Skip to content
2000
image of Chemical and Strategic Approaches to Addressing Antimicrobial Resistance and Preserving Antibiotic Efficacy: A Systematic Review

Abstract

Introduction

Antimicrobial resistance (AMR) is a growing global health challenge that poses a significant threat to public health, healthcare systems, and socioeconomic stability. The misuse and overuse of antibiotics, along with environmental factors, have accelerated the development of resistance in key antibiotic classes, including penicillins, Aminoglycosides, Macrolides, and Tetracyclines. Despite advancements in antibiotic discovery, the rise of resistant microorganisms continues to jeopardize the efficacy of life-saving treatments. This study aims to provide a comprehensive analysis of AMR, focusing on its sources, mechanisms, and impacts. Specific objectives include exploring the historical supremacy of antibiotics, reviewing 10 FDA-approved antibiotics from 2020–2024 with 23 combination therapy drugs, investigating chemical strategies against AMR, and proposing solutions to combat resistance, particularly in widely used antibiotic classes. The paper also aims to highlight the environmental influence on AMR and suggest sustainable approaches to mitigate its spread.

Methods

The study involved a detailed review of scientific literature, regulatory reports, and case studies related to AMR. Key areas analyzed include mechanisms of resistance development, chemical modifications of antibiotics, combination therapies, and environmental factors influencing AMR. Data on recently approved antibiotics (2020–2024) by the FDA were examined to assess progress in antibiotic development. Additionally, targeted strategies to overcome resistance in Penicillins, Aminoglycosides, Macrolides, and Tetracyclines were critically reviewed.

Results

Recent FDA-approved antibiotics (2020–2024) and key drug combinations have shown progress against resistant pathogens, particularly in major antibiotic classes. However, persistent misuse, environmental factors, and limited innovation continue to drive antimicrobial resistance globally. The most important and widely used chemical combinations of drugs, including Penicillin, Tetracycline, Macrolides, and Aminoglycosides, have been highlighted in this review.

Discussion

Antimicrobial resistance (AMR) is a global threat to public health, healthcare systems, and socioeconomic stability, particularly in India. Advanced therapies, chemical modifications, and CRISPR-Cas9-based approaches are being explored to counteract resistance. The environmental aspect of AMR, including wastewater, soil, and pharmaceutical pollution, is also crucial. Comprehensive monitoring and stewardship programs, interdisciplinary collaboration, and evidence-based guidelines are essential for reducing the global AMR burden.

Conclusion

A multifaceted strategy combining chemical innovation, responsible use, and environmental control is essential to combat AMR. Urgent global collaboration is needed to preserve antibiotic effectiveness for future generations.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080389456250825102340
2025-10-17
2025-12-18
Loading full text...

Full text loading...

References

  1. Howard G. The future of water and sanitation: Global challenges and the need for greater ambition. AQUA—Water Infrastructure. Ecosystems and Society 2021 70 4 438 448
    [Google Scholar]
  2. Singh V. Kumar R. Anti-microbial resistance: An alarming issue. Pharma Innov J 2022 11 7 3695 3698
    [Google Scholar]
