Skip to content
2000
image of Dipeptidyl Peptidase-4 – A Comprehensive Review

Abstract

Type 2 diabetes mellitus is a growing global public health issue, with its prevalence projected to increase in the coming decades. It is one of the most prevalent and growing global health concerns, affecting millions of individuals worldwide. The condition is classified into two primary types: Type 1 diabetes, an autoimmune disorder that leads to the destruction of insulin-producing beta cells in the pancreas, and Type 2 diabetes, which is predominantly associated with insulin resistance and inadequate insulin secretion. The various enzymes play a crucial role in the regulation of metabolic pathways, and their dysfunction can contribute to various diseases, including diabetes mellitus. Among these enzymes, the dipeptidyl peptidase-4 serves as a therapeutic target for managing T2D. Inhibiting DPP-4 prevents the breakdown of glucose-dependent insulinotropic peptide and glucagon-like peptide 1, thereby maintaining their natural levels and helping to reduce blood glucose. This review provides a comprehensive overview of the DPP-4 enzyme, including the effects of DPP-4 inhibition on pancreatic beta cell function, skeletal muscle function, and glucose-lowering mechanisms. We believe that this information will aid scientists in developing novel antidiabetic compounds for T2D treatment.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080377297250711143404
2025-07-22
2025-09-15
Loading full text...

Full text loading...

References

  1. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2020. Diabetes Care 2020 43 Suppl. 1 S14 S31 10.2337/dc20‑S002 31862745
    [Google Scholar]
  2. Improving care and promoting health in populations: Standards of medical care in diabetes—2021. Diabetes Care 2021 44 Suppl. 1 S7 S14 10.2337/dc21‑S001 33298412
    [Google Scholar]
  3. Sözen T. Calik Basaran N. Tinazli M. Özışık L. Ozisik L. Musculoskeletal problems in diabetes mellitus. Eur. J. Rheumatol. 2018 5 4 258 265 10.5152/eurjrheum.2018.18044 30388074
    [Google Scholar]
  4. Leon B.M. Maddox T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 2015 6 13 1246 1258 10.4239/wjd.v6.i13.1246 26468341
    [Google Scholar]
  5. Shaikh M.A.J. Gupta G. Afzal O. Sodium alginate-based drug delivery for diabetes management: A review. Int. J. Biol. Macromol. 2023 236 123986 10.1016/j.ijbiomac.2023.123986 36906199
    [Google Scholar]
  6. Al-Atram A.A. A review of the bidirectional relationship between psychiatric disorders and diabetes mellitus. Neurosciences 2018 23 2 91 96 10.17712/nsj.2018.2.20170132 29664448
    [Google Scholar]
  7. Conarello S.L. Li Z. Ronan J. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc. Natl. Acad. Sci. USA 2003 100 11 6825 6830 10.1073/pnas.0631828100 12748388
    [Google Scholar]
  8. Marguet D. Baggio L. Kobayashi T. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc. Natl. Acad. Sci. USA 2000 97 12 6874 6879 10.1073/pnas.120069197 10823914
    [Google Scholar]
  9. Habib Y. Kiana K. Kimia I.M. Sheida R.K. Narges B. Hepatic effects of GLP-1 mimetics in diabetic milieu: A mechanistic review of involved pathways. J. Diabetes Complications 2025 39 1 108928 10.1016/j.jdiacomp.2024.108928 39644538
    [Google Scholar]
  10. Saisho Y. β-cell dysfunction: Its critical role in prevention and management of type 2 diabetes. World J. Diabetes 2015 6 1 109 124 10.4239/wjd.v6.i1.109 25685282
