Skip to content
2000
image of Enzyme Immobilization: Advancements, Techniques, and IndustrialApplications

Abstract

The text discusses the critical role of enzyme immobilization in enhancing the efficiency, reusability, and stability of biocatalysts in industrial applications. Immobilization techniques include covalent bonding, encapsulation, adsorption, and cross-linking, each with its unique advantages and challenges. Covalent bonding ensures strong, irreversible attachment of enzymes to supports, preventing leaching and maintaining enzyme stability under various conditions. Encapsulation protects enzymes within a semi-permeable matrix, preserving their activity while allowing access to substrates. Adsorption, relying on weak interactions, is simple and reversible but prone to enzyme leaching. Cross-linking involves intermolecular bonding between enzymes and supports, enhancing stability but potentially altering enzyme conformation. Selecting appropriate supports—organic or inorganic—is crucial to minimize enzyme deactivation and maintain activity. Organic supports, like chitosan and alginate, offer biocompatibility and sustainability, while inorganic supports, such as silica and metal oxides, provide robustness and high surface areas. The text highlights the significance of optimizing immobilization techniques for specific enzymes, considering factors like mechanical resistance, substrate diffusion, and compatibility with enzyme structures. Recent advancements include the development of novel supports like hybrid materials and the application of nanotechnology, which offers enhanced stability and catalytic properties. However, challenges like enzyme deactivation, activity loss over time, and high immobilization costs persist. The text emphasizes ongoing research to address these issues, aiming to improve the economic viability and efficiency of immobilized enzymes in industrial processes. The study underscores the importance of tailoring immobilization strategies to specific enzymes and applications, ensuring maximal catalytic performance and reusability.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080374580250628201309
2025-07-11
2025-09-15
Loading full text...

Full text loading...

References

  1. Bilal M. Hussain N. Américo-Pinheiro J.H.P. Almulaiky Y.Q. Iqbal H.M.N. Multi-enzyme co-immobilized nano-assemblies: Bringing enzymes together for expanding bio-catalysis scope to meet biotechnological challenges. Int. J. Biol. Macromol. 2021 186 735 749 10.1016/j.ijbiomac.2021.07.064 34271049
    [Google Scholar]
  2. Nsairat H. Khater D. Sayed U. Odeh F. Bawab A.A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  3. Zhou W. Zhang W. Cai Y. Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J. 2021 403 126272 10.1016/j.cej.2020.126272
    [Google Scholar]
  4. Anastas P.T. Rodriguez A. Winter D.T.M. Coish P. Zimmerman J.B. A review of immobilization techniques to improve the stability and bioactivity of lysozyme. Green Chem. Lett. Rev. 2021 14 2 302 338 10.1080/17518253.2021.1890840
    [Google Scholar]
  5. Pervez S. Nawaz M.A. Shahid F. Aman A. Tauseef I. Qader S.A.U. Characterization of cross-linked amyloglucosidase aggregates from Aspergillus fumigatus KIBGE-IB33 for continuous production of glucose. Int. J. Biol. Macromol. 2019 135 1252 1260 10.1016/j.ijbiomac.2018.11.097 30447367
    [Google Scholar]
  6. Li M. Wang H. Wang X. Ren J. Wang R. Metallic FeCo clusters propelling the stepwise polysulfide conversion in lithium–sulfur batteries. J. Mater. Chem. A Mater. Energy Sustain. 2022 10 40 21327 21335 10.1039/D2TA05273C
    [Google Scholar]
  7. Campiglio C.E. Negrini C.N. Farè S. Draghi L. Cross-linking strategies for electrospun gelatin scaffolds. Materials 2019 12 15 2476 10.3390/ma12152476 31382665
    [Google Scholar]
  8. Wahab A.M.K.H. El-Enshasy H.A. Bakar F.D.A. Murad A.M.A. Jahim J.M. Illias R.M. Improvement of cross-linking and stability on cross-linked enzyme aggregate (CLEA)-xylanase by protein surface engineering. Process Biochem. 2019 86 40 49 10.1016/j.procbio.2019.07.017
    [Google Scholar]
  9. Khemis B.I. Lamine B.A. Adsorption of 2-phenylethanethiol on two broadly tuned human olfactory receptors OR1A1 and OR2W1: Interpretation of the effect of copper ions via statistical physics monolayer adsorption model. J. Mol. Liq. 2021 341 116926 10.1016/j.molliq.2021.116926
    [Google Scholar]
  10. Rodrigues R.C. Berenguer-Murcia Á. Carballares D. Morellon-Sterling R. Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol. Adv. 2021 52 107821 10.1016/j.biotechadv.2021.107821 34455028
    [Google Scholar]
  11. Bilal M. Asgher M. Cheng H. Yan Y. Iqbal H.M.N. Multi-point enzyme immobilization, surface chemistry, and novel platforms: A paradigm shift in biocatalyst design. Crit. Rev. Biotechnol. 2019 39 2 202 219 10.1080/07388551.2018.1531822 30394121
    [Google Scholar]
  12. Guisan J.M. López-Gallego F. Bolivar J.M. Rocha-Martín J. Fernandez-Lorente G. One-point covalent immobilization of enzymes on glyoxyl agarose with minimal physico-chemical modification: Immobilized “native enzymes”. Methods Mol. Biol. 2020 2100 83 92 10.1007/978‑1‑0716‑0215‑7_4 31939116
    [Google Scholar]
  13. Xia H. Li N. Zhong X. Jiang Y. Metal-organic frameworks: A potential platform for enzyme immobilization and related applications. Front. Bioeng. Biotechnol. 2020 8 695 10.3389/fbioe.2020.00695 32695766
    [Google Scholar]
  14. Guisan J.M. Fernandez-Lorente G. Rocha-Martin J. Moreno-Gamero D. Enzyme immobilization strategies for the design of robust and efficient biocatalysts. Curr. Opin. Green Sustain. Chem. 2022 35 100593 10.1016/j.cogsc.2022.100593
    [Google Scholar]
  15. Martins de Oliveira S. Velasco-Lozano S. Orrego A.H. Functionalization of porous cellulose with glyoxyl groups as a carrier for enzyme immobilization and stabilization. Biomacromolecules 2021 22 2 927 937 10.1021/acs.biomac.0c01608 33423456
    [Google Scholar]
  16. Cutiño-Avila B.V. Sánchez-López M.I. Cárdenas-Moreno Y. Modeling and experimental validation of covalent immobilization of Trametes maxima laccase on glyoxyl and MANA‐Sepharose CL 4B supports, for the use in bioconversion of residual colorants. Biotechnol. Appl. Biochem. 2022 69 2 479 491 10.1002/bab.2125 33580532
    [Google Scholar]
  17. López-Gallego F. Fernandez-Lorente G. Rocha-Martín J. Bolivar J.M. Mateo C. Guisan J.M. Multi-point covalent immobilization of enzymes on glyoxyl agarose with minimal physico-chemical modification: Stabilization of industrial enzymes. Methods Mol. Biol. 2020 2100 93 107 10.1007/978‑1‑0716‑0215‑7_5 31939117
    [Google Scholar]
  18. Junior M.W.G. Pacheco T.F. Gao S. Martins P.A. Guisán J.M. Caetano N.S. Sugarcane bagasse saccharification by enzymatic hydrolysis using endocellulase and β-glucosidase immobilized on different supports. Catalysts 2021 11 3 340 10.3390/catal11030340
    [Google Scholar]
  19. Zhu Y. Chen Q. Shao L. Jia Y. Zhang X. Microfluidic immobilized enzyme reactors for continuous biocatalysis. React. Chem. Eng. 2020 5 1 9 32 10.1039/C9RE00217K
    [Google Scholar]
  20. Mohammed N.K. Tan C.P. Manap Y.A. Muhialdin B.J. Hussin A.S.M. Spray drying for the encapsulation of oils—A review. Molecules 2020 25 17 3873 10.3390/molecules25173873 32858785
    [Google Scholar]
  21. Grgić J. Šelo G. Planinić M. Tišma M. Bucić-Kojić A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants 2020 9 10 923 10.3390/antiox9100923 32993196
    [Google Scholar]