  3. Nepalia A. Fernandes S.E. Singh H. Rana S. Saini D.K. Anti‐microbial resistance and aging: A design for evolution. WIREs Mech. Dis. 2023 15 6 e1626 10.1002/wsbm.1626 37553220
    [Google Scholar]
  4. Caputo A. Bondad-Reantaso M.G. Karunasagar I. Antimicrobial resistance in aquaculture: A global analysis of literature and national action plans. Rev. Aquacult. 2023 15 2 568 578 10.1111/raq.12741
    [Google Scholar]
  5. Mohan S. Ajay Krishna M.S. Chandramouli M. Antibacterial natural products from microbial and fungal sources: A decade of advances. Mol. Divers. 2023 27 1 517 541 10.1007/s11030‑022‑10417‑5 35301633
    [Google Scholar]
  6. Gwenzi W. Musiyiwa K. Mangori L. Sources, behaviour and health risks of antimicrobial resistance genes in wastewaters: A hotspot reservoir. J. Environ. Chem. Eng. 2020 8 1 102220 10.1016/j.jece.2018.02.028
    [Google Scholar]
  7. Laupland K.B. Ross T. Pitout J.D. Church D.L. Gregson D.B. Investigation of sources of potential bias in laboratory surveillance for anti-microbial resistance. Clin. Invest. Med. 2007 30 4 E159 E166 10.25011/cim.v30i4.1777 17716594
    [Google Scholar]
  8. Ribeiro da Cunha B. Fonseca L.P. Calado C.R.C. Antibiotic discovery: where have we come from, where do we go? Antibiotics 2019 8 2 45 10.3390/antibiotics8020045 31022923
    [Google Scholar]
  9. Lewis K. The science of antibiotic discovery. Cell 2020 181 1 29 45 10.1016/j.cell.2020.02.056 32197064
    [Google Scholar]
  10. Iskandar K. Murugaiyan J. Hammoudi Halat D. Antibiotic discovery and resistance: the chase and the race. Antibiotics 2022 11 2 182 10.3390/antibiotics11020182 35203785
    [Google Scholar]
  11. Stokes J.M. Yang K. Swanson K. A deep learning approach to antibiotic discovery. Cell 2020 180 4 688 702.e13 10.1016/j.cell.2020.01.021 32084340
    [Google Scholar]
  12. Nogrady B. The fight against antimicrobial resistance. Nature 2023 624 7991 S30 S32 10.1038/d41586‑023‑03912‑8 38092932
    [Google Scholar]
  13. Kumar N. Dixit A. Kumar S. Trigun V. Antimicrobial resistance: Progress in the decade since emergence of New Delhi metallo-β-lactamase in India. Indian J. Community Med. 2019 44 1 4 8 10.4103/ijcm.IJCM_217_18 30983704
    [Google Scholar]
  14. Torumkuney D Poojary A Shenoy B Nijhara P Dalal K Manenzhe R. Country data on AMR in India in the context of communityacquired respiratory tract infections: Links between antibiotic susceptibility, local and international antibiotic prescribing guidelines, access to medicine and clinical outcome. J Antimicrob Chemother 2022 77 i10- 7 (Suppl. 1) 10.1093/jac/dkac212 36065726
    [Google Scholar]
  15. Taneja N. Sharma M. Antimicrobial resistance in the environment. Indian J. Med. Res. 2019 149 2 119 128 10.4103/ijmr.IJMR_331_18 31219076
    [Google Scholar]
  16. Syed Y.Y. Ceftobiprole medocaril: A review of its use in patients with hospital- or community-acquired pneumonia. Drugs 2014 74 13 1523 1542 10.1007/s40265‑014‑0273‑x 25117196
    [Google Scholar]
  17. Dunne M.W. Aronin S.I. Das A.F. Sulopenem for the treatment of complicated urinary tract infections including pyelonephritis: A phase 3, randomized trial. Clin. Infect. Dis. 2023 76 1 78 88 10.1093/cid/ciac704 36068705
    [Google Scholar]
  18. Herald F. Burgos R.M. Clinical evaluation of meropenem-vaborbactam combination for the treatment of urinary tract infection: Evidence to date. Infect. Drug Resist. 2023 16 555 568 10.2147/IDR.S187360 36726388
    [Google Scholar]
  19. Horcajada J.P. Salata R.A. Álvarez-Sala R. DEFINE-CABP Study Group. A phase 3 study to compare delafloxacin with moxifloxacin for the treatment of adults with community-acquired bacterial pneumonia (DEFINE-CABP). Open Forum Infect. Dis. 2020 7 1 ofz514 10.1093/ofid/ofz514
