 21 6 797 805 10.1517/13543784.2012.681043 22519597
    [Google Scholar]
  10. Kowluru R.A. Mohammad G. dos Santos J.M. Zhong Q. Abrogation of MMP-9 gene protects against the development of retinopathy in diabetic mice by preventing mitochondrial damage. Diabetes 2011 60 11 3023 3033 10.2337/db11‑0816 21933988 PMC3198054
    [Google Scholar]
  11. Handsley M.M. Edwards D.R. Metalloproteinases and their inhibitors in tumor angiogenesis. Int. J. Cancer 2005 115 6 849 860 10.1002/ijc.20945 15729716
    [Google Scholar]
  12. Aouiss A. Anka Idrissi D. Kabine M. Zaid Y. Update of inflammatory proliferative retinopathy: Ischemia, hypoxia and angiogenesis. Curr. Res. Transl. Med. 2019 67 2 62 71 10.1016/j.retram.2019.01.005 30685380
    [Google Scholar]
  13. Rodrigues M. Xin X. Jee K. VEGF secreted by hypoxic Müller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes 2013 62 11 3863 3873 10.2337/db13‑0014 23884892
    [Google Scholar]
  14. Qian S. Wei Z. Yang W. Huang J. Yang Y. Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 2022 12 985363 10.3389/fonc.2022.985363 36313628
    [Google Scholar]
  15. Wang Z. Zhang N. Lin P. Xing Y. Yang N. Recent advances in the treatment and delivery system of diabetic retinopathy. Front. Endocrinol. 2024 15 1347864 10.3389/fendo.2024.1347864 38425757
    [Google Scholar]
  16. Gonthier M.P. Remesy C. Scalbert A. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed. Pharmacother. 2006 60 9 536 540 10.1016/j.biopha.2006.07.084 16978827
    [Google Scholar]
  17. Rao Q. Yu H. Li R. Dihydroartemisinin inhibits angiogenesis in breast cancer via regulating VEGF and MMP‐2/‐9. Fundam. Clin. Pharmacol. 2024 38 1 113 125 10.1111/fcp.12941 37490927
    [Google Scholar]
  18. Ribatti D. The chick embryo chorioallantoic membrane as an in vivo assay to study antiangiogenesis. Pharmaceuticals 2010 3 3 482 513 10.3390/ph3030482 27713265
    [Google Scholar]
  19. Panda S.P. Panigrahy U.P. Prasanth D.S.N.B.K. A trimethoxy flavonoid isolated from stem extract of Tabebuia chrysantha suppresses angiogenesis in angiosarcoma. J. Pharm. Pharmacol. 2020 72 7 990 999 10.1111/jphp.13272 32311118
    [Google Scholar]
  20. Baliyan S. Mukherjee R. Priyadarshini A. Determination of antioxidants by dpph radical scavenging activity and quantitative phytochemical analysis of ficus religiosa. Molecules 2022 27 4 1326 10.3390/molecules27041326 35209118
    [Google Scholar]
  21. Stratil P. Klejdus B. Kubáň V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables--evaluation of spectrophotometric methods. J. Agric. Food Chem. 2006 54 3 607 616 10.1021/jf052334j 16448157
    [Google Scholar]
  22. Schulz K. Kerber S. Kelm M. Reevaluation of the Griess method for determining NO/NO2- in aqueous and protein-containing samples. Nitric Oxide 1999 3 3 225 234 10.1006/niox.1999.0226 10442854
    [Google Scholar]
  23. Seoane N. Picos A. Moraña-Fernández S. Effects of sodium nitroprusside on lipopolysaccharide-induced inflammation and disruption of blood–brain barrier. Cells 2024 13 10 843 10.3390/cells13100843 38786065
    [Google Scholar]
  24. Jamali T. Kavoosi G. Jamali Y. Mortezazadeh S. Ardestani S.K. In-vitro, in-vivo, and in-silico assessment of radical scavenging and cytotoxic activities of Oliveria decumbens essential oil and its main components. Sci. Rep. 2021 11 1 14281 10.1038/s41598‑021‑93535‑8 34253776 PMC8275595
    [Google Scholar]