  22. Mo H. Qiu J. Yang C. Zang L. Sakai E. Preparation and characterization of magnetic polyporous biochar for cellulase immobilization by physical adsorption. Cellulose 2020 27 9 4963 4973 10.1007/s10570‑020‑03125‑6
    [Google Scholar]
  23. Verma N.K. Raghav N. Comparative study of covalent and hydrophobic interactions for α-amylase immobilization on cellulose derivatives. Int. J. Biol. Macromol. 2021 174 134 143 10.1016/j.ijbiomac.2021.01.033 33428958
    [Google Scholar]
  24. Thangaraj B. Solomon P.R. Immobilization of lipases–a review. Part I: Enzyme immobilization. ChemBioEng Rev. 2019 6 5 157 166 10.1002/cben.201900016
    [Google Scholar]
  25. Bilal M. Iqbal H.M.N. Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coord. Chem. Rev. 2019 388 1 23 10.1016/j.ccr.2019.02.024
    [Google Scholar]
  26. Smith S. Goodge K. Delaney M. Struzyk A. Tansey N. Frey M. A comprehensive review of the covalent immobilization of biomolecules onto electrospun nanofibers. Nanomaterials 2020 10 11 2142 10.3390/nano10112142 33121181
    [Google Scholar]
  27. Mazurenko I. Hitaishi V.P. Lojou E. Recent advances in surface chemistry of electrodes to promote direct enzymatic bioelectrocatalysis. Curr. Opin. Electrochem. 2020 19 113 121 10.1016/j.coelec.2019.11.004
    [Google Scholar]
  28. Yang Q. Li L. Wang B. Zhu L. Tan J. Modifying the microenvironment of epoxy resin to improve the activity of immobilized 7α-hydroxysteroid dehydrogenases. Appl. Biochem. Biotechnol. 2021 193 4 925 939 10.1007/s12010‑020‑03473‑w 33225381
    [Google Scholar]
  29. Aghaei H. Yasinian A. Taghizadeh A. Covalent immobilization of lipase from Candida rugosa on epoxy-activated cloisite 30B as a new heterofunctional carrier and its application in the synthesis of banana flavor and production of biodiesel. Int. J. Biol. Macromol. 2021 178 569 579 10.1016/j.ijbiomac.2021.02.146 33667558
    [Google Scholar]
  30. Mao S. Chen Y. Sun J. Enhancing the sustainability of KsdD as a biocatalyst for steroid transformation by immobilization on epoxy support. Enzyme Microb. Technol. 2021 146 109777 10.1016/j.enzmictec.2021.109777 33812565
    [Google Scholar]
  31. Zdarta J. Jankowska K. Bachosz K. A promising laccase immobilization using electrospun materials for biocatalytic degradation of tetracycline: Effect of process conditions and catalytic pathways. Catal. Today 2020 348 127 136 10.1016/j.cattod.2019.08.042
    [Google Scholar]
  32. García-García P. Guisan J.M. Fernandez-Lorente G. A mild intensity of the enzyme-support multi-point attachment promotes the optimal stabilization of mesophilic multimeric enzymes: Amine oxidase from Pisum sativum. J. Biotechnol. 2020 318 39 44 10.1016/j.jbiotec.2020.04.006 32413366
    [Google Scholar]
  33. Sillu D. Agnihotri S. Cellulase immobilization onto magnetic halloysite nanotubes: Enhanced enzyme activity and stability with high cellulose saccharification. ACS Sustain. Chem.& Eng. 2020 8 2 900 913 10.1021/acssuschemeng.9b05400
    [Google Scholar]
  34. Singh A.K. Bilal M. Iqbal H.M.N. Raj A. Lignin peroxidase in focus for catalytic elimination of contaminants — A critical review on recent progress and perspectives. Int. J. Biol. Macromol. 2021 177 58 82 10.1016/j.ijbiomac.2021.02.032 33577817
    [Google Scholar]
  35. Liu Y. Shao X. Kong D. Li G. Li Q. Immobilization of thermophilic lipase in inorganic hybrid nanoflower through biomimetic mineralization. Colloids Surf. B Biointerfaces 2021 197 111450 10.1016/j.colsurfb.2020.111450 33181387
    [Google Scholar]
  36. Zhao M. Han J. Wu J. One-step separation and immobilization of his-tagged enzyme directly from cell lysis solution by biomimetic mineralization approach. Biochem. Eng. J. 2021 167 107893 10.1016/j.bej.2020.107893
    [Google Scholar]
  37. Al-Maqdi K.A. Bilal M. Alzamly A. Iqbal H.M.N. Shah I. Ashraf S.S. Enzyme-loaded flower-shaped nanomaterials: A versatile platform with biosensing, biocatalytic, and environmental promise. Nanomaterials 2021 11 6 1460 10.3390/nano11061460 34072882
    [Google Scholar]
  38. Rosado P.C. Meyrelles R. Macatrão A.M. Immobilization of His-tagged proteins on NiO foams for recyclable enzymatic reactors. Appl. Surf. Sci. 2021 537 147848 10.1016/j.apsusc.2020.147848
    [Google Scholar]
  39. Dhanjai L.X. Wu L. Chen J. Lu Y. Robust single-molecule enzyme nanocapsules for biosensing with significantly improved biosensor stability. Anal. Chem. 2020 92 8 5830 5837 10.1021/acs.analchem.9b05466 32202407
    [Google Scholar]
  40. Mogharabi-Manzari M. Heydari M. Sadeghian-Abadi S. Yousefi-Mokri M. Faramarzi M.A. Enzymatic dimerization of phenylacetylene by laccase immobilized on magnetic nanoparticles via click chemistry. Biocatal. Biotransform. 2019 37 6 455 465 10.1080/10242422.2019.1611788
    [Google Scholar]
  41. Goodge K. Frey M. Biotin-conjugated cellulose nanofibers prepared via copper-catalyzed alkyne-azide cycloaddition (CuAAC)“click” chemistry. Nanomaterials 2020 10 6 1172 10.3390/nano10061172 32560117
    [Google Scholar]
  42. Shi S. Wang Z. Deng Y. Tian F. Wu Q. Zheng P. Combination of click chemistry and enzymatic ligation for stable and efficient protein immobilization for single-molecule force spectroscopy. CCS Chem 2022 4 2 598 604 10.31635/ccschem.021.202100779
    [Google Scholar]
  43. Ayouchia E.B.H. Bahsis L. Fichtali I. Deciphering the mechanism of silver catalysis of “click” chemistry in water by combining experimental and MEDT studies. Catalysts 2020 10 9 956 10.3390/catal10090956
    [Google Scholar]
  44. Ma J. Ding S. Transition metal‐catalyzed cycloaddition of azides with internal alkynes. Asian J. Org. Chem. 2020 9 12 1872 1888 10.1002/ajoc.202000486
    [Google Scholar]
  45. Bollella P. Hibino Y. Conejo-Valverde P. The influence of the shape of Au nanoparticles on the catalytic current of fructose dehydrogenase. Anal. Bioanal. Chem. 2019 411 29 7645 7657 10.1007/s00216‑019‑01944‑6 31286179
    [Google Scholar]
  46. Hassabo A.A. Mousa A.M. Abdel-Gawad H. Selim M.H. Abdelhameed R.M. Immobilization of l -methioninase on a zirconium-based metal–organic framework as an anticancer agent. J. Mater. Chem. B Mater. Biol. Med. 2019 7 20 3268 3278 10.1039/C9TB00198K
    [Google Scholar]
  47. Silva D.A.F. Pádua D.G.S. Araújo D.D.T. Vieira C.A. Faria D.E.H. Immobilization of l-alanine into natural kaolinite via amidation catalyzed by boric acid for the development of biohybrid materials. J. Solid State Chem. 2020 287 121332 10.1016/j.jssc.2020.121332
    [Google Scholar]
  48. Patel S.K.S. Gupta R.K. Kim S.Y. Kim I.W. Kalia V.C. Lee J.K. Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol A degradation. Indian J. Microbiol. 2021 61 1 45 54 10.1007/s12088‑020‑00912‑4 33505092
    [Google Scholar]
  49. Jia Y. Chen Y. Luo J. Hu Y. Immobilization of laccase onto meso-MIL-53(Al) via physical adsorption for the catalytic conversion of triclosan. Ecotoxicol. Environ. Saf. 2019 184 109670 10.1016/j.ecoenv.2019.109670 31526924
    [Google Scholar]
  50. Ribeiro E.S. Farias D.B.S. Sant’Anna Cadaval Junior T.R. Pinto A.D.L.A. Diaz P.S. Chitosan–based nanofibers for enzyme immobilization. Int. J. Biol. Macromol. 2021 183 1959 1970 10.1016/j.ijbiomac.2021.05.214 34090851
    [Google Scholar]
  51. Wang D. Jiang W. Preparation of chitosan-based nanoparticles for enzyme immobilization. Int. J. Biol. Macromol. 2019 126 1125 1132 10.1016/j.ijbiomac.2018.12.243 30594622
    [Google Scholar]
  52. Shakeri F. Ariaeenejad S. Ghollasi M. Motamedi E. Synthesis of two novel bio-based hydrogels using sodium alginate and chitosan and their proficiency in physical immobilization of enzymes. Sci. Rep. 2022 12 1 2072 10.1038/s41598‑022‑06013‑0 35136126
