Skip to content
2000
image of Exploring α-Glucosidase Inhibitory, Antioxidant, and Antimicrobial Properties of Tinospora sinensis (Lour.) Merr.

Abstract

Introduction

Diabetes mellitus is a rapidly escalating global health concern, and numerous ethnobotanical remedies are under investigation for their antidiabetic properties. has long been used in traditional medicine by indigenous populations for glycemic control. This study aimed to characterize the phytochemical profile of and evaluate its α-glucosidase inhibition, antioxidant and antimicrobial activities.

Methods

Standard qualitative assays were used to identify secondary metabolites. Total phenolic content (TPC) was quantified Folin–Ciocalteu reagent (expressed as mg gallic acid equivalents [GAE]/g), and total flavonoid content (TFC) aluminum chloride colorimetric method (mg quercetin equivalents [QE]/g). Antioxidant potential was determined using the DPPH radical scavenging assay. α-Glucosidase inhibition was measured spectrophotometrically using p-nitrophenyl-α-D-glucopyranoside as a substrate. Antimicrobial efficacy against was tested using the agar well diffusion technique.

Results

Phytochemical screening confirmed the presence of alkaloids, flavonoids, glycosides, terpenoids, saponins, phenols, tannins, steroids, and quinones. TPC and TFC values were 181.41 ± 1.57 mg GAE/g and 12.08 ± 0.11 mg QE/g, respectively. The methanolic extract demonstrated considerable antioxidant activity (DPPH IC = 111.43 ± 1.13 µg/mL).

Discussion

Both crude and ethyl acetate extracts exhibited significant α-glucosidase inhibition (comparable or superior to control). Notable antibacterial activity was observed against , with a 9 mm inhibition zone.

Conclusion

The presence of diverse bioactive phytochemicals in supports its traditional use in diabetes management. Its potent α-glucosidase inhibition suggests a mechanism for attenuating postprandial hyperglycemia, while antioxidant and antimicrobial activities substantiate additional therapeutic roles. These findings warrant further studies and mechanistic exploration to validate its potential as a source of enzyme inhibitors and therapeutic agents for metabolic disorders.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080391554250807044513
2025-08-18
2025-11-23
Loading full text...

Full text loading...