    [Google Scholar]
  20. Zhang M. Zhu C.M. Teng J.H. Wu H.X. Zhang F.L. Research progress of the new triple antibacterial drug Recarbrio in the treatment of complicated intra-abdominal infections. Chinese J New Drugs 2022 31
    [Google Scholar]
  21. Venugopalan V. Casaus D. Kainz L. Use of therapeutic drug monitoring to characterize cefepime‐related neurotoxicity. Pharmacotherapy 2023 43 1 6 14 10.1002/phar.2744 36401796
    [Google Scholar]
  22. Tang H.J. Wang J.H. Lai C.C. Lefamulin vs moxifloxacin for community-acquired bacterial pneumonia. Medicine (Baltimore) 2020 99 29 e21223 10.1097/MD.0000000000021223
    [Google Scholar]
  23. Shaeer K.M. Zmarlicka M.T. Chahine E.B. Piccicacco N. Cho J.C. Plazomicin: A next‐generation aminoglycoside. Pharmacotherapy 2019 39 1 77 93 10.1002/phar.2203 30511766
    [Google Scholar]
  24. Soriano M.C. Montufar J. Blandino-Ortiz A. Cefiderocol. Rev. Esp. Quimioter. 2022 35 Suppl. 1 31 34 10.37201/req/s01.07.2022 35488822
    [Google Scholar]
  25. Torrelo A. Grimalt R. Masramon X. Albareda López N. Zsolt I. Ozenoxacin, a new effective and safe topical treatment for impetigo in children and adolescents. Dermatology 2020 236 3 199 207 10.1159/000504536 31958794
    [Google Scholar]
  26. Frei A. Verderosa A.D. Elliott A.G. Zuegg J. Blaskovich M.A.T. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 2023 7 3 202 224 10.1038/s41570‑023‑00463‑4 37117903
    [Google Scholar]
  27. Cantrell J.M. Chung C.H. Chandrasekaran S. Machine learning to design antimicrobial combination therapies: Promises and pitfalls. Drug Discov. Today 2022 27 6 1639 1651 10.1016/j.drudis.2022.04.006 35398560
    [Google Scholar]
  28. Hall T.J. Villapún V.M. Addison O. A call for action to the biomaterial community to tackle antimicrobial resistance. Biomater. Sci. 2020 8 18 4951 4974 10.1039/D0BM01160F 32820747
    [Google Scholar]
  29. Ivanovic I. Boss R. Romanò A. Penicillin resistance in bovine Staphylococcus aureus: Genomic evaluation of the discrepancy between phenotypic and molecular test methods. J. Dairy Sci. 2023 106 1 462 475 10.3168/jds.2022‑22158 36424317
    [Google Scholar]
  30. Mancini S. Marchesi M. Imkamp F. Population-based inference of aminoglycoside resistance mechanisms in Escherichia coli. EBioMedicine 2019 46 184 192 10.1016/j.ebiom.2019.07.020 31307955
    [Google Scholar]
  31. Wang N. Xu X. Xiao L. Liu Y. Novel mechanisms of macrolide resistance revealed by in vitro selection and genome analysis in Mycoplasma pneumoniae. Front. Cell. Infect. Microbiol. 2023 13 1186017 10.3389/fcimb.2023.1186017 37284499
    [Google Scholar]
  32. Li W. Atkinson G.C. Thakor N.S. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat. Commun. 2013 4 1 1477 10.1038/ncomms2470 23403578
    [Google Scholar]
  33. Niwa T. Morimoto M. Hirai T. Hata T. Hayashi M. Imagawa Y. Effect of penicillin-based antibiotics, amoxicillin, ampicillin, and piperacillin, on drug-metabolizing activities of human hepatic cytochromes P450. J. Toxicol. Sci. 2016 41 1 143 146 10.2131/jts.41.143 26763401
    [Google Scholar]
  34. Devanshi S. Lakshmi D.B. The antibiotic resistance crisis: An Indian perspective. Int J Busin Manag Res 2020 8 4 112 116 10.37391/IJBMR.080404
    [Google Scholar]
  35. Hu Y. Kan Y. Zhang Z. New mutations of penicillin-binding proteins in Streptococcus agalactiae isolates from cattle with decreased susceptibility to penicillin. Microb. Drug Resist. 2018 24 8 1236 1241 10.1089/mdr.2017.0223 29473792