    [Google Scholar]
  11. Chang C.L.T. Lin Y. Bartolome A.P. Chen Y.C. Chiu S.C. Yang W.C. Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds. Evid. Based Complement. Alternat. Med. 2013 2013 1 33 10.1155/2013/378657 23662132
    [Google Scholar]
  12. Lee S.A. Kim Y.R. Yang E.J. CD26/DPP4 levels in peripheral blood and T cells in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2013 98 6 2553 2561 10.1210/jc.2012‑4288 23539735
    [Google Scholar]
  13. Henriksen E.J. Diamond-Stanic M.K. Marchionne E.M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med. 2011 51 5 993 999 10.1016/j.freeradbiomed.2010.12.005 21163347
    [Google Scholar]
  14. Seino Y. Fukushima M. Yabe D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig. 2010 1 1-2 8 23 10.1111/j.2040‑1124.2010.00022.x 24843404
    [Google Scholar]
  15. Nauck M.A. Meier J.J. Incretin hormones: Their role in health and disease. Diabetes Obes. Metab. 2018 20 S1 5 21 10.1111/dom.13129 29364588
    [Google Scholar]
  16. An R. Ma S. Zhang N. AST-to-ALT ratio in the first trimester and the risk of gestational diabetes mellitus. Front. Endocrinol. 2022 13 1017448 10.3389/fendo.2022.1017448 36246899
    [Google Scholar]
  17. Asada S. Kawaratani H. Mashitani T. Glycogenic hepatopathy in type 1 diabetes mellitus. Intern. Med. 2018 57 8 1087 1092 10.2169/internalmedicine.9490‑17 29279489
    [Google Scholar]
  18. Bhat S. Jagadeeshaprasad M.G. Venkatasubramani V. Kulkarni M.J. Abundance matters: Role of albumin in diabetes, a proteomics perspective. Expert Rev. Proteomics 2017 14 8 677 689 10.1080/14789450.2017.1352473 28689445
    [Google Scholar]
  19. Chang D.C. Xu X. Ferrante A.W. Krakoff J. Reduced plasma albumin predicts type 2 diabetes and is associated with greater adipose tissue macrophage content and activation. Diabetol. Metab. Syndr. 2019 11 1 14 10.1186/s13098‑019‑0409‑y 30774722
    [Google Scholar]
  20. Chen Y. Zhao Y. Feng L. Zhang J. Zhang J. Feng G. Association between alpha-fetoprotein and metabolic syndrome in a Chinese asymptomatic population: A cross-sectional study. Lipids Health Dis. 2016 15 1 85 10.1186/s12944‑016‑0256‑x 27121855
    [Google Scholar]
  21. Chen S.C.C. Tsai S.P. Jhao J.Y. Jiang W.K. Tsao C.K. Chang L.Y. Liver fat, hepatic enzymes, alkaline phosphatase and the risk of incident type 2 diabetes: A prospective study of 132,377 adults. Sci. Rep. 2017 7 1 4649 10.1038/s41598‑017‑04631‑7 28680048
    [Google Scholar]
  22. Cheng P.C. Hsu S.R. Cheng Y.C. Association between serum albumin concentration and ketosis risk in hospitalized individuals with type 2 diabetes mellitus. J. Diabetes Res. 2016 2016 1 5 10.1155/2016/1269706 27504458
    [Google Scholar]
  23. Oboh G. Isaac A.T. Ajani R.A. Akinyemi A.J. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats’ pancreas by phenolic extracts of avocado pear leaves and fruit. Int. J. Biomed. Sci. 2014 10 3 208 216 10.59566/IJBS.2014.10208 25324703
    [Google Scholar]
  24. Kim S.H. Lee S.H. Yim H.J. Gemigliptin, a novel dipeptidyl peptidase 4 inhibitor: First new anti-diabetic drug in the history of Korean pharmaceutical industry. Arch. Pharm. Res. 2013 36 10 1185 1188 10.1007/s12272‑013‑0171‑x 23771499
    [Google Scholar]
  25. McCormack P.L. Evogliptin: First global approval. Drugs 2015 75 17 2045 2049 10.1007/s40265‑015‑0496‑5 26541763
    [Google Scholar]
