Skip to content
2000
image of Sirtuin1: A Potential Key Regulator in Alzheimer's Disease Pathophysiology and Therapeutics

Abstract

Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, plays a vital role in neurodegenerative diseases, particularly Alzheimer’s disease (AD). SIRT1 exerts neuroprotective effects by modulating oxidative stress, neuroinflammation, and mitochondrial function while promoting neuronal survival. It enhances amyloid-β (Aβ) clearance by activating α-secretase and inhibiting β-secretase, thereby reducing Aβ aggregation. Beyond protein aggregation, SIRT1 also influences mitochondrial biogenesis and function peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), thereby enhancing energy metabolism and reducing oxidative damage. Moreover, SIRT1-mediated deacetylation of nuclear factor kappa B (NF-κB) suppresses neuroinflammation, further contributing to neuroprotection. Preclinical studies highlight the therapeutic potential of SIRT1 activators, such as resveratrol, in improving cognitive function and reducing AD pathology. However, challenges such as bioavailability, pharmacokinetics, and the lack of definitive clinical validation hinder its therapeutic translation. Emerging research suggests that lifestyle factors, including caloric restriction, exercise, and sleep modulation, may naturally enhance SIRT1 activity, offering alternative approaches for AD prevention. Despite promising evidence, further research is required to fully elucidate the mechanisms underlying SIRT1’s role in AD and to develop effective, targeted therapies. This review underscores SIRT1’s multifaceted involvement in AD pathophysiology and its potential as a therapeutic target, calling for multidisciplinary efforts to advance its clinical application.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080366376250630054928
2025-07-14
2025-09-26
Loading full text...

Full text loading...

References

  1. Razick D.I. Akhtar M. Wen J. The role of Sirtuin 1 (SIRT1) in neurodegeneration. Cureus 2023 15 6 e40463 10.7759/cureus.40463 37456463
    [Google Scholar]
  2. Mehramiz M. Porter T. Laws S.M. Rainey-Smith S.R. Sleep, Sirtuin 1 and Alzheimer’s disease: A review. Aging Brain 2022 2 100050 10.1016/j.nbas.2022.100050 36908890
    [Google Scholar]
  3. Mehramiz M. Porter T. O’Brien E.K. Rainey-Smith S.R. Laws S.M. A Potential role for sirtuin-1 in alzheimer’s disease: Reviewing the biological and environmental evidence. J. Alzheimers Dis. Rep. 2023 7 1 823 843 10.3233/ADR‑220088 37662612
    [Google Scholar]
  4. Jiao F. Gong Z. The beneficial roles of sIRT1 in neuroinflammation-related diseases. Oxid. Med. Cell. Longev. 2020 2020 1 19 10.1155/2020/6782872 33014276
    [Google Scholar]
  5. Herskovits A.Z. Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron 2014 81 3 471 483 10.1016/j.neuron.2014.01.028 24507186
    [Google Scholar]
  6. Lefranc C. Friederich-Persson M. Braud L. MR (Mineralocorticoid Receptor) induces adipose tissue senescence and mitochondrial dysfunction leading to vascular dysfunction in obesity. Hypertension 2019 73 2 458 468 10.1161/HYPERTENSIONAHA.118.11873 30624990
    [Google Scholar]
  7. Rogacka D. Audzeyenka I. Rachubik P. Involvement of nitric oxide synthase/nitric oxide pathway in the regulation of SIRT1–AMPK crosstalk in podocytes: Impact on glucose uptake. Arch. Biochem. Biophys. 2021 709 April 108985 10.1016/j.abb.2021.108985 34252390
    [Google Scholar]
  8. Azminah A. Erlina L. Radji M. Mun’im A. Syahdi R.R. Yanuar A. In silico and in vitro identification of candidate SIRT1 activators from Indonesian medicinal plants compounds database. Comput. Biol. Chem. 2019 83 107096 10.1016/j.compbiolchem.2019.107096 31377446
    [Google Scholar]