    [Google Scholar]
  53. Raus A.R. Nawawi W.W.M.F. Nasaruddin R.R. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci 2021 16 3 280 306 10.1016/j.ajps.2020.10.001 34276819
    [Google Scholar]
  54. Gennari A. Führ A.J. Volpato G. Volken de Souza C.F. Magnetic cellulose: Versatile support for enzyme immobilization - A review. Carbohydr. Polym. 2020 246 116646 10.1016/j.carbpol.2020.116646 32747279
    [Google Scholar]
  55. Zhang F. Lian M. Alhadhrami A. Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water. Adv. Compos. Hybrid Mater. 2022 5 3 1852 1864 10.1007/s42114‑022‑00476‑5
    [Google Scholar]
  56. Zhang Y. Jung Y.G. Zhang J. Multiscale and multiphysics modeling of metal AM. Neth 2020 1 1 10 10.1016/B978‑0‑12‑819600‑7.00001‑0
    [Google Scholar]
  57. Gao H. Sun Y. Wang M. Self-healable and reprocessable acrylate-based elastomers with exchangeable disulfide crosslinks by thiol-ene click chemistry. Polymer 2021 212 123132 10.1016/j.polymer.2020.123132
    [Google Scholar]
  58. Zhou Z. Gao Z. Shen H. Metal–organic framework in situ post-encapsulating DNA–enzyme composites on a magnetic carrier with high stability and reusability. ACS Appl. Mater. Interfaces 2020 12 6 7510 7517 10.1021/acsami.9b23526 31971363
    [Google Scholar]
  59. Chang A.S. Memon N.N. Amin S. Facile non‐enzymatic lactic acid sensor based on cobalt oxide nanostructures. Electroanalysis 2019 31 7 1296 1303 10.1002/elan.201800865
    [Google Scholar]
  60. Isanapong J. Pornwongthong P. Immobilized laccase on zinc oxide nanoarray for catalytic degradation of tertiary butyl alcohol. J. Hazard. Mater. 2021 411 125104 10.1016/j.jhazmat.2021.125104 33482503
    [Google Scholar]
  61. Cacciotti I. Lombardelli C. Benucci I. Esti M. Clay/chitosan biocomposite systems as novel green carriers for covalent immobilization of food enzymes. J. Mater. Res. Technol. 2019 8 4 3644 3652 10.1016/j.jmrt.2019.06.002
    [Google Scholar]
  62. Mehandia S. Sharma S.C. Arya S.K. Immobilization of laccase on chitosan-clay composite beads to improve its catalytic efficiency to degrade industrial dyes. Mater. Today Commun. 2020 25 101513 10.1016/j.mtcomm.2020.101513
    [Google Scholar]
  63. Anita S.H. Ardiati F.C. Oktaviani M. Immobilization of laccase from Trametes hirsuta EDN 082 in light expanded clay aggregate for decolorization of Remazol Brilliant Blue R dye. Bioresour. Technol. Rep. 2020 12 100602 10.1016/j.biteb.2020.100602
    [Google Scholar]
  64. Orrego A.H. Andrés-Sanz D. Velasco-Lozano S. Self-sufficient asymmetric reduction of β-ketoesters catalysed by a novel and robust thermophilic alcohol dehydrogenase co-immobilised with NADH. Catal. Sci. Technol. 2021 11 9 3217 3230 10.1039/D1CY00268F 34094502
    [Google Scholar]
  65. Argaman O. Ben-Barak Zelas Z. Fishman A. Rytwo G. Radian A. Immobilization of aldehyde dehydrogenase on montmorillonite using polyethyleneimine as a stabilization and bridging agent. Appl. Clay Sci. 2021 212 106216 10.1016/j.clay.2021.106216
    [Google Scholar]
  66. Sharma S. Gupta S. Princy, Arya SK, Kaur A. Enzyme immobilization: Implementation of nanoparticles and an insight into polystyrene as the contemporary immobilization matrix. Process Biochem. 2022 120 22 34 10.1016/j.procbio.2022.05.022
    [Google Scholar]
  67. Shi L. Zhang J. Zhao M. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale 2021 13 24 10748 10764 10.1039/D1NR02065J 34132312
    [Google Scholar]
  68. Dencheva N. Braz J. Scheibel D. Malfois M. Denchev Z. Gitsov I. Polymer-assisted biocatalysis: Polyamide 4 microparticles as promising carriers of enzymatic function. Catalysts 2020 10 7 767 10.3390/catal10070767
    [Google Scholar]
  69. Barathi P. Thirumalraj B. Chen S.M. Angaiah S. A simple and flexible enzymatic glucose biosensor using chitosan entrapped mesoporous carbon nanocomposite. Microchem. J. 2019 147 848 856 10.1016/j.microc.2019.03.083
    [Google Scholar]
  70. Vieira Y.A. Gurgel D. Henriques R.O. A perspective review on the application of polyacrylonitrile‐based supports for laccase immobilization. Chem. Rec. 2022 22 2 e202100215 10.1002/tcr.202100215 34669242
    [Google Scholar]
  71. Jafarian F. Bordbar A.K. Razmjou A. Zare A. The fabrication of a high performance enzymatic hybrid membrane reactor (EHMR) containing immobilized Candida rugosa lipase (CRL) onto graphene oxide nanosheets-blended polyethersulfone membrane. J. Membr. Sci. 2020 613 118435 10.1016/j.memsci.2020.118435
    [Google Scholar]
  72. Zhu L.L. Zhu C.T. Xiong M. Enzyme immobilization on photopatterned temperature‐response poly (N‐isopropylacrylamide) for microfluidic biocatalysis. J. Chem. Technol. Biotechnol. 2019 94 5 1670 1678 10.1002/jctb.5946
    [Google Scholar]
  73. Yang L. Fan X. Zhang J. Ju J. Preparation and characterization of thermoresponsive poly (N-isopropylacrylamide) for cell culture applications. Polymers 2020 12 2 389 10.3390/polym12020389 32050412
    [Google Scholar]
  74. Sahin S. Ozmen I. Covalent immobilization of trypsin on polyvinyl alcohol-coated magnetic nanoparticles activated with glutaraldehyde. J. Pharm. Biomed. Anal. 2020 184 113195 10.1016/j.jpba.2020.113195 32163827
    [Google Scholar]
  75. Jankowska K. Su Z. Sigurdardóttir S.B. Tailor-made novel electrospun polystyrene/poly(d,l-lactide-co-glycolide) for oxidoreductases immobilization: Improvement of catalytic properties under extreme reaction conditions. Bioorg. Chem. 2021 114 105036 10.1016/j.bioorg.2021.105036 34120021
    [Google Scholar]
  76. Mehdikhani-Nahrkhalaji M. Tavakoli E. Sarafbidabad M. Poly (lactic-co-glycolic) acid (PLGA)-based compounds for articular cartilage regeneration. J Rep Pharma Sci 2016 5 2 94 103 10.4103/2322‑1232.222602
    [Google Scholar]
  77. Calzoni E. Cesaretti A. Tacchi S. Covalent immobilization of proteases on polylactic acid for proteins hydrolysis and waste biomass protein content valorization. Catalysts 2021 11 2 167 10.3390/catal11020167
    [Google Scholar]
  78. More N. Avhad M. Utekar S. More A. Polylactic acid (PLA) membrane—significance, synthesis, and applications: A review. Polym. Bull. 2023 80 2 1117 1153 10.1007/s00289‑022‑04135‑z
    [Google Scholar]
  79. Kumar A. Park G.D. Patel S.K.S. SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem. Eng. J. 2019 359 1252 1264 10.1016/j.cej.2018.11.052
    [Google Scholar]
  80. Hamzah A. Sitompul L.L. Putri I.N.F. Soeprijanto S. Widjaja A. Synergistic effect of two type cellulase immobilized on chitosan microparticle as biocatalyst for coconut husk hydrolysis. Indonesian J Chem 2019 19 2 495 502 10.22146/ijc.39714
    [Google Scholar]
  81. Balabushevich N.G. Kovalenko E.A. Maltseva L.N. Immobilization of antioxidant enzyme catalase on porous hybrid microparticles of vaterite with mucin. Adv. Eng. Mater. 2022 24 9 2101797 10.1002/adem.202101797
    [Google Scholar]
  82. Saleh T.A. Nanomaterials: Classification, properties, and environmental toxicities. Environ Technol Innov 2020 20 101067 10.1016/j.eti.2020.101067
    [Google Scholar]
  83. Zhou Y. Yang Z. Zhou R. Peptide-inspired one-step synthesis of surface-functionalized Fe3O4 magnetic nanoparticles for oriented enzyme immobilization and biocatalytic applications. ACS Appl. Nano Mater. 2022 5 6 8260 8270 10.1021/acsanm.2c01346
    [Google Scholar]
  84. Soares J.M. Carneiro L.A.B.C. Barreto M.Q. Ward R.J. Co‐immobilization of multiple enzymes on ferromagnetic nanoparticles for the depolymerization of xyloglucan. Biofuels Bioprod. Biorefin. 2022 16 6 1682 1695 10.1002/bbb.2407
    [Google Scholar]