    [Google Scholar]
  36. Muteeb G. Rehman M.T. Shahwan M. Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals 2023 16 11 1615 10.3390/ph16111615 38004480
    [Google Scholar]
  37. Ding D. Wang B. Zhang X. The spread of antibiotic resistance to humans and potential protection strategies. Ecotoxicol. Environ. Saf. 2023 254 114734 10.1016/j.ecoenv.2023.114734 36950985
    [Google Scholar]
  38. Sifri Z. Chokshi A. Cennimo D. Horng H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 2019 11 1 36 42 10.4103/jgid.jgid_110_18 30814834
    [Google Scholar]
  39. Carcione D. Siracusa C. Sulejmani A. Leoni V. Intra J. Old and new beta-lactamase inhibitors: Molecular structure, mechanism of action, and clinical use. Antibiotics 2021 10 8 995 10.3390/antibiotics10080995 34439045
    [Google Scholar]
  40. Shapiro A.B. Gao N. Interactions of the diazabicyclooctane serine β-lactamase inhibitor ETX1317 with target enzymes. ACS Infect. Dis. 2021 7 1 114 122 10.1021/acsinfecdis.0c00656 33300345
    [Google Scholar]
  41. Leiris S. Coelho A. Castandet J. SAR studies leading to the identification of a novel series of metallo-β-lactamase inhibitors for the treatment of carbapenem-resistant enterobacteriaceae infections that display efficacy in an animal infection model. ACS Infect. Dis. 2019 5 1 131 140 10.1021/acsinfecdis.8b00246 30427656
    [Google Scholar]
  42. Luo L. Huang W. Zhang J. Yu Y. Sun T. Metal-based nanoparticles as antimicrobial agents: A review. ACS Appl. Nano Mater. 2024 7 3 2529 2545 10.1021/acsanm.3c05615
    [Google Scholar]
  43. Chen Z Xing F Yu P Zhou Y Luo R Liu M. Metal-organic framework-based advanced therapeutic tools for antimicrobial applications. Acta Biomater 2024 175 27 10.1016/j.actbio.2023.12.023
    [Google Scholar]
  44. Hobman J.L. Crossman L.C. Bacterial antimicrobial metal ion resistance. J. Med. Microbiol. 2015 64 5 471 497 10.1099/jmm.0.023036‑0
    [Google Scholar]
  45. Scaccaglia M. Birbaumer M.P. Pinelli S. Pelosi G. Frei A. Discovery of antibacterial manganese(i) tricarbonyl complexes through combinatorial chemistry. Chem. Sci. (Camb.) 2024 15 11 3907 3919 10.1039/D3SC05326A 38487233
    [Google Scholar]
  46. González-Bello C. Rodríguez D. Pernas M. Rodríguez Á. Colchón E. β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J. Med. Chem. 2020 63 5 1859 1881 10.1021/acs.jmedchem.9b01279 31663735
    [Google Scholar]
  47. Tselepis L. Langley G.W. Aboklaish A.F. In vitro efficacy of imipenem-relebactam and cefepime-AAI101 against a global collection of ESBL-positive and carbapenemase-producing Enterobacteriaceae. Int. J. Antimicrob. Agents 2020 56 1 105925 10.1016/j.ijantimicag.2020.105925 32084512
    [Google Scholar]
  48. Cheng I.L. Chen Y.H. Lai C.C. Tang H.J. The use of ceftolozane-tazobactam in the treatment of complicated intra-abdominal infections and complicated urinary tract infections: A meta-analysis of randomized controlled trials. Int. J. Antimicrob. Agents 2020 55 2 105858 10.1016/j.ijantimicag.2019.11.015 31786332
    [Google Scholar]
  49. Carmeli Y. Armstrong J. Laud P.J. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): A randomised, pathogen-directed, phase 3 study. Lancet Infect. Dis. 2016 16 6 661 673 10.1016/S1473‑3099(16)30004‑4 27107460
    [Google Scholar]
  50. Soto E. Shoji S. Muto C. Tomono Y. Marshall S. Population pharmacokinetics of ampicillin and sulbactam in patients with community-acquired pneumonia: Evaluation of the impact of renal impairment. Br. J. Clin. Pharmacol. 2014 77 3 509 521 10.1111/bcp.12232 24102758