  9. Zhang Y.M. Wei R.M. Zhang J.Y. Resveratrol prevents cognitive deficits induced by sleep deprivation via modulating sirtuin 1 associated pathways in the hippocampus. J. Biochem. Mol. Toxicol. 2024 38 4 e23698 10.1002/jbt.23698 38501767
    [Google Scholar]
  10. Wang J. Zhou F. Xiong C.E. Serum sirtuin1: A potential blood biomarker for early diagnosis of Alzheimer’s disease. Aging (Albany NY) 2023 15 18 9464 9478 10.18632/aging.205015 37742223
    [Google Scholar]
  11. Sun Z. Zhao S. Suo X. Dou Y. Sirt1 protects against hippocampal atrophy and its induced cognitive impairment in middle-aged mice. BMC Neurosci. 2022 23 1 33 10.1186/s12868‑022‑00718‑8 35668361
    [Google Scholar]
  12. Cho S.H. Chen J.A. Sayed F. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J. Neurosci. 2015 35 2 807 818 10.1523/JNEUROSCI.2939‑14.2015 25589773
    [Google Scholar]
  13. Dai H. Case A.W. Riera T.V. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex. Nat. Commun. 2015 6 7645 10.1038/ncomms8645
    [Google Scholar]
  14. Davenport A.M. Huber F.M. Hoelz A. Structural and functional analysis of human SIRT1. J. Mol. Biol. 2014 426 3 526 541 10.1016/j.jmb.2013.10.009 24120939
    [Google Scholar]
  15. Autiero I. Costantini S. Colonna G. Human sirt-1: Molecular modeling and structure-function relationships of an unordered protein. PLoS One 2009 4 10 e7350 10.1371/journal.pone.0007350 19806227
    [Google Scholar]
  16. Tanner K.G. Landry J. Sternglanz R. Denu J.M. Landry R.A. Sutton J. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1- O- acetyl-ADP-ribose. Proc. Natl. Acad. Sci. USA 2000 97 26 14178 14182 10.1073/pnas.250422697 11106374
    [Google Scholar]
  17. Imai S.I. Armstrong C.M. Kaeberlein M. Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000 403 6771 795 800 10.1038/35001622 10693811
    [Google Scholar]
  18. Vaquero A. Scher M. Lee D. Erdjument-Bromage H. Tempst P. Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 2004 16 1 93 105 10.1016/j.molcel.2004.08.031 15469825
    [Google Scholar]
  19. Nogueiras R. Habegger K.M. Chaudhary N. Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism. Physiol. Rev. 2012 92 3 1479 1514 10.1152/physrev.00022.2011 22811431
    [Google Scholar]
  20. Zhang Y. Li Y. Li J. SIRT1 alleviates isoniazid-induced hepatocyte injury by reducing histone acetylation in the IL-6 promoter region. Int. Immunopharmacol. 2019 67 348 355 10.1016/j.intimp.2018.11.054 30578970
    [Google Scholar]
  21. Rada P. Pardo V. Mobasher M.A. SIRT1 controls acetaminophen hepatotoxicity by modulating inflammation and oxidative stress. Antioxid. Redox Signal. 2018 28 13 1187 1208 10.1089/ars.2017.7373 29084443
    [Google Scholar]
  22. Tatomir A. Rao G. Boodhoo D. Histone deacetylase SIRT1 mediates C5b-9-induced cell cycle in oligodendrocytes. Front. Immunol. 2020 11 619 10.3389/fimmu.2020.00619 32328069
    [Google Scholar]
  23. He F. Li Q. Sheng B. Yang H. Jiang W. SIRT1 inhibits apoptosis by promoting autophagic flux in human nucleus pulposus cells in the key stage of degeneration via ERK signal pathway. BioMed Res. Int. 2021 2021 1 8818713 10.1155/2021/8818713 33728342
    [Google Scholar]
  24. Qiang L. Lin H.V. Kim-Muller J.Y. Welch C.L. Gu W. Accili D. Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab. 2011 14 6 758 767 10.1016/j.cmet.2011.10.007 22078933
    [Google Scholar]
  25. Cheng H.L. Mostoslavsky R. Saito S. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA 2003 100 19 10794 10799 10.1073/pnas.1934713100 12960381
    [Google Scholar]
  26. Prozorovski T. Ingwersen J. Lukas D. Regulation of sirtuin expression in autoimmune neuroinflammation: Induction of SIRT1 in oligodendrocyte progenitor cells. Neurosci. Lett. 2019 704 116 125 10.1016/j.neulet.2019.04.007 30953735
    [Google Scholar]