  85. Rashid SS Mustafa AH Rahim MHA Gunes B Magnetic nickel nanostructure as cellulase immobilization surface for the hydrolysis of lignocellulosic biomass. Int J Biol Macromol 2022 209 (Pt A) 1048 53 10.1016/j.ijbiomac.2022.04.072 35447264
    [Google Scholar]
  86. Gulesci N. Yucebilgic G. Yildirim D. Different spacer-arm attached magnetic nanoparticles for covalent immobilization of Jack bean urease. Turk Biyokim. Derg. 2022 47 4 501 509 10.1515/tjb‑2021‑0264
    [Google Scholar]
  87. Guilherme E.P.X. Zanphorlin L.M. Sousa A.S. Simultaneous saccharification isomerization and Co-fermentation – SSICF: A new process concept for second-generation ethanol biorefineries combining immobilized recombinant enzymes and non-GMO Saccharomyces. Renew. Energy 2022 182 274 284 10.1016/j.renene.2021.10.023
    [Google Scholar]
  88. Aghaei H Mohammadbagheri Z Hemasi A Taghizadeh A Efficient hydrolysis of starch by α-amylase immobilized on cloisite 30B and modified forms of cloisite 30B by adsorption and covalent methods Food Chem 2022 373 (Pt A) 131425 10.1016/j.foodchem.2021.131425 34710686
    [Google Scholar]
  89. Najafi M. Rahimi R. Synthesis of novel Zr-MOF/cloisite-30B nanocomposite for anionic and cationic dye adsorption: Optimization by design-expert, kinetic, thermodynamic, and adsorption study. J. Inorg. Organomet. Polym. Mater. 2023 33 1 138 150 10.1007/s10904‑022‑02471‑1
    [Google Scholar]
  90. Bié J. Sepodes B. Fernandes P.C.B. Ribeiro M.H.L. Enzyme immobilization and co-immobilization: Main framework, advances and some applications. Processes 2022 10 3 494 10.3390/pr10030494
    [Google Scholar]
  91. Araya E. Urrutia P. Romero O. Illanes A. Wilson L. Design of combined crosslinked enzyme aggregates (combi-CLEAs) of β-galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chem. 2019 288 102 107 10.1016/j.foodchem.2019.02.024 30902269
    [Google Scholar]
  92. Yip Y.S. Manas N.H.A. Jaafar N.R. Rahman R.A. Puspaningsih N.N.T. Illias R.M. Combined cross-linked enzyme aggregates of cyclodextrin glucanotransferase and maltogenic amylase from Bacillus lehensis G1 for maltooligosaccharides synthesis. Int. J. Biol. Macromol. 2023 242 Pt 1 124675 10.1016/j.ijbiomac.2023.124675 37127056
    [Google Scholar]
  93. Sheldon R.A. CLEAs, combi-CLEAs and ‘smart’magnetic CLEAs: Biocatalysis in a bio-based economy. Catalysts 2019 9 3 261 10.3390/catal9030261
    [Google Scholar]
  94. Xu M.Q. Li F.L. Yu W.Q. Li R.F. Zhang Y.W. Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD+ regeneration. Int. J. Biol. Macromol. 2020 144 1013 1021 10.1016/j.ijbiomac.2019.09.178 31669469
    [Google Scholar]
  95. Wahab R.A. Elias N. Abdullah F. Ghoshal S.K. On the taught new tricks of enzymes immobilization: An all-inclusive overview. React. Funct. Polym. 2020 152 104613 10.1016/j.reactfunctpolym.2020.104613
    [Google Scholar]
  96. Khemis BI Lamine BA Physico-chemical investigations of human olfactory receptors OR10G4 and OR2B11 activated by vanillin, ethyl vanillin, coumarin and quinoline molecules using statistical physics method. Int J Bio Macromol 2021 193 (Pt A): 915 22
    [Google Scholar]
  97. Jaafar N.R. Jailani N. Rahman R.A. Öner E.T. Murad A.M.A. Illias R.M. Protein surface engineering and interaction studies of maltogenic amylase towards improved enzyme immobilisation. Int J Bio Macromol 2022 213 70 82 10.1016/j.ijbiomac.2022.05.169 35644316
    [Google Scholar]
  98. Khemis BI Aouaini F Hassine HBS Lamine BA Theoretical study of the olfactory perception of floral odorant on OR10J5 and Olfr16 using the grand canonical ensemble in statistical physics approach. Int J Bio Macromol 2022 223 (PT B) 1667 73 10.1016/j.ijbiomac.2022.10.201 36306901
    [Google Scholar]
  99. Rahman A.N.H. Jaafar N.R. Murad A.A.M. Bakar A.F.D. Annuar S.N.A. Illias M.R. Novel cross-linked enzyme aggregates of levanase from Bacillus lehensis G1 for short-chain fructooligosaccharides synthesis: Developmental, physicochemical, kinetic and thermodynamic properties. Int J Bio Macromol 2020 159 577 589 10.1016/j.ijbiomac.2020.04.262 32380107
    [Google Scholar]
  100. Charoenwongpaiboon T. Wangpaiboon K. Pichyangkura R. Cross-linked levansucrase aggregates for fructooligosaccharide synthesis in fruit juices. Lebensm. Wiss. Technol. 2021 150 112080 10.1016/j.lwt.2021.112080
    [Google Scholar]
  101. Alves N.R. Pereira M.M. Giordano R.L.C. Design for preparation of more active cross-linked enzyme aggregates of Burkholderia cepacia lipase using palm fiber residue. Bioprocess Biosyst. Eng. 2021 44 1 57 66 10.1007/s00449‑020‑02419‑0 32767112
    [Google Scholar]
  102. Breger J.C. Vranish J.N. Oh E. Self assembling nanoparticle enzyme clusters provide access to substrate channeling in multienzymatic cascades. Nat. Commun. 2023 14 1 1757 10.1038/s41467‑023‑37255‑9 36990995
    [Google Scholar]
  103. Liang W. Wied P. Carraro F. Metal–organic framework-based enzyme biocomposites. Chem. Rev. 2021 121 3 1077 1129 10.1021/acs.chemrev.0c01029 33439632
    [Google Scholar]
  104. Ye N. Kou X. Shen J. Huang S. Chen G. Ouyang G. Metal‐organic frameworks: A new platform for enzyme immobilization. ChemBioChem 2020 21 18 2585 2590 10.1002/cbic.202000095 32291902
    [Google Scholar]
  105. Zhang H. Sun Z. Wu C. Qin X. Liu G. Magnetic amine-functionalized ZIF-8 with hierarchical pores for efficient covalent immobilization of α-amylase. ACS Appl. Nano Mater. 2023 6 9 7477 7486 10.1021/acsanm.3c00632
    [Google Scholar]
  106. Kolesnyk I. Konovalova V. Kharchenko K. Burban A. Kujawa J. Kujawski W. Enhanced transport and antifouling properties of polyethersulfone membranes modified with α-amylase incorporated in chitosan-based polymeric micelles. J. Membr. Sci. 2020 595 117605 10.1016/j.memsci.2019.117605
    [Google Scholar]
  107. Sambou S.S. Hromov R. Ruzhylo I. Amphiphilic polymeric nanoreactors containing Rh(i)–NHC complexes for the aqueous biphasic hydrogenation of alkenes. Catal. Sci. Technol. 2021 11 20 6811 6824 10.1039/D1CY00554E
    [Google Scholar]
  108. Kolesnyk I. Konovalova V. Kharchenko K. Improved antifouling properties of polyethersulfone membranes modified with α-amylase entrapped in Tetronic® micelles. J. Membr. Sci. 2019 570-571 436 444 10.1016/j.memsci.2018.10.064
    [Google Scholar]
  109. Wang M. Min Y. Huang J. Self-assembled catalytic nanoreactors from molecular brushes by utilizing postpolymerization modification for catalyst attachment. ACS Appl. Polym. Mater. 2022 4 2 1411 1421 10.1021/acsapm.1c01484
    [Google Scholar]
  110. Qiu J. Huang J. Zhu X. Min Y. Qi D. Chen T. Facile one-step fabrication of DMAP-functionalized catalytic nanoreactors by polymerization-induced self-assembly in water. Molecular Catalysis 2022 518 112073 10.1016/j.mcat.2021.112073
    [Google Scholar]
  111. Arana-Peña S. Carballares D. Morellon-Sterlling R. Enzyme co-immobilization: Always the biocatalyst designers’ choice…or not? Biotechnol. Adv. 2021 51 107584 10.1016/j.biotechadv.2020.107584 32668324
    [Google Scholar]
  112. Bolivar J.M. Woodley J.M. Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem. Soc. Rev. 2022 51 15 6251 6290 10.1039/D2CS00083K 35838107
    [Google Scholar]
  113. Al-sareji O.J. Meiczinger M. Somogyi V. Removal of emerging pollutants from water using enzyme-immobilized activated carbon from coconut shell. J. Environ. Chem. Eng. 2023 11 3 109803 10.1016/j.jece.2023.109803
    [Google Scholar]
  114. Fornera S. Bauer T. Schlüter A.D. Walde P. Simple enzyme immobilization inside glass tubes for enzymatic cascade reactions. J. Mater. Chem. 2012 22 2 502 511 10.1039/C1JM13031E