    [Google Scholar]
  51. Perry C.M. Markham A. Piperacillin/Tazobactam. Drugs 1999 57 5 805 843 10.2165/00003495‑199957050‑00017 10353303
    [Google Scholar]
  52. Morrissey I. Magnet S. Hawser S. Shapiro S. Knechtle P. In vitro activity of cefepime-enmetazobactam against Gram-negative isolates collected from U.S. And European hospitals during 2014–2015. Antimicrob. Agents Chemother. 2019 63 7 e00514 e00519 10.1128/AAC.00514‑19 30988152
    [Google Scholar]
  53. Hussen N.H. Hamid S.J. Sabir M.N. Hasan A.H. Mohammed S.J. Shali A.A.K. Novel penicillin derivatives against selected multiple-drug resistant bacterial strains: Design, synthesis, structural analysis, in silico and in vitro studies. Curr. Org. Synth. 2024 21 5 684 703 10.2174/1570179420666230510104319 37218207
    [Google Scholar]
  54. Ashraf Z. Bais A. Manir M.M. Niazi U. Novel penicillin analogues as potential antimicrobial agents: Design, synthesis and docking studies. PLoS One 2015 10 8 e0135293 10.1371/journal.pone.0135293 26267242
    [Google Scholar]
  55. Ding Y Li Z Xu C Qin W Wu Q Wang X. Fluorogenic Probes/Inhibitors of β-Lactamase and their applications in drugresistant bacteria. Angew Chem Int Ed Engl 2021 60 20 40 10.1002/anie.202006635
    [Google Scholar]
  56. Velema W.A. Exploring antibiotic resistance with chemical tools. Chem. Commun. (Camb.) 2023 59 41 6148 6158 10.1039/D3CC00759F 37039397
    [Google Scholar]
  57. Mallalieu N.L. Winter E. Fettner S. Safety and pharmacokinetic characterization of nacubactam, a novel β-lactamase inhibitor, alone and in combination with meropenem, in healthy volunteers. Antimicrob. Agents Chemother. 2020 64 5 e02229 e19 10.1128/AAC.02229‑19 32041717
    [Google Scholar]
  58. Badon I.W. Oh Y. Kim H.J. Lee S.H. Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Mol. Ther. 2024 32 1 32 43 10.1016/j.ymthe.2023.11.013 37952084
    [Google Scholar]
  59. Villiger L Joung J Koblan L Weissman J Abudayyeh OO Gootenberg JS CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024 25 6 464 10.1038/s41580‑023‑00697‑6
    [Google Scholar]
  60. Zhou J. Li Z. Seun Olajide J. Wang G. CRISPR/Cas-based nucleic acid detection strategies: Trends and challenges. Heliyon 2024 10 4 e26179 10.1016/j.heliyon.2024.e26179
    [Google Scholar]
  61. Morshedzadeh F. Ghanei M. Lotfi M. An update on the application of CRISPR technology in clinical practice. Mol. Biotechnol. 2024 66 2 179 197 10.1007/s12033‑023‑00724‑z 37269466
    [Google Scholar]
  62. Khoshandam M. Soltaninejad H. Mousazadeh M. Hamidieh A.A. Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis. 2024 11 1 268 282 10.1016/j.gendis.2023.02.027
    [Google Scholar]
  63. Morovatdar S. Khameneh B. Khashyarmanesh Z. Fazly B.S. An overview of different methods for aminoglycoside residue determination. J. Pharm. Res. Int. 2021 33 1 30 10.9734/jpri/2021/v33i28A31506
    [Google Scholar]
  64. Ototoxicity. 2016 Available from: https://emedicine.medscape.com/article/857679-overview
  65. Krause K.M. Serio A.W. Kane T.R. Connolly L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 2016 6 6 a027029 10.1101/cshperspect.a027029 27252397
    [Google Scholar]
  66. Chandane P. Gandhi A. Bowalekar S. Study of antibiotic susceptibility pattern of Salmonella typhi in children suffering from enteric fever. Ann. Trop. Med. Public Health 2017 10 2 440 10.4103/ATMPH.ATMPH_103_17
    [Google Scholar]
  67. Zárate S. De la Cruz Claure M. Benito-Arenas R. Revuelta J. Santana A. Bastida A. Overcoming aminoglycoside enzymatic resistance: Design of novel antibiotics and inhibitors. Molecules 2018 23 2 284 10.3390/molecules23020284 29385736