  26. Fukasawa K.M. Fukasawa K. Sahara N. Harada M. Kondo Y. Nagatsu I. Immunohistochemical localization of dipeptidyl aminopeptidase IV in rat kidney, liver, and salivary glands. J. Histochem. Cytochem. 1981 29 3 337 343 10.1177/29.3.6787113 6787113
    [Google Scholar]
  27. Röhrborn D. Wronkowitz N. Eckel J. DPP4 in diabetes. Front. Immunol. 2015 6 386 10.3389/fimmu.2015.00386 26284071
    [Google Scholar]
  28. Matteucci E. Giampietro O. Dipeptidyl peptidase-4 (CD26): Knowing the function before inhibiting the enzyme. Curr. Med. Chem. 2009 16 23 2943 2951 10.2174/092986709788803114 19689275
    [Google Scholar]
  29. Röhrborn D. Eckel J. Sell H. Shedding of dipeptidyl peptidase 4 is mediated by metalloproteases and up-regulated by hypoxia in human adipocytes and smooth muscle cells. FEBS Lett. 2014 588 21 3870 3877 10.1016/j.febslet.2014.08.029 25217834
    [Google Scholar]
  30. Gupta S. Sen U. More than just an enzyme: Dipeptidyl peptidase-4 (DPP-4) and its association with diabetic kidney remodelling. Pharmacol. Res. 2019 147 104391 10.1016/j.phrs.2019.104391 31401210
    [Google Scholar]
  31. Klemann C. Wagner L. Stephan M. von Hörsten S. Cut to the chase: A review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin. Exp. Immunol. 2016 185 1 1 21 10.1111/cei.12781 26919392
    [Google Scholar]
  32. Mulvihill E.E. Drucker D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev. 2014 35 6 992 1019 10.1210/er.2014‑1035 25216328
    [Google Scholar]
  33. Nabeno M. Akahoshi F. Kishida H. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem. Biophys. Res. Commun. 2013 434 2 191 196 10.1016/j.bbrc.2013.03.010 23501107
    [Google Scholar]
  34. Chung K.M. Huang C.H. Cheng J.H. Proline in transmembrane domain of type II protein DPP-IV governs its translocation behavior through endoplasmic reticulum. Biochemistry 2011 50 37 7909 7918 10.1021/bi200605h 21834515
    [Google Scholar]
  35. Zhong J. Rao X. Deiuliis J. A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes 2013 62 1 149 157 10.2337/db12‑0230 22936179
    [Google Scholar]
  36. Wronkowitz N. Görgens S.W. Romacho T. Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 9 1613 1621 10.1016/j.bbadis.2014.06.004 24928308
    [Google Scholar]
  37. Turcot V. Tchernof A. Deshaies Y. Comparison of the dipeptidyl peptidase-4 gene methylation levels between severely obese subjects with and without the metabolic syndrome. Diabetol. Metab. Syndr. 2013 5 1 4 5 10.1186/1758‑5996‑5‑4 23379505
    [Google Scholar]
  38. Bailey S.D. Xie C. Paré G. Variation at the DPP4 locus influences apolipoprotein B levels in South Asians and exhibits heterogeneity in Europeans related to BMI. Diabetologia 2014 57 4 738 745 10.1007/s00125‑013‑3142‑3 24362726
    [Google Scholar]
  39. Ben-Shlomo S. Zvibel I. Varol C. Role of glucose-dependent insulinotropic polypeptide in adipose tissue inflammation of dipeptidylpeptidase 4-deficient rats. Obesity 2013 21 11 2331 2341 10.1002/oby.20340 23408696
    [Google Scholar]
  40. Ben-Shlomo S. Zvibel I. Rabinowich L. Dipeptidyl peptidase 4-deficient rats have improved bile secretory function in high fat diet-induced steatosis. Dig. Dis. Sci. 2013 58 2 582 10.1007/s10620‑012‑2455‑2 22918684
    [Google Scholar]
  41. Canneva F. Golub Y. Distler J. Dobner J. Meyer S. von Hörsten S. DPP4-deficient congenic rats display blunted stress, improved fear extinction and increased central NPY. Psychoneuroendocrinology 2015 53 195 206 10.1016/j.psyneuen.2015.01.007 25635612