    [Google Scholar]
  115. Mortazavi S. Aghaei H. Make proper surfaces for immobilization of enzymes: Immobilization of lipase and α-amylase on modified Na-sepiolite. Int. J. Biol. Macromol. 2020 164 1 12 10.1016/j.ijbiomac.2020.07.103 32679334
    [Google Scholar]
  116. Gopinath S. Sugunan S. Enzymes immobilized on montmorillonite K 10: Effect of adsorption and grafting on the surface properties and the enzyme activity. Appl. Clay Sci. 2007 35 1-2 67 75 10.1016/j.clay.2006.04.007
    [Google Scholar]
  117. Melo R.R. Alnoch R.C. Vilela A.F.L. New heterofunctional supports based on glutaraldehyde-activation: A tool for enzyme immobilization at neutral pH. Molecules 2017 22 7 1088 10.3390/molecules22071088 28788435
    [Google Scholar]
  118. Pavlidis I.V. Tsoufis T. Enotiadis A. Gournis D. Stamatis H. Functionalized multi‐wall carbon nanotubes for lipase immobilization. Adv. Eng. Mater. 2010 12 5 B179 B183 10.1002/adem.200980021
    [Google Scholar]
  119. Zou Z. Zhou H. Dai L. Liu D. Du W. A dual stable MOF constructed through ligand exchange for enzyme immobilization with improved performance in biodiesel production. Renew. Energy 2023 208 17 25 10.1016/j.renene.2023.03.072
    [Google Scholar]
  120. Tully J. Yendluri R. Lvov Y. Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules 2016 17 2 615 621 10.1021/acs.biomac.5b01542 26699154
    [Google Scholar]
  121. Wang Y. Caruso F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chem. Mater. 2005 17 5 953 961 10.1021/cm0483137
    [Google Scholar]
  122. Patel S.K.S. Choi S.H. Kang Y.C. Lee J.K. Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl. Mater. Interfaces 2017 9 3 2213 2222 10.1021/acsami.6b05165 28004579
    [Google Scholar]
  123. Pérez-Tomás J.Á. Brucato R. Griffin P. Entrapment in HydrIL gels: Hydro-ionic liquid polymer gels for enzyme immobilization. Catal. Today 2024 432 114595 10.1016/j.cattod.2024.114595
    [Google Scholar]
  124. Cao S.L. Li X.H. Lou W.Y. Zong M.H. Preparation of a novel magnetic cellulose nanocrystal and its efficient use for enzyme immobilization. J. Mater. Chem. B Mater. Biol. Med. 2014 2 34 5522 5530 10.1039/C4TB00584H 32262185
    [Google Scholar]
  125. Tang C. Saquing C.D. Morton S.W. Glatz B.N. Kelly R.M. Khan S.A. Cross-linked polymer nanofibers for hyperthermophilic enzyme immobilization: Approaches to improve enzyme performance. ACS Appl. Mater. Interfaces 2014 6 15 11899 11906 10.1021/am5033633 25058141
    [Google Scholar]
  126. Agostinelli E. Belli F. Tempera G. Polyketone polymer: A new support for direct enzyme immobilization. J. Biotechnol. 2007 127 4 670 678 10.1016/j.jbiotec.2006.08.011 17007953
    [Google Scholar]
  127. Crespilho F.N. Iost R.M. Travain S.A. Oliveira O.N. Zucolotto V. Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosens. Bioelectron. 2009 24 10 3073 3077 10.1016/j.bios.2009.03.026 19427191
    [Google Scholar]
  128. Weng Y. Ranaweera S. Zou D. Alginate particles for enzyme immobilization using spray drying. J. Agric. Food Chem. 2022 70 23 7139 7147 10.1021/acs.jafc.2c02298 35648591
    [Google Scholar]
  129. Wan Y. Zhou J. Ni J. Cai Y. Stuart C.M. Wang J. Electrostatically mediated in situ polymerization for enzyme immobilization and activation. Biomacromolecules 2024 25 2 809 818 10.1021/acs.biomac.3c00993
    [Google Scholar]
  130. Taqieddin E. Amiji M. Enzyme immobilization in novel alginate–chitosan core-shell microcapsules. Biomaterials 2004 25 10 1937 1945 10.1016/j.biomaterials.2003.08.034 14738858
    [Google Scholar]
  131. Yang X.G. Zhang J.R. Tian X.K. Qin J.H. Zhang X.Y. Ma L.F. Enhanced activity of enzyme immobilized on hydrophobic ZIF-8 modified by Ni2+ ions. Angew. Chem. Int. Ed. Engl. 2023 62 7 e202216699 10.1002/anie.202216699
    [Google Scholar]
  132. Wan J. Zhang L. Yang B. Jia B. Yang J. Su X. Enzyme immobilization on amino-functionalized Fe3O4@SiO2 via electrostatic interaction with enhancing biocatalysis in sludge dewatering. Chem. Eng. J. 2022 427 131976 10.1016/j.cej.2021.131976
    [Google Scholar]
  133. Li W. Shi J. Chen Y. Nano-sized mesoporous hydrogen-bonded organic frameworks for in situ enzyme immobilization. Chem. Eng. J. 2023 468 143609 10.1016/j.cej.2023.143609
    [Google Scholar]
  134. Bîtcan I. Petrovici A. Pellis A. Enzymatic route for selective glycerol oxidation using covalently immobilized laccases. Enzyme Microb. Technol. 2023 163 110168 10.1016/j.enzmictec.2022.110168 36481541
    [Google Scholar]
  135. Cao Y. Wen L. Svec F. Tan T. Lv Y. Magnetic AuNP@Fe 3 O 4 nanoparticles as reusable carriers for reversible enzyme immobilization. Chem. Eng. J. 2016 286 272 281 10.1016/j.cej.2015.10.075
    [Google Scholar]
  136. Chao C. Liu J. Wang J. Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl. Mater. Interfaces 2013 5 21 10559 10564 10.1021/am4022973 24095033
    [Google Scholar]
  137. David A.E. Wang N.S. Yang V.C. Yang A.J. Chemically surface modified gel (CSMG): An excellent enzyme-immobilization matrix for industrial processes. J. Biotechnol. 2006 125 3 395 407 10.1016/j.jbiotec.2006.03.019 16644049
    [Google Scholar]
  138. Eixenberger D. Kumar A. Klinger S. Scharnagl N. Dawood A.W.H. Liese A. Polymer-grafted 3D-printed material for enzyme immobilization—designing a smart enzyme carrier. Catalysts 2023 13 7 1130 10.3390/catal13071130
    [Google Scholar]
  139. Ferrand-Drake del Castillo G. Koenig M. Müller M. Enzyme immobilization in polyelectrolyte brushes: High loading and enhanced activity compared to monolayers. Langmuir 2019 35 9 3479 3489 10.1021/acs.langmuir.9b00056 30742441
    [Google Scholar]
  140. He G. Liu H. Yang C. A comparison of dual-enzyme immobilization by magnetic nanoparticles and magnetic enzyme aggregates for cascade enzyme reactions. Biochem. Eng. J. 2024 204 109207 10.1016/j.bej.2023.109207
    [Google Scholar]
  141. Huang WC Wang W Xue C Mao X Effective enzyme immobilization onto a magnetic chitin nanofiber composite. 2018 6 7 8118 8124 10.1021/acssuschemeng.8b01150
    [Google Scholar]
  142. Incani V. Danumah C. Boluk Y. Nanocomposites of nanocrystalline cellulose for enzyme immobilization. Cellulose 2013 20 1 191 200 10.1007/s10570‑012‑9805‑2
    [Google Scholar]
  143. Janee S. Saha S. Sharmin S. Construction and investigation of multi-enzyme immobilized matrix for the production of HFCS. PLoS One 2024 19 2 e0292931 10.1371/journal.pone.0292931 38363771
    [Google Scholar]
  144. Klein M.P. Scheeren C.W. Lorenzoni A.S.G. Dupont J. Frazzon J. Hertz P.F. Ionic liquid-cellulose film for enzyme immobilization. Process Biochem. 2011 46 6 1375 1379 10.1016/j.procbio.2011.02.021
    [Google Scholar]
  145. Li S. Hu J. Liu B. Use of chemically modified PMMA microspheres for enzyme immobilization. Biosystems 2004 77 1-3 25 32 10.1016/j.biosystems.2004.03.001 15527942
    [Google Scholar]
  146. Liu Z. Wang H. Li B. Biocompatible magnetic cellulose–chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. J. Mater. Chem. 2012 22 30 15085 15091 10.1039/c2jm33033d
    [Google Scholar]
  147. Pan C. Hu B. Li W. Sun Y. Ye H. Zeng X. Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J. Mol. Catal., B Enzym. 2009 61 3-4 208 215 10.1016/j.molcatb.2009.07.003
    [Google Scholar]
  148. Sureshkumar M. Lee C.K. Polydopamine coated magnetic-chitin (MCT) particles as a new matrix for enzyme immobilization. Carbohydr. Polym. 2011 84 2 775 780 10.1016/j.carbpol.2010.03.036
    [Google Scholar]
  149. Wan L.S. Ke B.B. Xu Z.K. Electrospun nanofibrous membranes filled with carbon nanotubes for redox enzyme immobilization. Enzyme Microb. Technol. 2008 42 4 332 339 10.1016/j.enzmictec.2007.10.014