    [Google Scholar]
  68. Ibacache-Quiroga C. Oliveros J.C. Couce A. Blázquez J. Parallel evolution of high-level aminoglycoside resistance in Escherichia coli under low and high mutation supply rates. Front. Microbiol. 2018 9 MAR 427 10.3389/fmicb.2018.00427 29615988
    [Google Scholar]
  69. Garneau-Tsodikova S. Labby K.J. Mechanisms of resistance to aminoglycoside antibiotics: Overview and perspectives. MedChemComm 2016 7 1 11 27 10.1039/C5MD00344J 26877861
    [Google Scholar]
  70. Tian C. Yuan M. Tao Q. Discovery of novel resistance mechanisms of Vibrio parahaemolyticus biofilm against aminoglycoside antibiotics. Antibiotics 2023 12 4 638 10.3390/antibiotics12040638 37107000
    [Google Scholar]
  71. Eljaaly K. Alharbi A. Alshehri S. Ortwine J.K. Pogue J.M. Plazomicin: A novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs 2019 79 3 243 269 10.1007/s40265‑019‑1054‑3 30723876
    [Google Scholar]
  72. Clark J.A. Burgess D.S. Plazomicin: A new aminoglycoside in the fight against antimicrobial resistance. Ther. Adv. Infect. Dis. 2020 7 2049936120952604 10.1177/2049936120952604 32953108
    [Google Scholar]
  73. Yarlagadda V. Wright G.D. Membrane-active rhamnolipids overcome aminoglycoside resistance. Cell Chem. Biol. 2019 26 10 1333 1334 10.1016/j.chembiol.2019.09.015 31626780
    [Google Scholar]
  74. Buonocore C. Giugliano R. Della Sala G. Evaluation of antimicrobial properties and potential applications of Pseudomonas gessardii M15 rhamnolipids towards multiresistant Staphylococcus aureus. Pharmaceutics 2023 15 2 700 10.3390/pharmaceutics15020700 36840022
    [Google Scholar]
  75. Matsumoto T. Arbekacin: Another novel agent for treating infections due to methicillin-resistant Staphylococcus aureus and multidrug-resistant Gram-negative pathogens. Clin. Pharmacol. 2014 6 139 148 10.2147/CPAA.S44377 25298740
    [Google Scholar]
  76. Bastian A.A. Bastian M. Jäger M. Late‐Stage modification of aminoglycoside antibiotics overcomes bacterial resistance mediated by APH(3′) Kinases. Chemistry 2022 28 36 e202200883 10.1002/chem.202200883 35388562
    [Google Scholar]
  77. Longombe A.L. Ayede A.I. Marete I. Oral amoxicillin plus gentamicin regimens may be superior to the procaine-penicillin plus gentamicin regimens for treatment of young infants with possible serious bacterial infection when referral is not feasible: Pooled analysis from three trials in Africa and Asia. J. Glob. Health 2022 12 04084 10.7189/jogh.12.04084 36403158
    [Google Scholar]
  78. Benetazzo L. Delannoy P.Y. Houard M. Combination therapy with aminoglycoside in Bacteremiasdue to ESBL-producing Enterobacteriaceae in ICU. Antibiotics 2020 9 11 777 10.3390/antibiotics9110777 33158238
    [Google Scholar]
  79. Leibovici L. Vidal L. Paul M. Aminoglycoside drugs in clinical practice: An evidence-based approach. J. Antimicrob. Chemother. 2009 63 2 246 251 10.1093/jac/dkn469 19022778
    [Google Scholar]
  80. Sanchez-Cid C. Ghaly T.M. Gillings M.R. Vogel T.M. Sub-inhibitory gentamicin pollution induces gentamicin resistance gene integration in class 1 integrons in the environment. Sci. Rep. 2023 13 1 8612 10.1038/s41598‑023‑35074‑y 37244902
    [Google Scholar]
  81. Rocha D.M.G.C. Magalhães C. Cá B. Heterogeneous streptomycin resistance level among Mycobacterium tuberculosis strains from the same transmission cluster. Front. Microbiol. 2021 12 659545 10.3389/fmicb.2021.659545 34177837
    [Google Scholar]