    [Google Scholar]
  42. Sell H. Rohrborn D. Indrakusuma I. Jelenik T. Castaneda T.R. Al-Hasani H. Adipose-specific dipeptidyl peptidase 4 (DPP4) knockout mice display improved fasting insulin and cholesterol levels despite increased weight gain on HFD. Diabetes 2015 64 Suppl. 1 A548
    [Google Scholar]
  43. van Bloemendaal L. Effects of glucagon-like peptide 1 on appetite and body weight: Focus on the CNS. J. Endocrinol. 2014 221 1 10.1530/JOE‑13‑0414 24323912
    [Google Scholar]
  44. Wang W. Choi B.K. Li W. Quantification of intact and truncated stromal cell-derived factor-1α in circulation by immunoaffinity enrichment and tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2014 25 4 614 625 10.1007/s13361‑013‑0822‑7 24500701
    [Google Scholar]
  45. Tariq M. Masoud M.S. Mehmood A. Khan S.N. Riazuddin S. Stromal cell derived factor-1alpha protects stem cell derived insulin-producing cells from glucotoxicity under high glucose conditions in-vitro and ameliorates drug induced diabetes in rats. J. Transl. Med. 2013 11 1 115 10.1186/1479‑5876‑11‑115 23648189
    [Google Scholar]
  46. Karimabad M.N. Hassanshahi G. Significance of CXCL12 in type 2 diabetes mellitus and its associated complications. Inflammation 2015 38 2 710 717 10.1007/s10753‑014‑9981‑3 25085744
    [Google Scholar]
  47. Shao S. Xu Q. Yu X. Pan R. Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol. Ther. 2020 209 107503 10.1016/j.pharmthera.2020.107503 32061923
    [Google Scholar]
  48. Solun B. Marcoviciu D. Dicker D. Dipeptidyl peptidase-4 inhibitors and their effects on the cardiovascular system. Curr. Cardiol. Rep. 2013 15 8 382 10.1007/s11886‑013‑0382‑2 23812835
    [Google Scholar]
  49. Scheen A.J. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors: From risk factors to clinical outcomes. Postgrad. Med. 2013 125 3 7 20 10.3810/pgm.2013.05.2659 23748503
    [Google Scholar]
  50. Ramirez G. Morrison A.D. Bittle P.A. Clinical practice considerations and review of the literature for the Use of DPP-4 inhibitors in patients with type 2 diabetes and chronic kidney disease. Endocr. Pract. 2013 19 6 1025 1034 10.4158/EP12306.RA 23757605
    [Google Scholar]
  51. Egan A.G. Blind E. Dunder K. Pancreatic safety of incretin-based drugs--FDA and EMA assessment. N. Engl. J. Med. 2014 370 9 794 797 10.1056/NEJMp1314078 24571751
    [Google Scholar]
  52. Zhang T. Tong X. Zhang S. The roles of dipeptidyl peptidase 4 (DPP4) and DPP4 inhibitors in different lung diseases: New evidence. Front. Pharmacol. 2021 12 731453 10.3389/fphar.2021.731453 34955820
    [Google Scholar]
  53. Bishnoi R. Hong Y.R. Shah C. Dipeptidyl peptidase 4 inhibitors as novel agents in improving survival in diabetic patients with colorectal cancer and lung cancer: A surveillance epidemiology and endpoint research medicare study. Cancer Med. 2019 8 8 3918 3927 10.1002/cam4.2278 31124302
    [Google Scholar]
  54. Barnes P.J. Shapiro S.D. Pauwels R.A. Chronic obstructive pulmonary disease: Molecular and cellularmechanisms. Eur. Respir. J. 2003 22 4 672 688 10.1183/09031936.03.00040703 14582923
    [Google Scholar]
  55. Beckenkamp A. Davies S. Willig J.B. Buffon A. DPPIV/CD26: A tumor suppressor or a marker of malignancy? Tumour Biol. 2016 37 6 7059 7073 10.1007/s13277‑016‑5005‑2 26943912
    [Google Scholar]