    [Google Scholar]
  150. Wang W. Liu J. Khan M.J. Magnetic macroporous chitin microsphere as a support for covalent enzyme immobilization. Int. J. Biol. Macromol. 2024 256 Pt 2 128214 10.1016/j.ijbiomac.2023.128214 37992928
    [Google Scholar]
  151. Wang G. Uyama H. Reactive poly(ethylene-co-vinyl alcohol) monoliths with tunable pore morphology for enzyme immobilization. Colloid Polym. Sci. 2015 293 8 2429 2435 10.1007/s00396‑015‑3637‑1
    [Google Scholar]
  152. Shomal R. Abdelkareem M.A. Olabi A.G. Zuhair A.S. Macro porous ZIF-8 beads: Promising supports for enzyme immobilization. Mat Today Sustainab 2024 25 100632 10.1016/j.mtsust.2023.100632
    [Google Scholar]
  153. Pinheiro B.B. Rios N.S. Aguado R.E. Chitosan activated with divinyl sulfone: A new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. Int. J. Biol. Macromol. 2019 130 798 809 10.1016/j.ijbiomac.2019.02.145 30817969
    [Google Scholar]
  154. Zhang J. Zhang F. Yang H. Graphene oxide as a matrix for enzyme immobilization. Langmuir 2010 26 9 6083 6085 10.1021/la904014z 20297789
    [Google Scholar]
  155. Gascón V. Jiménez M.B. Blanco R.M. Sanchez-Sanchez M. Semi-crystalline Fe-BTC MOF material as an efficient support for enzyme immobilization. Catal. Today 2018 304 119 126 10.1016/j.cattod.2017.10.022
    [Google Scholar]
  156. Luo J. Meyer A.S. Mateiu R.V. Pinelo M. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol. N. Biotechnol. 2015 32 3 319 327 10.1016/j.nbt.2015.02.006 25698375
    [Google Scholar]
  157. Biró E. Németh Á.S. Sisak C. Feczkó T. Gyenis J. Preparation of chitosan particles suitable for enzyme immobilization. J. Biochem. Biophys. Methods 2008 70 6 1240 1246 10.1016/j.jprot.2007.11.005 18155771
    [Google Scholar]
  158. Kuribayashi L.M. do Rio Ribeiro V.P. Santana D.R.C. Immobilization of β-galactosidase from Bacillus licheniformis for application in the dairy industry. Appl. Microbiol. Biotechnol. 2021 105 9 3601 3610 10.1007/s00253‑021‑11325‑8 33937931
    [Google Scholar]
  159. Crespilho F.N. Ghica E.M. Florescu M. Nart F.C. Oliveira O.N. Brett C.M.A. A strategy for enzyme immobilization on layer-by-layer dendrimer–gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem. Commun. 2006 8 10 1665 1670 10.1016/j.elecom.2006.07.032
    [Google Scholar]
  160. Gul I. Wang Q. Jiang Q. Fang R. Tang L. Enzyme immobilization on glass fiber membrane for detection of halogenated compounds. Anal. Biochem. 2020 609 113971 10.1016/j.ab.2020.113971 32979368
    [Google Scholar]
  161. Bachosz K. Zdarta J. Nghiem L.D. Jesionowski T. Multienzymatic conversion of monosaccharides from birch biomass after pretreatment. Environ Technol Innov 2022 28 102874 10.1016/j.eti.2022.102874
    [Google Scholar]
  162. Wu G. Li M. Luo Z. Designed synthesis of compartmented bienzyme biocatalysts based on core–shell zeolitic imidazole framework nanostructures. Small 2023 19 7 2206606 10.1002/smll.202206606 36461684
    [Google Scholar]
  163. Shortall K. Arshi S. Bendl S. Coupled immobilized bi-enzymatic flow reactor employing cofactor regeneration of NAD + using a thermophilic aldehyde dehydrogenase and lactate dehydrogenase. Green Chem. 2023 25 11 4553 4564 10.1039/D3GC01536J
    [Google Scholar]
  164. Liu S. Sun Y. Co‐encapsulating cofactor and enzymes in hydrogen‐bonded organic frameworks for multienzyme cascade reactions with cofactor recycling. Angew. Chem. Int. Ed. Engl. 2023 62 42 e202308562 10.1002/anie.202308562
    [Google Scholar]
  165. Patel S.K.S. Gupta R.K. Karuppanan K.K. Kim I.W. Lee J.K. Sequential co-immobilization of enzymes on magnetic nanoparticles for efficient l-xylulose production. Int. J. Mol. Sci. 2024 25 5 2746 10.3390/ijms25052746 38473992
    [Google Scholar]
  166. Jung D.Y. Li Z. Highly active and recyclable immobilized multiple enzymes for one-pot enantioselective cascade reactions: Synthesis of (R)- and (S)-α-amino acids from racemic α-hydroxy acids. Appl. Catal. B 2024 341 123313 10.1016/j.apcatb.2023.123313
    [Google Scholar]
  167. Cui J. Ocsoy I. Mahmoud M.A. Du Y. Editorial: Enzyme immobilization technologies and their biomanufacturing applications. Front. Bioeng. Biotechnol. 2023 11 1256181 10.3389/fbioe.2023.1256181 37600313
    [Google Scholar]
  168. Grabska-Zielińska S. Cross-linking agents in three-component materials dedicated to biomedical applications: A review. Polymers 2024 16 18 2679 10.3390/polym16182679 39339142
    [Google Scholar]
  169. Wan Z. An N. Xu C. Zheng M. Yuan J. Polymerization-induced self-assembly nanomaterials based on dynamic covalent bonds. Polym. Chem. 2025 16 6 636 651 10.1039/D4PY01204F
    [Google Scholar]
  170. Rogacka J. Labus K. Metal–organic frameworks as highly effective platforms for enzyme immobilization–current developments and future perspectives. Braz. J. Chem. Eng. 2024 1 1 1 29 10.1007/s43153‑024‑00513‑4
    [Google Scholar]
  171. Jothyswarupha K.A. Venkataraman S. Rajendran D.S. Immobilized enzymes: Exploring its potential in food industry applications. Food Sci. Biotechnol. 2024 34 6 1 23 10.1007/s10068‑024‑01742‑6
    [Google Scholar]
  172. Cavalcante G.A.L. Dari D.N. Izaias da Silva Aires F. Carlos de Castro E. Moreira dos Santos K. Sousa dos Santos J.C. Advancements in enzyme immobilization on magnetic nanomaterials: Toward sustainable industrial applications. RSC Advances 2024 14 25 17946 17988 10.1039/D4RA02939A 38841394
    [Google Scholar]
  173. Ogunbadejo B.A. Aljahoushi K.A. Alzamly A. Greish Y.E. Al-Zuhair S. Immobilization of Cyclodextrin glycosyltransferase onto three dimensional‐ hydrophobic and two dimensional‐ hydrophilic supports: A comparative study. Biotechnol. J. 2024 19 1 2300195 10.1002/biot.202300195 38037744
    [Google Scholar]
  174. Du D. He H. Zheng R. Single‐atom immobilization boosting oxygen redox kinetics of high‐entropy perovskite oxide toward high‐performance lithium‐oxygen batteries. Adv. Energy Mater. 2024 14 17 2304238 10.1002/aenm.202304238
    [Google Scholar]
  175. Krishnaraj C. Asmare M.M. Yoon J.S. Yun S.I. In silico mechanistic insights of ecofriendly synthesized AgNPs, SeNPs, rGO and Ag&SeNPs@rGONM’s for biological applications and its toxicity evaluation using Artemia salina. Chemosphere 2024 364 143159 10.1016/j.chemosphere.2024.143159 39178963
    [Google Scholar]
  176. Wang H. Kou X. Gao R. Huang S. Chen G. Ouyang G. Enzyme-immobilized porous crystals for environmental applications. Environ. Sci. Technol. 2024 58 27 11869 11886 10.1021/acs.est.4c01273 38940189
    [Google Scholar]
  177. Tang H. Fan D. Chen Y. Han S. Exploring enzyme–MOF (metal–organic framework) catalytic systems: Trade-offs between enzyme activity and MOF stability. Green Chem. 2024 27 10 2605 2628 10.1039/D4GC05154H
    [Google Scholar]
  178. Sakai J. Sasaki K. Nakatani R. Das S. Negishi Y. A silver cluster-assembled material as a matrix for enzyme immobilization towards a highly efficient biocatalyst. Nanoscale 2024 16 47 21767 21775 10.1039/D4NR02506G 39329313
    [Google Scholar]
  179. Zucca P. Sanjust E. Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms. Molecules 2014 19 9 14139 14194 10.3390/molecules190914139 25207718
    [Google Scholar]
  180. Patti S. Alunno M.I. Pedroni S. Riva S. Ferrandi E.E. Monti D. Advances and challenges in the development of immobilized enzymes for batch and flow biocatalyzed processes. ChemSusChem 2024 ••• e202402007 10.1002/cssc.202402007 39585729
    [Google Scholar]