  82. Travis R.M. Gyles C.L. Reid-Smith R. Chloramphenicol and kanamycin resistance among porcine Escherichia coli in Ontario. J. Antimicrob. Chemother. 2006 58 1 173 177 10.1093/jac/dkl207 16720568
    [Google Scholar]
  83. Schroeder M.R. Stephens D.S. Macrolide resistance in Streptococcus pneumoniae. Front. Cell. Infect. Microbiol. 2016 6 98 10.3389/fcimb.2016.00098 27709102
    [Google Scholar]
  84. Vázquez-Laslop N. Mankin A.S. How macrolide antibiotics work. Trends Biochem. Sci. 2018 43 9 668 684 10.1016/j.tibs.2018.06.011 30054232
    [Google Scholar]
  85. Dinos G.P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 2017 174 18 2967 2983 10.1111/bph.13936 28664582
    [Google Scholar]
  86. Lenz K.D. Klosterman K.E. Mukundan H. Kubicek-Sutherland J.Z. Macrolides: From toxins to therapeutics. Toxins 2021 13 5 347 10.3390/toxins13050347 34065929
    [Google Scholar]
  87. Golkar T. Zieliński M. Berghuis A.M. Look and outlook on enzyme-mediated macrolide resistance. Front. Microbiol. 2018 9 1942 10.3389/fmicb.2018.01942 30177927
    [Google Scholar]
  88. Miklasińska-Majdanik M. Mechanisms of resistance to macrolide antibiotics among Staphylococcus aureus. Antibiotics 2021 10 11 1406 10.3390/antibiotics10111406 34827344
    [Google Scholar]
  89. Li J. Liu L. Zhang H. Severe problem of macrolides resistance to common pathogens in China. Front. Cell. Infect. Microbiol. 2023 13 1181633 10.3389/fcimb.2023.1181633 37637457
    [Google Scholar]
  90. Fyfe C. Grossman T.H. Kerstein K. Sutcliffe J. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb. Perspect. Med. 2016 6 10 a025395 10.1101/cshperspect.a025395 27527699
    [Google Scholar]
  91. Reinert R.R. Clinical efficacy of ketolides in the treatment of respiratory tract infections. J. Antimicrob. Chemother. 2004 53 6 918 927 10.1093/jac/dkh169 15117934
    [Google Scholar]
  92. Mahama O. Songuigama C. Jean-Paul N.G.D. Pharmacochemical aspects of the evolution from erythromycin to neomacrolides, ketolides and neoketolides. Open J. Med. Chem. 2020 10 3 57 112 10.4236/ojmc.2020.103005
    [Google Scholar]
  93. hui ZZ, Zhang X, long JL. Synthesis and antibacterial activity of novel ketolides with 11,12-quinoylalkyl side chains. Bioorg. Med. Chem. Lett. 2018 28 14
    [Google Scholar]
  94. Van Bambeke F. Renaissance of antibiotics against difficult infections: Focus on oritavancin and new ketolides and quinolones. Ann. Med. 2014 46 7 512 529 10.3109/07853890.2014.935470 25058176
    [Google Scholar]
  95. Ma Y. Pirolo M. Jana B. Mebus V.H. Guardabassi L. The intrinsic macrolide resistome of Escherichia coli. Antimicrob. Agents Chemother. 2024 68 8 e00452 e24 10.1128/aac.00452‑24 38940570
    [Google Scholar]
  96. Patel A. Joseph J. Periasamy H. Mokale S. Azithromycin in combination with ceftriaxone reduces systemic inflammation and provides survival benefit in a murine model of polymicrobial sepsis. Antimicrob. Agents Chemother. 2018 62 9 e00752 e18 10.1128/AAC.00752‑18 29967025
    [Google Scholar]
  97. Tey H.L. Cao T. Tan E.S-T. Chan Y.H. Yosipovitch G. Anti-pruritic efficacies of doxycycline and erythromycin in the treatment of acne vulgaris: A randomized single-blinded pilot study. Indian J. Dermatol. Venereol. Leprol. 2018 84 4 458 460 10.4103/ijdvl.IJDVL_41_17 29770785
    [Google Scholar]
  98. Rao G.A. Mann J.R. Shoaibi A. Azithromycin and levofloxacin use and increased risk of cardiac arrhythmia and death. Ann. Fam. Med. 2014 12 2 121 127 10.1370/afm.1601 24615307
    [Google Scholar]
  99. Burton A.J. Giguère S. Berghaus L.J. Hondalus M.K. Activity of clarithromycin or rifampin alone or in combination against experimental Rhodococcus equi infection in mice. Antimicrob. Agents Chemother. 2015 59 6 3633 3636 10.1128/AAC.04941‑14 25824218