  27. Dimou L. Simons M. Diversity of oligodendrocytes and their progenitors. Curr. Opin. Neurobiol. 2017 47 73 79 10.1016/j.conb.2017.09.015 29078110
    [Google Scholar]
  28. Barateiro A. Fernandes A. Temporal oligodendrocyte lineage progression: in vitro models of proliferation, differentiation and myelination. Biochim. Biophys. Acta Mol. Cell Res. 2014 1843 9 1917 1929 10.1016/j.bbamcr.2014.04.018 24768715
    [Google Scholar]
  29. Speakman J.R. Mitchell S.E. Caloric restriction. Mol. Aspects Med. 2011 32 3 159 221 10.1016/j.mam.2011.07.001 21840335
    [Google Scholar]
  30. Ng F. Tang B.L. When is Sirt1 activity bad for dying neurons? Front. Cell. Neurosci. 2013 7 OCT 186 10.3389/fncel.2013.00186 24167473
    [Google Scholar]
  31. Belfiore A. Frasca F. Pandini G. Sciacca L. Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr. Rev. 2009 30 6 586 623 10.1210/er.2008‑0047 19752219
    [Google Scholar]
  32. Pardo J. Uriarte M. Cónsole G.M. Insulin‐like growth factor‐I gene therapy increases hippocampal neurogenesis, astrocyte branching and improves spatial memory in female aging rats. Eur. J. Neurosci. 2016 44 4 2120 2128 10.1111/ejn.13278 27188415
    [Google Scholar]
  33. Holzenberger M. Dupont J. Ducos B. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2002 421 182 10.1038/nature01298
    [Google Scholar]
  34. Lee S.H. Min K.J. Caloric restriction and its mimetics. BMB Rep. 2013 46 4 181 187 10.5483/BMBRep.2013.46.4.033 23615258
    [Google Scholar]
  35. Vermeulen C. Loeschcke V. Longevity and the stress response in Drosophila. Exp. Gerontol. 2007 42 3 153 159 10.1016/j.exger.2006.09.014 17110070
    [Google Scholar]
  36. Bonafè M. Barbieri M. Marchegiani F. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J. Clin. Endocrinol. Metab. 2003 88 7 3299 3304 10.1210/jc.2002‑021810 12843179
    [Google Scholar]
  37. Suh Y. Atzmon G. Cho M.O. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl. Acad. Sci. USA 2008 105 9 3438 3442 10.1073/pnas.0705467105 18316725
    [Google Scholar]
  38. Satoh A. Brace C.S. Rensing N. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013 18 3 416 430 10.1016/j.cmet.2013.07.013 24011076
    [Google Scholar]
  39. Zhao L. Cao J. Hu K. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 2020 11 4 927 945 10.14336/AD.2019.0820 32765955
    [Google Scholar]
  40. Teertam S.K. Prakash Babu P. Differential role of SIRT1/MAPK pathway during cerebral ischemia in rats and humans. Sci. Rep. 2021 11 1 6339 10.1038/s41598‑021‑85577‑9 33737560
    [Google Scholar]
  41. Aow J. Huang T.R. Thinakaran G. Koo E.H. Enhanced cleavage of APP by co-expressed Bace1 alters the distribution of APP and its fragments in neuronal and non-neuronal cells. Mol. Neurobiol. 2022 59 5 3073 3090 10.1007/s12035‑022‑02733‑6 35266114
    [Google Scholar]
  42. Yang X. Sun G.Y. Eckert G.P. Lee J.C.M. Cellular membrane fluidity in amyloid precursor protein processing. Mol. Neurobiol. 2014 50 1 119 129 10.1007/s12035‑014‑8652‑6 24553856
    [Google Scholar]
  43. Mellini P. Valente S. Mai A. Sirtuin modulators: An updated patent review (2012 – 2014). Expert Opin. Ther. Pat. 2015 25 1 5 15 10.1517/13543776.2014.982532 25435179
    [Google Scholar]
  44. Yan L. Guo M.S. Zhang Y. Dietary plant polyphenols as the potential drugs in neurodegenerative diseases: Current evidence, advances, and opportunities. Oxid. Med. Cell. Longev. 2022 2022 1 1 40 10.1155/2022/5288698 35237381
    [Google Scholar]
  45. Zhu L. Lu F. Zhang X. Liu S. Mu P. SIRT1 is involved in the neuroprotection of pterostilbene against amyloid β 25–35-induced cognitive deficits in mice. Front. Pharmacol. 2022 13 877098 10.3389/fphar.2022.877098 35496289
    [Google Scholar]
  46. Ibi D. Kondo S. Ohmi A. Preventive effect of betaine against cognitive impairments in amyloid β peptide-injected mice through sirtuin1 in hippocampus. Neurochem. Res. 2022 47 8 2333 2344 10.1007/s11064‑022‑03622‑z 35597887