  181. Siódmiak T. Dulęba J. Haraldsson G.G. Siódmiak J. Marszałł M.P. The studies of sepharose-immobilized lipases: Combining techniques for the enhancement of activity and thermal stability. Catalysts 2023 13 5 887 10.3390/catal13050887
    [Google Scholar]
  182. Bazzi L. Hesemann P. Laassiri S. Hankari E.S. Alternative approaches for the synthesis of nano silica particles and their hybrid composites: Synthesis, properties, and applications. Int. J. Environ. Sci. Technol. 2023 20 10 11575 11614 10.1007/s13762‑023‑04845‑5
    [Google Scholar]
  183. Huang L. Li X. Li Z. Immobilization of enzymes on polymers with upper critical solution temperature: Promising engineering of enzymes for biocatalysis. React. Chem. Eng. 2024 9 7 1605 1628 10.1039/D3RE00685A
    [Google Scholar]
  184. Mondal S.K. Chakraborty S. Manna S. Mandal S.M. Antimicrobial nanoparticles: Current landscape and future challenges. RSC Pharmaceutics 2024 1 3 388 402 10.1039/D4PM00032C
    [Google Scholar]
  185. Marthinsen A. Gaweł B.A. Warden G.K. Al doped silica glass: Investigation of structural response and defect interactions based on crystalline models. Phys. Chem. Chem. Phys. 2025 27 7 3803 3809 10.1039/D4CP04581E 39885830
    [Google Scholar]
  186. Ren H. Xia X. Sun Y. Electrolyte engineering for the mass exfoliation of graphene oxide across wide oxidation degrees. J. Mater. Chem. A Mater. Energy Sustain. 2024 12 35 23416 23424 10.1039/D4TA02654C
    [Google Scholar]
  187. Liu B. Sun J. Zhao J. Yun X. Hybrid graphene and carbon nanotube–reinforced composites: Polymer, metal, and ceramic matrices. Adv. Compos. Hybrid Mater. 2025 8 1 1 10.1007/s42114‑024‑01074‑3
    [Google Scholar]
  188. Yu S. Rejinold N.S. Choi G. Choy J.H. Revolutionizing healthcare: Inorganic medicinal nanoarchitectonics for advanced theranostics. Nanoscale Horiz. 2025 10 3 460 483 10.1039/D4NH00497C 39648727
    [Google Scholar]
  189. Han J. Mao K. Yang Y.G. Sun T. Impact of inorganic/organic nanomaterials on the immune system for disease treatment. Biomater. Sci. 2024 12 19 4903 4926 10.1039/D4BM00853G 39190428
    [Google Scholar]
  190. Giubileo F. Current advances in nanoelectronics, nanosensors, and devices. Nanomaterials 2024 14 21 1771 10.3390/nano14211771 39513851
    [Google Scholar]
  191. Halmagyi T.G. Noureen L. Szerlauth A. Szilagyi I. Engineering inorganic nanozyme architectures for decomposition of reactive oxygen species. Dalton Trans. 2024 53 34 14132 14138 10.1039/D4DT01874E 39133078
    [Google Scholar]
  192. Gautam S. Rialach S. Paul S. Goyal N. MOF/graphene oxide based composites in smart supercapacitors: A comprehensive review on the electrochemical evaluation and material development for advanced energy storage devices. RSC Advances 2024 14 20 14311 14339 10.1039/D4RA01027B 38690108
    [Google Scholar]
  193. Laksir A. Kacem M. Dib M. Touzani R. Boulouiz A. MOFs-based materials: A trendy hybrid catalyst for hydrogenation of aromatic nitro compounds. Interaction 2024 246 1 18 10.1007/s10751‑024‑02242‑z
    [Google Scholar]
  194. Liu M. Yuan W. Qu X. Superhydrophobic and robust hetero-metal-polymer hybrid interphase enables deep-cycling zinc metal anodes. Energy Environ. Sci. 2024 17 24 9611 9622 10.1039/D4EE04122D
    [Google Scholar]
  195. Bilal M. Degorska O. Szada D. Support materials of organic and inorganic origin as platforms for horseradish peroxidase immobilization: Comparison study for high stability and activity recovery. Molecules 2024 29 3 710 10.3390/molecules29030710 38338454
    [Google Scholar]
  196. Maurya A. Singh S. Pathak N.P. The importance of mesoporous materials (silica, alumina, and zeolite) as solid supports for metal complex catalysts in organic transformations. J. Inorg. Organomet. Polym. Mater. 2025 35 1 1 21 10.1007/s10904‑024‑03249‑3
    [Google Scholar]
  197. Völzke J.L. Shamami P.H. Gawlitza K. High-purity corundum as support for affinity extractions from complex samples. Separations 2022 9 9 252 10.3390/separations9090252
    [Google Scholar]
  198. Cai Y. Conjugation of primary amine groups in targeted proteomics. Mass Spectrometry Rev 2024 1 mas.21906 10.1002/mas.21906 39229771
    [Google Scholar]
  199. Grabska-Zielińska S. Siódmiak T. Marszałł M.P. Advances in cross-linking agents for enhanced enzyme immobilization. Polymers 2024 16 18 2679 10.3390/polym16182679 39339142
    [Google Scholar]
  200. Shi H. Gong H. Ni/photoredox-catalyzed enantioselective acylation of α-bromo-benzoates with aldehydes: A formal approach to aldehyde-aldehyde cross-coupling. Youji Huaxue 2024 44 9 2952 10.6023/cjoc202400046
    [Google Scholar]
  201. Gartner P. Rudat J. Bilger M. Grünert T. Lanza G. Enzyme immobilization on polypropylene film: A role model for biocatalytic polymer membranes? Journal of Enzymes 2023 1 3 2036 10.14302/issn.2690‑4829.jen‑23‑4799
    [Google Scholar]
  202. Iriarte-Mesa C. López Y.C. Matos-Peralta Y. la Vega-Hernández D.K. Antuch M. Gold, silver and iron oxide nanoparticles: Synthesis and bionanoconjugation strategies aimed at electrochemical applications. Top. Curr. Chem. 2020 378 1 12 10.1007/s41061‑019‑0275‑y 31907672
    [Google Scholar]
  203. Huang X. Li J. Araki Y. Wada T. Xu Y. Takai M. Enzyme stability in polymer hydrogel–enzyme hybrid nanocarrier containing phosphorylcholine group. RSC Advances 2024 14 26 18807 18814 10.1039/D4RA02436B 38863819
    [Google Scholar]
  204. Zhang J. Lovell J.F. Shi J. Zhang Y. Nanomaterials for co‐immobilization of multiple enzymes. BMEMat 2024 3 1 1 6 10.1002/bmm2.12080
    [Google Scholar]
  205. Zheng D. Zheng Y. Tan J. Zhang Z. Huang H. Chen Y. Co-immobilization of whole cells and enzymes by covalent organic framework for biocatalysis process intensification. Nat. Commun. 2024 15 1 5510 10.1038/s41467‑024‑49831‑8 38951487
    [Google Scholar]
  206. Tianjiao F. Tang C. Yin J. Wang H. Magnetic multi-enzyme cascade combined with liquid chromatography tandem mass spectrometry for fast DNA digestion and quantitative analysis of 5-hydroxymethylcytosine in genome of human bladder cancer T24 cells induced by tetrachlorobenzoquinone. J. Chromatogr. A 2022 1676 463279 10.1016/j.chroma.2022.463279
    [Google Scholar]
  207. Freitas A.I. Domingues L. Aguiar T.Q. Bare silica as an alternative matrix for affinity purification/immobilization of His-tagged proteins. Separ. Purif. Tech. 2022 286 120448 10.1016/j.seppur.2022.120448
    [Google Scholar]
  208. Katla S.K. Zhang J. Castro E. Bernal R.A. Li X. Atomically precise Au 25 (SG) 18 nanoclusters: Rapid single-step synthesis and application in photothermal therapy. ACS Appl. Mater. Interfaces 2018 10 1 75 82 10.1021/acsami.7b12614 29231708
    [Google Scholar]
  209. Escalante S. Rico G. Becerra J. Chemically crosslinked hyaluronic acid-chitosan hydrogel for application on cartilage regeneration. Front. Bioeng. Biotechnol. 2022 10 1058355 10.3389/fbioe.2022.1058355 36601388
    [Google Scholar]
  210. Islam M.M. Shahruzzaman M. Biswas S. Sakib N.M. Rashid T.U. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact. Mater. 2020 5 1 164 183 10.1016/j.bioactmat.2020.01.012 32083230
    [Google Scholar]
  211. Choi I. Lee S.E. Chang Y. Lacroix M. Han J. Effect of oxidized phenolic compounds on cross-linking and properties of biodegradable active packaging film composed of turmeric and gelatin. Lebensm. Wiss. Technol. 2018 93 427 433 10.1016/j.lwt.2018.03.065
    [Google Scholar]
  212. Yin J. Xu T. Zhang N. Wang H. Three-enzyme cascade bioreactor for rapid digestion of genomic DNA into single nucleosides. Anal. Chem. 2016 88 15 7730 7737 10.1021/acs.analchem.6b01682 27416319