  25. Taira J. Tsuchida E. Katoh M.C. Uehara M. Ogi T. Antioxidant capacity of betacyanins as radical scavengers for peroxyl radical and nitric oxide. Food Chem. 2015 166 531 536 10.1016/j.foodchem.2014.05.102 25053090
    [Google Scholar]
  26. Valentão P. Fernandes E. Carvalho F. Andrade P.B. Seabra R.M. Bastos M.L. Hydroxyl radical and hypochlorous acid scavenging activity of small Centaury (Centaurium erythraea) infusion. A comparative study with green tea (Camellia sinensis). Phytomedicine 2003 10 6-7 517 522 10.1078/094471103322331485 13678237
    [Google Scholar]
  27. Mostofa M.G. Reza A.S.M.A. Khan Z. Apoptosis-inducing anti-proliferative and quantitative phytochemical profiling with in silico study of antioxidant-rich Leea aequata L. leaves. Heliyon 2024 10 1 e23400 10.1016/j.heliyon.2023.e23400 38170014
    [Google Scholar]
  28. Rahman M.M. Islam M.B. Biswas M. Khurshid Alam A.H.M. In vitro antioxidant and free radical scavenging activity of different parts of tabebuia pallida growing in bangladesh. BMC Res. Notes 2015 8 1 621 10.1186/s13104‑015‑1618‑6 26518275
    [Google Scholar]
  29. Li F. Wu H. Ma R. Enhancing flavonoid enrichment via supramolecular: A study on the material basis of sanguisorbae radix after carbonizing by stir-frying. Lebensm. Wiss. Technol. 2025 215 117192 10.1016/j.lwt.2024.117192
    [Google Scholar]
  30. Ghaffar S. Abbas A. Naeem-ul-Hassan M. Improved photocatalytic and antioxidant activity of olive fruit extract-mediated ZnO nanoparticles. Antioxidants 2023 12 6 1201 10.3390/antiox12061201 37371931
    [Google Scholar]
  31. Ghasemi M. Turnbull T. Sebastian S. Kempson I. The mtt assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci. 2021 22 23 12827 10.3390/ijms222312827 34884632
    [Google Scholar]
  32. He Y. Zhu Q. Chen M. The changing 50% inhibitory concentration (IC50) of cisplatin: A pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer. Oncotarget 2016 7 43 70803 70821 10.18632/oncotarget.12223 27683123
    [Google Scholar]
  33. Brauer R. Chen P. Influenza virus propagation in embryonated chicken eggs. J. Vis. Exp. 2015 97 52421 10.3791/52421 25867050 PMC4401370
    [Google Scholar]
  34. Bashir M.F. Qadir M.I. Effect of ginger extract on angiogenesis using CAM assay. Bangladesh J. Pharmacol. 2017 12 3 348 353 10.3329/bjp.v12i3.32616
    [Google Scholar]
  35. Katrancioglu N. Karahan O. Kilic A.T. Altun A. Katrancioglu O. Polat Z.A. The antiangiogenic effects of levosimendan in a CAM assay. Microvasc. Res. 2012 83 3 263 266 10.1016/j.mvr.2012.01.002 22285653
    [Google Scholar]
  36. Li M. Pathak R.R. Lopez-Rivera E. Friedman S.L. Aguirre-Ghiso J.A. Sikora A.G. The in ovo chick chorioallantoic membrane (CAM) assay as an efficient xenograft model of hepatocellular carcinoma. J. Vis. Exp. 2015 104 52411 10.3791/52411 26484588 PMC4692648
    [Google Scholar]
  37. Ribatti D. The CAM assay in the study of the metastatic process. Exp. Cell Res. 2021 400 2 112510 10.1016/j.yexcr.2021.112510 33524363
    [Google Scholar]
  38. Seidlitz E. Korbie D. Marien L. Richardson M. Singh G. Quantification of anti-angiogenesis using the capillaries of the chick chorioallantoic membrane demonstrates that the effect of human angiostatin is age-dependent. Microvasc. Res. 2004 67 2 105 116 10.1016/j.mvr.2003.12.005 15020201
    [Google Scholar]