    [Google Scholar]
  100. Cole M.J. Tan W. Fifer H. Gentamicin, azithromycin and ceftriaxone in the treatment of gonorrhoea: The relationship between antibiotic MIC and clinical outcome. J. Antimicrob. Chemother. 2020 75 2 449 457 31670808
    [Google Scholar]
  101. Aminov R. Acquisition and spread of antimicrobial resistance: A tet (X) case study. Int. J. Mol. Sci. 2021 22 8 3905 10.3390/ijms22083905 33918911
    [Google Scholar]
  102. Chopra I. New developments in tetracycline antibiotics: Glycylcyclines and tetracycline efflux pump inhibitors. Drug Resist. Updat. 2002 5 3-4 119 125 10.1016/S1368‑7646(02)00051‑1 12237079
    [Google Scholar]
  103. Warburton P.J. Amodeo N. Roberts A.P. Mosaic tetracycline resistance genes encoding ribosomal protection proteins. J. Antimicrob. Chemother. 2016 71 12 3333 3339 10.1093/jac/dkw304 27494928
    [Google Scholar]
  104. Park J. Gasparrini A.J. Reck M.R. Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes. Nat. Chem. Biol. 2017 13 7 730 736 10.1038/nchembio.2376 28481346
    [Google Scholar]
  105. Nguyen F. Starosta A.L. Arenz S. Sohmen D. Dönhöfer A. Wilson D.N. Tetracycline antibiotics and resistance mechanisms. Biol. Chem. 2014 395 5 559 575 10.1515/hsz‑2013‑0292 24497223
    [Google Scholar]
  106. Sheykhsaran E. Baghi H.B. Soroush M.H. Ghotaslou R. An overview of tetracyclines and related resistance mechanisms. Rev. Med. Microbiol. 2019 30 1 69 75 10.1097/MRM.0000000000000154
    [Google Scholar]
  107. Honeyman L. Ismail M. Nelson M.L. Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline. Antimicrob. Agents Chemother. 2015 59 11 7044 7053 10.1128/AAC.01536‑15 26349824
    [Google Scholar]
  108. Ronn M. Zhu Z. Hogan P.C. D of eravacycline: The first fully synthetic fluorocycline in clinical development. Org. Process Res. Dev. 2013 17 5 838 845 10.1021/op4000219
    [Google Scholar]
  109. Lv Z.F. Wang F.C. Zheng H.L. Meta-analysis: Is combination of tetracycline and amoxicillin suitable for Helicobacter pylori infection? World J. Gastroenterol. 2015 21 8 2522 2533 10.3748/wjg.v21.i8.2522 25741163
    [Google Scholar]
  110. Bhandare R.R. Blass B.E. Canney D.J. Tetracyclines and chloramphenicol. Medicinal Chemistry of Chemotherapeutic Agents. Academic Pres 2023 115 10.1016/B978‑0‑323‑90575‑6.00013‑2
    [Google Scholar]
  111. Bangari R.S. Sinha N. Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution. J. Mol. Liq. 2019 293 111376 10.1016/j.molliq.2019.111376
    [Google Scholar]
  112. Agustanty A. Budi A. Pola resistency of Vibrio Cholerae bacteria to the antibiotic ciprofloxacin and tetracycline. JHealth Sci Gorontalo 2022 5 3 73 78 10.35971/gojhes.v5i3.13611
    [Google Scholar]
  113. Qu S. Dai C. Shen Z. Mechanism of synergy between tetracycline and quercetin against antibiotic resistant Escherichia coli. Front. Microbiol. 2019 10 2536 10.3389/fmicb.2019.02536 31824439
    [Google Scholar]
  114. Alderton I. Palmer B.R. Heinemann J.A. The role of emerging organic contaminants in the development of antimicrobial resistance. Emerg. Contam. 2021 7 160 171 10.1016/j.emcon.2021.07.001
    [Google Scholar]
  115. Alav I. Buckner M.M.C. Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes. Crit. Rev. Microbiol. 2024 50 6 993 1010 10.1080/1040841X.2023.2233603 37462915
    [Google Scholar]
/content/journals/cei/10.2174/0115734080389456250825102340
Loading
/content/journals/cei/10.2174/0115734080389456250825102340
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test