    [Google Scholar]
  213. Robescu M.S. Bavaro T. A comprehensive guide to enzyme immobilization: All you need to know. Molecules 2025 30 4 939 10.3390/molecules30040939 40005249
    [Google Scholar]
  214. Rai S. Pande P.P. Kumar K. Ameliorating enzyme functionality with temperature and pH responsive polymer interface. J. Polym. Res. 2025 32 1 1 10.1007/s10965‑024‑04227‑6
    [Google Scholar]
  215. Damjanović A. Logarušić M. Tumir L.M. Andreou T. Bubalo C.M. Redovniković R.I. Enhancing protein stability under stress: Osmolyte-based deep eutectic solvents as a biocompatible and robust stabilizing medium for lysozyme under heat and cold shock. Phys. Chem. Chem. Phys. 2024 26 31 21040 21051 10.1039/D4CP02275K 39054918
    [Google Scholar]
  216. Oro C.E.D. Puton S.B.M. Venquiaruto L.D. Dallago R.M. Tres M.V. Immobilization of enzymes in polymeric materials based on polyamide: A review. Processes 2025 13 1 200 10.3390/pr13010200
    [Google Scholar]
  217. Jamal H.S. Raja R. Ahmed S. Yesiloz G. Ali S.A. Immobilization of collagenase in inorganic hybrid nanoflowers with enhanced stability, proteolytic activity, and their anti-amyloid potential. Int. J. Biol. Macromol. 2024 274 Pt 1 133114 10.1016/j.ijbiomac.2024.133114 38871102
    [Google Scholar]
  218. Prakash O. Verma D. Singh P.C. Exploring the potential of enzyme-immobilized MOFs: Biosensing, biocatalysis, targeted drug delivery and cancer therapy. J. Mater. Chem. B Mater. Biol. Med. 2024 12 10198 10214 10.1039/D4TB01556H 39283204
    [Google Scholar]
  219. Paixão NS Mondeck ÉR Mendes LA Manhani MR Soares VA Immobilization of lipase on low-cost supports: A comparison of employed methods and efficiency. Ciências Biológicas 2024 29 141 10.69849/revistaft/ar10202412310926
    [Google Scholar]
  220. Diamanti E. López-Gallego F. Single‐particle and single‐molecule characterization of immobilized enzymes: A multiscale path toward optimizing heterogeneous biocatalysts. Angew. Chem. Int. Ed. 2024 63 20 e202319248 10.1002/anie.202319248 38476019
    [Google Scholar]
  221. Jiang Q. Li Y. Wang M. In-situ honeycomb spheres for enhanced enzyme immobilization and stability. Chem. Eng. J. 2024 495 153583 10.1016/j.cej.2024.153583
    [Google Scholar]
  222. Khalid A. Imran M. Javaid A. Latif S. Catalyzing transformation: Organo-inorganic materials based immobilized lipases in the ongoing quest for sustainable biodiesel production. Top. Catal. 2025 68 856 875 10.1007/s11244‑024‑01915‑x
    [Google Scholar]
  223. Michaud M. Nonglaton G. Anxionnaz-Minvielle Z. Wall‐immobilized biocatalyst vs. packed bed in miniaturized continuous reactors: Performances and scale‐up. ChemBioChem 2024 25 11 e202400086 10.1002/cbic.202400086 38618870
    [Google Scholar]
  224. Gomes S.D.M.M.O. Nicodemos I.S. Silva C.D.M. Re-recycling agro-industrial waste: Exploiting activated carbon from cocoa shells after solid-state fermentation as a support for endoglucanase immobilization. Biomass Convers. Biorefin. 2024 1 1 11 10.1007/s13399‑024‑05748‑2
    [Google Scholar]
  225. Chenafa A. Abdo A.A.A. Mahdi A.A. Functionalized electrospun nanofibers to enhance β-Galactosidase immobilization and catalytic activity for efficient galactooligosaccharide synthesis. Int. J. Biol. Macromol. 2024 270 Pt 1 132312 10.1016/j.ijbiomac.2024.132312 38744370
    [Google Scholar]
  226. Lei J. Deng L. Chen Z. Li X. Li K. Lee J.M. Efficient in situ saccharification of microcrystalline cellulose over immobilized cellulase on magnetic biochar in ionic liquid media. Chem. Eng. J. 2024 485 149990 10.1016/j.cej.2024.149990
    [Google Scholar]
  227. Costa J.B. Nascimento L.G.L. Martins E. Carvalho A.F.D. Immobilization of the β-galactosidase enzyme by encapsulation in polymeric matrices for application in the dairy industry. J. Dairy Sci. 2024 107 11 9100 9109 10.3168/jds.2024‑24892 39033918
    [Google Scholar]
  228. Hassan M.E. Ibrahim G.E. Abdella M.A.A. Enhancement of β-galactosidase catalytic activity and stability through covalent immobilization onto alginate/tea waste beads and evaluating its impact on the quality of some dairy products. Int. J. Biol. Macromol. 2024 278 Pt 2 134810 10.1016/j.ijbiomac.2024.134810 39154676
    [Google Scholar]
  229. Taher A.Y. Alizadeh M. Aslan Y. The covalent immobilization of β-galactosidase from Aspergillus oryzae and alkaline protease from Bacillus licheniformis on amino-functionalized multi-walled carbon nanotubes in milk. Heliyon 2024 10 11 e32223 10.1016/j.heliyon.2024.e32223 38873691
    [Google Scholar]
  230. Preparation of nano-immobilised β-galactosidase using mesoporous silicon dioxide nanoparticles and its efficiency in production of galactooligosaccharides. Int. Dairy J. 2024 150 105847 10.1016/j.idairyj.2023.105847
    [Google Scholar]
  231. Sousa C.C. Falleiros S.L.N.S. Ribeiro E.J. Resende D.M.M. Immobilization of B-galactosidase of Kluyveromyces lactis in mesoporous silica. Food Bioprod. Process. 2025 149 165 175 10.1016/j.fbp.2024.11.011
    [Google Scholar]
  232. Scott J.G. Goddard J.M. Trehalose decorated nanostructures stabilize combined cross-linked enzyme aggregates (Combi-CLEAs) of β-galactosidase and glucose isomerase. Int. J. Biol. Macromol. 2025 302 140390 10.1016/j.ijbiomac.2025.140390 39880264
    [Google Scholar]
  233. Cruz D.L.F. Polizeli A.G. Enzweiler H. Paulino A.T. Stabilization of β-D-galactosidase in solution containing chitosan-based membrane: Central composite rotatable design. Int. J. Biol. Macromol. 2024 273 Pt 1 132992 10.1016/j.ijbiomac.2024.132992 38857718
    [Google Scholar]
  234. Yu X. Li J. Sun Y. Co-immobilized multi-enzyme biocatalytic system on reversible and soluble carrier for saccharification of corn straw cellulose. Bioresour. Technol. 2024 395 130325 10.1016/j.biortech.2024.130325 38228219
    [Google Scholar]
  235. Córdova A. Aburto C. Carrasco V. Development of a magnetic responsive biocatalalytic membrane reactor (MR-BMR) to produce galacto-oligosaccharides (GOS) using saturated lactose concentrations. Process Saf. Environ. Prot. 2024 188 1081 1092 10.1016/j.psep.2024.05.126
    [Google Scholar]
  236. Ansari S.A. Satar R. Biotechnological application of β-galactosidase immobilized on glutaraldehyde crosslinked chitosan-coated manganese oxide nanoparticles. Ind. Biotechnol. 2024 20 6 305 311 10.1089/ind.2023.0029
    [Google Scholar]
  237. Shao Y. Gan N. Gao B. He B. Sustainable 3D-printed β-galactosidase immobilization coupled with continuous-flow reactor for efficient lactose-free milk production. Chem. Eng. J. 2024 481 148557 10.1016/j.cej.2024.148557
    [Google Scholar]
  238. Zhang S. Wang X. Fan X. Immobilization of β-galactosidase within sponge: Hydrolysis of lactose in milk. Lebensm. Wiss. Technol. 2025 215 117294 10.1016/j.lwt.2024.117294
    [Google Scholar]
  239. Gao J. Zhang L. Zhao D. Aspergillus oryzae β-D-galactosidase immobilization on glutaraldehyde pre-activated amino-functionalized magnetic mesoporous silica: Performance, characteristics, and application in the preparation of sesaminol. Int. J. Biol. Macromol. 2024 270 Pt 1 132101 10.1016/j.ijbiomac.2024.132101 38734354
    [Google Scholar]
  240. Akdoğan D. Peksel A. Immobilization and characterization of β-galactosidase from Aspergillus oryzae in PVA-CMC hydrogel. Int. J. Biol. Macromol. 2025 297 139816 10.1016/j.ijbiomac.2025.139816 39809391
    [Google Scholar]
/content/journals/cei/10.2174/0115734080374580250628201309
Loading
/content/journals/cei/10.2174/0115734080374580250628201309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test