References

  1. Arekemase M.O. Kayode R.M.O. Ajiboye A.E. Antimicrobial activity and phytochemical analysis of jatropha curcas plant against some selected microorganisms. Int. J. Biol. 2011 3 3 3 10.5539/ijb.v3n3p52
    [Google Scholar]
  2. Hosseinzadeh A. Mehrzadi S. Dehdashtian E. Karimi M.Y. The anticonvulsant activity of thiamine, vitamin d3, and melatonin combination on pentylenetetrazole-induced seizures in mice. Curr. Drug Ther. 2022 17 4 281 288 10.2174/1574885517666220531104009
    [Google Scholar]
  3. World Health Organization. National policy on traditional medicine and regulation of herbal medicines: report of a WHO global survey. Geneva World Health Organization 2005
    [Google Scholar]
  4. Ghimire S.K. Medicinal plants in the Nepal Himalaya: Current issues, sustainable harvesting, knowledge gaps and research priorities. Medicinal Plants in Nepal: An Anthology of Contemporary Research. Nepal: Ecological Society (ECOS) 2008 25 42
    [Google Scholar]
  5. Malla S. Bista L. Tinospora cordifolia. Matrix Science Pharma 2021 5 3 54 59 10.4103/mtsp.mtsp_3_21
    [Google Scholar]
  6. Rajagopal P.L. Dhilna K.K. Kumar P.N.S. John J. Herbs in inflammation - a review. Int J Ayurved Herbal MedHerbs in Inflammation -. RE:view 2013 3 4 1289 1307
    [Google Scholar]
  7. Balami N.P. Ethnomedicinal uses of plants among the newar community of pharping village of kathmandu district. Tribhuvan Univ J 2006 24 1 13 19 10.3126/tuj.v24i1.251
    [Google Scholar]
  8. Upadhya V. Hegde H.V. Bhat S. Hurkadale P.J. Kholkute S.D. Hegde G.R. Ethnomedicinal plants used to treat bone fracture from North-Central Western Ghats of India. J. Ethnopharmacol. 2012 142 2 557 562 10.1016/j.jep.2012.05.051 22668503
    [Google Scholar]
  9. Anh B.T.M. Van T.T.Q. Mai N.T. Anti-inflammatory clerodane dinorditerpenoids from the tinospora sinensis leaves. Rev. Bras. Farmacogn. 2022 32 5 845 850 10.1007/s43450‑022‑00300‑7
    [Google Scholar]
  10. Manjrekar P.N. Jolly C.I. Narayanan S. Comparative studies of the immunomodulatory activity of Tinospora cordifolia and Tinospora sinensis. Fitoterapia 2000 71 3 254 257 10.1016/S0367‑326X(99)00167‑7 10844163
    [Google Scholar]
  11. Banerjee A. Maji B. Mukherjee S. Chaudhuri K. Seal T. In vitro antidiabetic and anti oxidant activities of methanol extract of *Tinospora sinensis*. J. Appl. Biol. Biotechnol. 2017 5 3 61 67 10.7324/JABB.2017.50311
    [Google Scholar]
  12. Nemkul C.M. Bajracharya G.B. Shrestha I. Phytochemical evaluation and antimicrobial activity of stem of Tinospora sinensis (Lour.) Merr. J. Plant Res. 2021 19 1
    [Google Scholar]
  13. Badavenkatappa S.G. Peraman R. In vitro antitubercular, anticancer activities and IL-10 expression in HCT-116 cells of Tinospora sinensis (Lour.) Merr. leaves extract. Nat. Prod. Res. 2021 35 22 4669 4674 10.1080/14786419.2019.1705814 31872772
    [Google Scholar]
  14. Maurya R. Gupta P. Chand K. Constituents of Tinospora sinensis and their antileishmanial activity against Leishmania donovani. Nat. Prod. Res. 2009 23 12 1134 1143 10.1080/14786410802682239 19662579
    [Google Scholar]
  15. Avanapu S.R. Evaluation of antiulcer activity of tinospora sinensis leaves. Singap J Pharm Res 2014 1 8 11
    [Google Scholar]
  16. Chang C.C. Yang M.H. Wen H.M. Chern J.C. Estimation of total flavonoid content in propolis by two complementary colometric methods. Yao Wu Shi Pin Fen Xi 2020 10 3 10.38212/2224‑6614.2748
    [Google Scholar]
  17. Jiao Q.S. Xu L.L. Zhang J.Y. Wang Z.J. Jiang Y.Y. Liu B. Rapid characterization and identification of non-diterpenoid constituents in tinospora sinensis by HPLC-LTQ-orbitrap MSn. Molecules 2018 23 2 274 10.3390/molecules23020274 29382158
    [Google Scholar]
  18. Zhang J.S. Xu D.F. Wang Y.Y. Ma R.F. Zhang H. Clerodane furanoditerpenoids from the stems of Tinospora sinensis. Arch. Pharm. Res. 2022 45 5 328 339 10.1007/s12272‑022‑01383‑5 35478401
    [Google Scholar]
  19. Zhou F. He K. Guan Y. Network pharmacology-based strategy to investigate pharmacological mechanisms of Tinospora sinensis for treatment of Alzheimer’s disease. J. Ethnopharmacol. 2020 259 112940 10.1016/j.jep.2020.112940 32389853
    [Google Scholar]
  20. Lam S.H. Chen P.H. Hung H.Y. Chemical constituents from the stems of tinospora sinensis and their bioactivity. Molecules 2018 23 10 2541 10.3390/molecules23102541 30301176
    [Google Scholar]
  21. Sharma P. Dwivedee B.P. Bisht D. Dash A.K. Kumar D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon 2019 5 9 02437 10.1016/j.heliyon.2019.e02437 31701036
    [Google Scholar]
  22. Khan M.M. Haque M.S. Chowdhury M.S.I. Medicinal use of the unique plant Tinospora Cordifolia: Evidence from the traditional medicine and recent research. Asian J Med Biol Res 2017 2 4 508 512 10.3329/ajmbr.v2i4.30989
    [Google Scholar]
  23. Sharma R.D. Effect of fenugreek seeds and leaves on blood glucose and serum insulin responses in human subjects. Nutr. Res. 1986 6 12 1353 1364 10.1016/S0271‑5317(86)80020‑3