    [Google Scholar]
  47. Islam F. Nafady M.H. Islam M.R. Resveratrol and neuroprotection: An insight into prospective therapeutic approaches against Alzheimer’s disease from bench to bedside. Mol. Neurobiol. 2022 59 7 4384 10.1007/s12035‑022‑02859‑7
    [Google Scholar]
  48. Qin W. Chachich M. Lane M. Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus). J. Alzheimers Dis. 2006 10 4 417 422 10.3233/JAD‑2006‑10411 17183154
    [Google Scholar]
  49. Wang R. Wu Y. Liu R. Deciphering therapeutic options for neurodegenerative diseases: Insights from SIRT1. J. Mol. Med. (Berl.) 2022 100 4 537 553 10.1007/s00109‑022‑02187‑2 35275221
    [Google Scholar]
  50. Conze C. Rierola M. Trushina N.I. Caspase-cleaved tau is senescence-associated and induces a toxic gain of function by putting a brake on axonal transport. Mol. Psychiatry 2022 27 7 3010 3023 10.1038/s41380‑022‑01538‑2 35393558
    [Google Scholar]
  51. Hu W. Wu F. Zhang Y. Gong C.X. Iqbal K. Liu F. Expression of tau pathology-related proteins in different brain regions: A molecular basis of tau pathogenesis. Front. Aging Neurosci. 2017 9 SEP 311 10.3389/fnagi.2017.00311 29021756
    [Google Scholar]
  52. Chidambaram H. Chinnathambi S. G-protein coupled receptors and tau-different roles in alzheimer’s disease. Neuroscience 2020 438 198 214 10.1016/j.neuroscience.2020.04.019 32335218
    [Google Scholar]
  53. Vasconcelos I.C. Campos R.M. Schwaemmle H.K. A freeze-and-thaw-induced fragment of the microtubule-associated protein tau in rat brain extracts: Implications for the biochemical assessment of neurotoxicity. Biosci. Rep. 2021 41 3 BSR20203980 10.1042/BSR20203980 33629708
    [Google Scholar]
  54. Watroba M. Szukiewicz D. Sirtuins promote brain homeostasis, preventing Alzheimer’s disease through targeting neuroinflammation. Front. Physiol. 2022 13 962769 10.3389/fphys.2022.962769 36045741
    [Google Scholar]
  55. Cohen T.J. Guo J.L. Hurtado D.E. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2011 2 1 252 10.1038/ncomms1255 21427723
    [Google Scholar]
  56. Min S.W. Cho S.H. Zhou Y. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010 67 6 953 966 10.1016/j.neuron.2010.08.044 20869593
    [Google Scholar]
  57. Zhu X. Wang F. Lei X. Dong W. Resveratrol alleviates alveolar epithelial cell injury induced by hyperoxia by reducing apoptosis and mitochondrial dysfunction. Exp. Biol. Med. (Maywood) 2020 246 596 10.1177/1535370220975106
    [Google Scholar]
  58. Dhapola R. Hota S.S. Sarma P. Bhattacharyya A. Medhi B. Reddy D.H. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology 2021 29 6 1669 1681 10.1007/s10787‑021‑00889‑6 34813026
    [Google Scholar]
  59. Bairamian D. Sha S. Rolhion N. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease. Mol. Neurodegener. 2022 17 1 19 10.1186/s13024‑022‑00522‑2
    [Google Scholar]
  60. Brites D. Fernandes A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front. Cell. Neurosci. 2015 9 DEC 476 10.3389/fncel.2015.00476 26733805
    [Google Scholar]
  61. Choi J.S. Nurul Islam M. Yousof Ali M. Kim E.J. Kim Y.M. Jung H.A. Effects of C-glycosylation on anti-diabetic, anti-Alzheimer’s disease and anti-inflammatory potential of apigenin. Food Chem. Toxicol. 2014 64 27 33 10.1016/j.fct.2013.11.020 24291393
    [Google Scholar]
  62. He Y. Ruganzu J.B. Zheng Q. Silencing of LRP1 exacerbates inflammatory response via TLR4/NF-κB/MAPKs signaling pathways in APP/PS1 transgenic mice. Mol. Neurobiol. 2020 57 9 3727 3743 10.1007/s12035‑020‑01982‑7 32572761
    [Google Scholar]
  63. Ye J. Liu Z. Wei J. Protective effect of SIRT1 on toxicity of microglial-derived factors induced by LPS to PC12 cells via the p53-caspase-3-dependent apoptotic pathway. Neurosci. Lett. 2013 553 72 77 10.1016/j.neulet.2013.08.020 23973301