  56. Beckers P.A.J. Gielis J.F. Van Schil P.E. Adriaensen D. Lung ischemia reperfusion injury: The therapeutic role of dipeptidyl peptidase 4 inhibition. Ann. Transl. Med. 2017 5 6 129 10.21037/atm.2017.01.41 28462209
    [Google Scholar]
  57. Zakaria E.M. Tawfeek W.M. Hassanin M.H. Hassaballah M.Y. Cardiovascular protection by DPP-4 inhibitors in preclinical studies: An updated review of molecular mechanisms. Naunyn Schmiedebergs Arch. Pharmacol. 2022 395 11 1357 1372 10.1007/s00210‑022‑02279‑3 35945358
    [Google Scholar]
  58. Cariou B. Hadjadj S. Wargny M. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: The CORONADO study. Diabetologia 2020 63 8 1500 1515 10.1007/s00125‑020‑05180‑x 32472191
    [Google Scholar]
  59. Chang X.Y. Yang Y. Jia X.Q. Expression and clinical significance of serum dipeptidyl peptidase IV in chronic obstructive pulmonary disease. Am. J. Med. Sci. 2016 351 3 244 252 10.1016/j.amjms.2015.12.011 26992252
    [Google Scholar]
  60. Chen Y. Yang D. Yang C. Zheng L. Huang K. Yang C. Response to comment on Chen et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care 2020 43 10 e165 e166 10.2337/dci20‑0035 32958627
    [Google Scholar]
  61. Chen Z. Yu J. Fu M. Dipeptidyl peptidase-4 inhibition improves endothelial senescence by activating AMPK/SIRT1/Nrf2 signaling pathway. Biochem. Pharmacol. 2020 177 113951 10.1016/j.bcp.2020.113951 32251672
    [Google Scholar]
  62. Colice G. Price D. Gerhardsson de Verdier M. The effect of DPP-4 inhibitors on asthma control: An administrative database study to evaluate a potential pathophysiological relationship. Pragmat. Obs. Res. 2017 8 231 240 10.2147/POR.S144018 29238240
    [Google Scholar]
  63. Dimitrova M. Ivanov I. Todorova R. Comparison of the activity levels and localization of dipeptidyl peptidase IV in normal and tumor human lung cells. Tissue Cell 2012 44 2 74 79 10.1016/j.tice.2011.11.003 22185679
    [Google Scholar]
  64. Fadini G.P. Morieri M.L. Longato E. Exposure to dipeptidyl-peptidase-4 inhibitors and COVID-19 among people with type 2 diabetes: A case-control study. Diabetes Obes. Metab. 2020 22 10 1946 1950 10.1111/dom.14097 32463179
    [Google Scholar]
  65. Gangadharan Komala M. Gross S. Zaky A. Pollock C. Panchapakesan U. Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes. Nephrology 2016 21 5 423 431 10.1111/nep.12618 26375854
    [Google Scholar]
  66. Hariyanto T.I. Kurniawan A. Dipeptidyl peptidase 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: A systematic review, meta-analysis, and meta-regression. J. Diabetes Metab. Disord. 2021 20 1 543 550 10.1007/s40200‑021‑00777‑4 33816358
    [Google Scholar]
  67. Helal M.G. Megahed N.A. Abd Elhameed A.G. Saxagliptin mitigates airway inflammation in a mouse model of acute asthma via modulation of NF-kB and TLR4. Life Sci. 2019 239 117017 10.1016/j.lfs.2019.117017 31678284
    [Google Scholar]
  68. Hoeper M.M. Humbert M. Souza R. A global view of pulmonary hypertension. Lancet Respir. Med. 2016 4 4 306 322 10.1016/S2213‑2600(15)00543‑3 26975810
    [Google Scholar]
  69. Jang J.H. Janker F. Arni S. Yamada Y. Weder W. Jungraithmayr W. MA04.10 Lung cancer growth is suppressed by CD26/DPP4-inhibition via enhanced NK cell and macrophage recruitment. J. Thorac. Oncol. 2017 12 1 S362 S363 10.1016/j.jtho.2016.11.404
    [Google Scholar]
  70. Jang J.H. Baerts L. Waumans Y. Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice. Clin. Exp. Metastasis 2015 32 7 677 687 10.1007/s10585‑015‑9736‑z 26233333