  39. Kıyan H.T. Demirci B. Başer K.H.C. Demirci F. The in vivo evaluation of anti-angiogenic effects of Hypericum essential oils using the chorioallantoic membrane assay. Pharm. Biol. 2014 52 1 44 50 10.3109/13880209.2013.810647 24044783
    [Google Scholar]
  40. Kemel H. Benguedouar L. Boudjerda D. Menadi S. Cacan E. Sifour M. Phytochemical profiling, cytotoxic, anti-migration, and anti-angiogenic potential of phenolic-rich fraction from Peganum harmala: In vitro and in ovo studies. Med. Oncol. 2024 41 6 144 10.1007/s12032‑024‑02396‑4 38717574
    [Google Scholar]
  41. Krieg R.C. Dong Y. Schwamborn K. Knuechel R. Protein quantification and its tolerance for different interfering reagents using the BCA-method with regard to 2D SDS PAGE. J. Biochem. Biophys. Methods 2005 65 1 13 19 10.1016/j.jbbm.2005.08.005 16226314
    [Google Scholar]
  42. Gürtler A. Kunz N. Gomolka M. Stain-Free technology as a normalization tool in Western blot analysis. Anal. Biochem. 2013 433 2 105 111 10.1016/j.ab.2012.10.010 23085117
    [Google Scholar]
  43. Valdes T.I. Kreutzer D. Moussy F. The chick chorioallantoic membrane as a novel in vivo model for the testing of biomaterials. J. Biomed. Mater. Res. 2002 62 2 273 282 10.1002/jbm.10152 12209948
    [Google Scholar]
  44. Ghasemi A. Jeddi S. Streptozotocin as a tool for induction of rat models of diabetes: A practical guide. EXCLI J. 2023 22 274 294 10.17179/EXCLI2022‑5720 36998708
    [Google Scholar]
  45. Eshaq R.S. Harris N.R. Hyperglycemia‐induced ubiquitination and degradation of β‐catenin with the loss of platelet endothelial cell adhesion molecule‐1 in retinal endothelial cells. Microcirculation 2020 27 2 e12596 10.1111/micc.12596 31628816
    [Google Scholar]
  46. Xiang Y. Zheng Y. Liu S. Liu G. Li Z. Dong W. Comparison of the sensitivity of western blotting between PVDF and NC membranes. Sci. Rep. 2021 11 1 12022 10.1038/s41598‑021‑91521‑8 34103620
    [Google Scholar]
  47. Mruk D.D. Cheng C.Y. Enhanced chemiluminescence (ECL) for routine immunoblotting. Spermatogenesis 2011 1 2 121 122 10.4161/spmg.1.2.16606 22319660
    [Google Scholar]
  48. Roberts R.A. Smith R.A. Safe S. Szabo C. Tjalkens R.B. Robertson F.M. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology 2010 276 2 85 94 10.1016/j.tox.2010.07.009 20643181
    [Google Scholar]
  49. Yue T. Shi Y. Luo S. Weng J. Wu Y. Zheng X. The role of inflammation in immune system of diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Front. Immunol. 2022 13 1055087 10.3389/fimmu.2022.1055087 36582230
    [Google Scholar]
  50. Jayashree K. Yasir M. Senthilkumar G.P. Ramesh Babu K. Mehalingam V. Mohanraj P.S. Circulating matrix modulators (MMP-9 and TIMP-1) and their association with severity of diabetic retinopathy. Diabetes Metab. Syndr. 2018 12 6 869 873 10.1016/j.dsx.2018.05.006 29752166
    [Google Scholar]
  51. Patnaik S. Rai M. Jalali S. An interplay of microglia and matrix metalloproteinase MMP9 under hypoxic stress regulates the opticin expression in retina. Sci. Rep. 2021 11 1 7444 10.1038/s41598‑021‑86302‑2 33811221 PMC8018966
    [Google Scholar]
/content/journals/cei/10.2174/0115734080397928251027022247
Loading
/content/journals/cei/10.2174/0115734080397928251027022247
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: CAM assay ; Diabetic retinopathy ; histopathology ; caftaric acid ; angiogenesis ; streptozocin (STZ)
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test