    [Google Scholar]
  24. Zimmet P. Alberti K.G.M.M. Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001 414 6865 782 787 10.1038/414782a 11742409
    [Google Scholar]
  25. Bastaki S.S. Diabetes mellitus and its treatment. Int. J. Diabetes Metab. 2005 13 3 111 134 10.1159/000497580
    [Google Scholar]
  26. Afshari M. Rahimmalek M. Sabzalian M.R. Miroliaei M. Szumny A. Essential oil profiles, improvement of enzymatic and non-enzymatic antioxidant systems in different populations of Salvia subg. Perovskia by irrigation management. Ind. Crops Prod. 2024 208 117849 10.1016/j.indcrop.2023.117849
    [Google Scholar]
  27. Chaves N. Santiago A. Alías J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020 9 1 76 10.3390/antiox9010076 31952329
    [Google Scholar]
  28. Machado J. Vasconcelos M.W. Soares C. Fidalgo F. Heuvelink E. Carvalho S.M.P. Enzymatic and non-enzymatic antioxidant responses of young tomato plants (cv. micro-tom) to single and combined mild nitrogen and water deficit: Not the sum of the parts. Antioxidants 2023 12 2 375 10.3390/antiox12020375 36829934
    [Google Scholar]
  29. Munteanu I.G. Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021 22 7 3380 10.3390/ijms22073380 33806141
    [Google Scholar]
  30. Shahidi F. Zhong Y. Revisiting the polar paradox theory: A critical overview. J. Agric. Food Chem. 2011 59 8 3499 3504 10.1021/jf104750m 21375307
    [Google Scholar]
  31. Zhang S.Q. Xu H.B. Zhang S.J. Li X.Y. Identification of the active compounds and significant pathways of Artemisia annua in the treatment of non-small cell lung carcinoma based on network pharmacology. Med. Sci. Monit. 2020 26 e923624 10.12659/MSM.923624
    [Google Scholar]
  32. Kiranmayee M. Riazunnisa K. Bioactive phytochemical compounds characterization, anti-oxidant and anti-microbial activity of the methanol and acetonitrile leaf extracts of Pithecellobium dulce. Phytomed. Plus 2025 5 2 100760 10.1016/j.phyplu.2025.100760
    [Google Scholar]
  33. Oyebamiji A.K. Experimental and in silico studies on anti microbial activity of P. Nigrescens leaves. Adv J Chem 2025 8 7 1150 1170 10.48309/ajca.2025.473491.1641
    [Google Scholar]
  34. Shankar S.R. Rangarajan R. Sarada D.V.L. Kumar C.S. Evaluation of antibacterial activity and phytochemical screening of wrightia tinctoria L. Pharmacogn. J. 2010 2 14 19 22 10.1016/S0975‑3575(10)80066‑5
    [Google Scholar]
  35. Harborne A.J. Phytochemical methods a guide to modern] techniques of plant analysis. 1998 Available from: https://books.google.com/books?hl=en&lr=&id=2yvqeRtE8CwC&oi=fnd&pg=PR7&dq=Phytochemical+Methods+A+Guide+to+Modern+Techniques+of+Plant+Analysis&ots=xBaiT9PnV5&sig=8PwcCD37RyAi1K9B5gK5hz0aTVw
  36. Lu X. Wang J. Al-Qadiri H.M. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 2011 129 2 637 644 10.1016/j.foodchem.2011.04.105 30634280
    [Google Scholar]
  37. Sabudak T. Demirkiran O. Ozturk M. Topcu G. Phenolic compounds from Trifolium echinatum Bieb. and investigation of their tyrosinase inhibitory and antioxidant activities. Phytochemistry 2013 96 305 311 10.1016/j.phytochem.2013.08.014 24070617
    [Google Scholar]
  38. Fouotsa H. Lannang A.M. Mbazoa C.D. Xanthones inhibitors of α-glucosidase and glycation from Garcinia nobilis. Phytochem. Lett. 2012 5 2 236 239 10.1016/j.phytol.2012.01.002
    [Google Scholar]
  39. Perez C. Pauli M. Bazerque P. An antibiotic assay by the agar well diffusion method. Acta Biol. Med. Exp. 1990 5 113 115
    [Google Scholar]
  40. Banerjee A. Maji B. Mukherjee S. Chaudhuri K. Seal T. In vitro anti-diabetic and anti-oxidant activities of ethanol extract of tinospora sinensis. Int. J. Curr. Pharm. Res. 2017 9 2 42 47 10.22159/ijcpr.2017v9i2.17379
    [Google Scholar]
  41. Kimmy Verma DK. Prabhakar P. In vitro and In silico evaluation of the antioxidant, anti-microbial and antihyperglycemic properties of giloy (Tinospora cordifolia L.) stem extract. Biocatal Agric Biotechnol 2024 56 103059 10.1016/j.bcab.2024.103059
    [Google Scholar]
  42. Ngpoore N.K. Agrahari S. Yadav H. Antioxidant, antidiabetic and antimicrobial properties of tinospora cordifolia (thumb) miers from different geo-ecological regions of india. Indian J. Agric. Biochem. 2024 37 1 31 38 10.5958/0974‑4479.2024.00005.0
    [Google Scholar]
  43. Sharma R. Amin H. Galib, Prajapati PK. Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: Critical appraisal and role in therapy. Asian Pac. J. Trop. Biomed. 2015 5 1 68 78 10.1016/S2221‑1691(15)30173‑8
    [Google Scholar]
  44. Paray A.R. Antimicrobial activity of crude aqueous extracts of Moringa oleifera, Azadirachta indica, Carica papaya, Tinospora cordifolia and Curcuma longa against certain bacterial pathogens. J. Pharmacogn. Phytochem. 2018 7 4 984 994
    [Google Scholar]
/content/journals/cei/10.2174/0115734080391554250807044513
Loading
/content/journals/cei/10.2174/0115734080391554250807044513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test