    [Google Scholar]
  71. Jang J.H. Janker F. De Meester I. The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activity. Carcinogenesis 2019 40 2 324 334 10.1093/carcin/bgz009 30698677
    [Google Scholar]
  72. Kim K.M. Noh J.H. Bodogai M. Identification of senescent cell surface targetable protein DPP4. Genes Dev. 2017 31 15 1529 1534 10.1101/gad.302570.117 28877934
    [Google Scholar]
  73. Gorrell M.D. Zhang H.E. McCaughan G.W. Gorrell M.D. Fibroblast activation protein in liver fibrosis. Front. Biosci. 2019 24 1 4706 10.2741/4706 30468644
    [Google Scholar]
  74. Lee D.S. Lee E.S. Alam M.M. Soluble DPP-4 up-regulates toll-like receptors and augments inflammatory reactions, which are ameliorated by vildagliptin or mannose-6-phosphate. Metabolism 2016 65 2 89 101 10.1016/j.metabol.2015.10.002 26773932
    [Google Scholar]
  75. Lee S.Y. Wu S.T. Liang Y.J. Soluble dipeptidyl peptidase-4 induces fibroblast activation through proteinase-activated receptor-2. Front. Pharmacol. 2020 11 552818 10.3389/fphar.2020.552818 33117158
    [Google Scholar]
  76. Li Y. Yang L. Dong L. Crosstalk between the Akt/mTORC1 and NF-κB signaling pathways promotes hypoxia-induced pulmonary hypertension by increasing DPP4 expression in PASMCs. Acta Pharmacol. Sin. 2019 40 10 1322 1333 10.1038/s41401‑019‑0272‑2 31316183
    [Google Scholar]
  77. Liu Y. Qi Y. Vildagliptin, a CD26/DPP4 inhibitor, ameliorates bleomycin-induced pulmonary fibrosis via regulating the extracellular matrix. Int. Immunopharmacol. 2020 87 106774 10.1016/j.intimp.2020.106774 32731178
    [Google Scholar]
  78. Meyerholz D.K. Lambertz A.M. McCray P.B. Dipeptidyl peptidase 4 distribution in the human respiratory tract. Am. J. Pathol. 2016 186 1 78 86 10.1016/j.ajpath.2015.09.014 26597880
    [Google Scholar]
  79. Mirani M. Favacchio G. Carrone F. Impact of comorbidities and glycemia at admission and dipeptidyl peptidase 4 inhibitors in patients with type 2 diabetes with COVID-19: A case series from an academic hospital in Lombardy, Italy. Diabetes Care 2020 43 12 3042 3049 10.2337/dc20‑1340 33023989
    [Google Scholar]
  80. Nader M.A. Inhibition of airway inflammation and remodeling by sitagliptin in murine chronic asthma. Int. Immunopharmacol. 2015 29 2 761 769 10.1016/j.intimp.2015.08.043 26362207
    [Google Scholar]
  81. Ohnuma K. Hosono O. Dang N.H. Morimoto C. Dipeptidyl peptidase in autoimmune pathophysiology. Adv. Clin. Chem. 2011 53 51 84 10.1016/B978‑0‑12‑385855‑9.00003‑5 21404914
    [Google Scholar]
  82. Okamoto T. Iwata S. Yamazaki H. CD9 negatively regulates CD26 expression and inhibits CD26-mediated enhancement of invasive potential of malignant mesothelioma cells. PLoS One 2014 9 1 86671 10.1371/journal.pone.0086671 24466195
    [Google Scholar]
  83. Pan K. Ohnuma K. Morimoto C. Dang N.H. CD26/Dipeptidyl peptidase IV and its multiple biological functions. Cureus 2021 13 2 13495 10.7759/cureus.13495 33777580
    [Google Scholar]
  84. Ahrén B. DPP-4 inhibition and the path to clinical proof. Front. Endocrinol. 2019 10 376 10.3389/fendo.2019.00376 31275243
    [Google Scholar]
  85. Foley J.E. Ahrén B. The vildagliptin experience - 25 years since the initiation of the novartis glucagon-like peptide-1 based therapy programme and 10 years since the first vildagliptin registration. Eur. Endocrinol. 2017 13 2 56 61 [PMID: 29632608
    [Google Scholar]
  86. Deacon C.F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front. Endocrinol. 2019 10 10.3389/fendo.2019.00080 30828317
    [Google Scholar]
  87. Ahrén B. Glucagon-like peptide-1 receptor agonists for type 2 diabetes: A rational drug development. J. Diabetes Investig. 2019 10 2 196 201 10.1111/jdi.12911 30099845
    [Google Scholar]
  88. Liu L. Omar B. Marchetti P. Ahrén B. Dipeptidyl peptidase-4 (DPP-4): Localization and activity in human and rodent islets. Biochem. Biophys. Res. Commun. 2014 453 3 398 404 10.1016/j.bbrc.2014.09.096 25268763
    [Google Scholar]
  89. Bugliani M. Syed F. Paula F.M.M. DPP-4 is expressed in human pancreatic beta cells and its direct inhibition improves beta cell function and survival in type 2 diabetes. Mol. Cell. Endocrinol. 2018 473 186 193 10.1016/j.mce.2018.01.019 29409957
    [Google Scholar]
  90. Varin E.M. Mulvihill E.E. Beaudry J.L. Circulating levels of soluble dipeptidyl peptidase-4 are dissociated from inflammation and induced by enzymatic dpp4 inhibition. Cell Metab. 2019 29 2 320 334.e5 10.1016/j.cmet.2018.10.001 30393019
    [Google Scholar]
  91. Barreira da Silva R. Laird M.E. Yatim N. Fiette L. Ingersoll M.A. Albert M.L. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat. Immunol. 2015 16 8 850 858 10.1038/ni.3201 26075911
    [Google Scholar]
  92. Barrett T.J. Macrophages in atherosclerosis regression. Arterioscler. Thromb. Vasc. Biol. 2020 40 1 20 33 10.1161/ATVBAHA.119.312802 31722535
    [Google Scholar]
  93. Béné J. Moulis G. Bennani I. Bullous pemphigoid and dipeptidyl peptidase IV inhibitors: A case-noncase study in the French Pharmacovigilance Database. Br. J. Dermatol. 2016 175 2 296 301 10.1111/bjd.14601 27031194
    [Google Scholar]
  94. Bengsch B. Seigel B. Flecken T. Wolanski J. Blum H.E. Thimme R. Human Th17 cells express high levels of enzymatically active dipeptidylpeptidase IV (CD26). J. Immunol. 2012 188 11 5438 5447 10.4049/jimmunol.1103801 22539793
    [Google Scholar]
  95. Benzaquen M. Borradori L. Berbis P. Dipeptidyl peptidase IV inhibitors, a risk factor for bullous pemphigoid: Retrospective multicenter case-control study from France and Switzerland. J. Am. Acad. Dermatol. 2018 78 6 1090 1096 10.1016/j.jaad.2017.12.038 29274348
    [Google Scholar]
  96. Yuan Y. Zhang Y. Lei M. Effects of DPP4 inhibitors as neuroprotective drug on cognitive impairment in patients with type 2 diabetes mellitus: A meta-analysis and systematic review. Int. J. Endocrinol. 2024 2024 1 10 10.1155/2024/9294113 38379936
    [Google Scholar]
  97. Bostick B. Habibi J. Ma L. Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a Mouse model of Western diet induced obesity. Metabolism 2014 63 8 1000 1011 10.1016/j.metabol.2014.04.002 24933400
    [Google Scholar]
  98. Bromage D.I. Davidson S.M. Yellon D.M. Stromal derived factor 1α: A chemokine that delivers a two-pronged defence of the myocardium. Pharmacol. Ther. 2014 143 3 305 315 10.1016/j.pharmthera.2014.03.009 24704323
    [Google Scholar]
  99. Chiazza F. Tammen H. Pintana H. The effect of DPP-4 inhibition to improve functional outcome after stroke is mediated by the SDF-1α/CXCR4 pathway. Cardiovasc. Diabetol. 2018 17 1 60 10.1186/s12933‑018‑0702‑3 29776406
    [Google Scholar]
  100. Connelly K.A. Zhang Y. Advani A. DPP-4 inhibition attenuates cardiac dysfunction and adverse remodeling following myocardial infarction in rats with experimental diabetes. Cardiovasc. Ther. 2013 31 5 259 267 10.1111/1755‑5922.12005 22963483
    [Google Scholar]
  101. Decalf J. Tarbell K.V. Casrouge A. Inhibition of DPP 4 activity in humans establishes its in vivo role in CXCL 10 post-translational modification: Prospective placebo-controlled clinical studies. EMBO Mol. Med. 2016 8 6 679 683 10.15252/emmm.201506145 27137491
    [Google Scholar]
  102. Douros A. Abrahami D. Yin H. Use of dipeptidyl peptidase-4 inhibitors and new-onset rheumatoid arthritis in patients with type 2 diabetes. Epidemiology 2018 29 6 904 912 10.1097/EDE.0000000000000891 30028343
    [Google Scholar]
  103. Douros A. Rouette J. Yin H. Yu O.H.Y. Filion K.B. Azoulay L. Dipeptidyl peptidase 4 inhibitors and the risk of bullous pemphigoid among patients with type 2 diabetes. Diabetes Care 2019 42 8 1496 1503 10.2337/dc19‑0409 31182489
    [Google Scholar]
  104. Fadini G.P. Bonora B.M. Cappellari R. Acute effects of linagliptin on progenitor cells, monocyte phenotypes, and soluble mediators in type 2 diabetes. J. Clin. Endocrinol. Metab. 2016 101 2 748 756 10.1210/jc.2015‑3716 26695864
    [Google Scholar]
  105. Gamble J.M. Donnan J.R. Chibrikov E. Twells L.K. Midodzi W.K. Majumdar S.R. Comparative safety of dipeptidyl peptidase-4 inhibitors versus sulfonylureas and other glucose-lowering therapies for three acute outcomes. Sci. Rep. 2018 8 1 15142 10.1038/s41598‑018‑33483‑y 30310100
    [Google Scholar]
  106. Shiobara T. Chibana K. Watanabe T. Dipeptidyl peptidase-4 is highly expressed in bronchial epithelial cells of untreated asthma and it increases cell proliferation along with fibronectin production in airway constitutive cells. Respir. Res. 2016 17 1 28 10.1186/s12931‑016‑0342‑7 26975422
    [Google Scholar]
  107. Nagao M. Sasaki J. Sugihara H. Efficacy and safety of sitagliptin treatment in older adults with moderately controlled type 2 diabetes: the STREAM study. Sci. Rep. 2023 13 1 134 10.1038/s41598‑022‑27301‑9 36599895
    [Google Scholar]
  108. Deacon C.F. Holst J.J. Saxagliptin: A new dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes. Adv. Ther. 2009 26 5 488 499 10.1007/s12325‑009‑0030‑9 19444391
    [Google Scholar]
  109. Lajara R. Use of the dipeptidyl peptidase-4 inhibitor linagliptin in combination therapy for type 2 diabetes. Expert Opin. Pharmacother. 2012 13 18 2663 2671 10.1517/14656566.2012.741591 23137412
    [Google Scholar]
  110. Scott L.J. Teneligliptin: A review in type 2 diabetes. Clin. Drug Investig. 2015 35 11 765 772 10.1007/s40261‑015‑0348‑9 26475720
    [Google Scholar]
  111. Gutch M. Joshi A. Kumar S. Agarwal A. Pahan R. Razi S. Gemigliptin: Newer promising gliptin for type 2 diabetes mellitus. Indian J. Endocrinol. Metab. 2017 21 6 898 902 10.4103/ijem.IJEM_20_17 29285456
    [Google Scholar]
  112. Biftu T. Sinha-Roy R. Chen P. Omarigliptin (MK-3102): A novel long-acting DPP-4 inhibitor for once-weekly treatment of type 2 diabetes. J. Med. Chem. 2014 57 8 3205 3212 10.1021/jm401992e 24660890
    [Google Scholar]
  113. Kaku K. First novel once-weekly DPP-4 inhibitor, trelagliptin, for the treatment of type 2 diabetes mellitus. Expert Opin. Pharmacother. 2015 16 16 2539 2547 10.1517/14656566.2015.1099630 26523434
    [Google Scholar]
/content/journals/cei/10.2174/0115734080377297250711143404
Loading
/content/journals/cei/10.2174/0115734080377297250711143404
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test