    [Google Scholar]
  64. Zhang H. Cao Y. Chen L. A polysaccharide from Polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells. Carbohydr. Polym. 2015 117 879 886 10.1016/j.carbpol.2014.10.034 25498712
    [Google Scholar]
  65. De Mingo Á. De Gregorio E. Moles A. Cysteine cathepsins control hepatic NF-κB-dependent inflammation via sirtuin-1 regulation. Cell Death Dis. 2016 7 11 e2464 e4 10.1038/cddis.2016.368 27831566
    [Google Scholar]
  66. Dell’Omo G. Crescenti D. Vantaggiato C. Inhibition of SIRT1 deacetylase and p53 activation uncouples the anti-inflammatory and chemopreventive actions of NSAIDs. Br. J. Cancer 2019 120 5 537 546 10.1038/s41416‑018‑0372‑7 30739913
    [Google Scholar]
  67. Manjula R. Anuja K. Alcain F.J. SIRT1 and SIRT2 activity control in neurodegenerative diseases. Front. Pharmacol. 2021 11 585821 10.3389/fphar.2020.585821 33597872
    [Google Scholar]
  68. Chang N. Li J. Lin S. Emerging roles of SIRT1 activator, SRT2104, in disease treatment. Sci. Rep. 2024 14 1 5521 10.1038/s41598‑024‑55923‑8 38448466
    [Google Scholar]
  69. Fagerli E. Escobar I. Ferrier F.J. Jackson C.W. Perez-Lao E.J. Perez-Pinzon M.A. Sirtuins and cognition: Implications for learning and memory in neurological disorders. Front. Physiol. 2022 13 908689 10.3389/fphys.2022.908689 35936890
    [Google Scholar]
  70. Lovy A. Ahumada-Castro U. Bustos G. Concerted action of AMPK and Sirtuin-1 induces mitochondrial fragmentation upon inhibition of Ca2+ transfer to mitochondria. Front. Cell Dev. Biol. 2020 8 378 10.3389/fcell.2020.00378 32523953
    [Google Scholar]
  71. Jain S. Murmu A. Patel S. Elucidating the therapeutic mechanism of betanin in Alzheimer’s Disease treatment through network pharmacology and bioinformatics analysis. Metab. Brain Dis. 2024 39 6 1175 1187 10.1007/s11011‑024‑01385‑w 38995496
    [Google Scholar]
  72. Trelford C.B. Shepherd T.G. LKB1 biology: assessing the therapeutic relevancy of LKB1 inhibitors. Cell Commun. Signal. 2024 22 1 310 10.1186/s12964‑024‑01689‑5 38844908
    [Google Scholar]
  73. Tang H. Wen J. Qin T. New insights into Sirt1: potential therapeutic targets for the treatment of cerebral ischemic stroke. Front. Cell. Neurosci. 2023 17 1228761 10.3389/fncel.2023.1228761 37622049
    [Google Scholar]
  74. Liang H. Chang X. Xia R. Wu W. Guo H. Yang M. Magnoflorine attenuates cerebral ischemia-induced neuronal injury via Autophagy/Sirt1/AMPK signaling pathway. Evid. Based Complement. Alternat. Med. 2022 22 2131561 10.1155/2022/2131561
    [Google Scholar]
  75. Marei H.E. Althani A. Afifi N. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021 21 1 703 10.1186/s12935‑021‑02396‑8 34952583
    [Google Scholar]
  76. Wolfrum P. Fietz A. Schnichels S. Hurst J. The function of p53 and its role in Alzheimer’s and Parkinson’s disease compared to age-related macular degeneration. Front. Neurosci. 2022 16 December 1029473 10.3389/fnins.2022.1029473 36620455
    [Google Scholar]
  77. Clark J.S. Kayed R. Abate G. Uberti D. Kinnon P. Piccirella S. Post-translational modifications of the p53s protein and the impact in alzheimer’s diease: A Review of the literature. Front. Aging Neurosci. 2022 14 835288 10.3389/fnagi.2022.835288 35572126
    [Google Scholar]
  78. Jain S. Singh R. Paliwal S. Sharma S. Targeting Neuroinflammation as Disease Modifying Approach to Alzheimer’s Disease: Potential and Challenges. Mini Rev. Med. Chem. 2023 23 22 2097 2116 10.2174/1389557523666230511122435 37170998
    [Google Scholar]
  79. Lee J. Ko Y.U. Chung Y. The acetylation of cyclin-dependent kinase 5 at lysine 33 regulates kinase activity and neurite length in hippocampal neurons. Sci. Rep. 2018 8 13676 10.1038/s41598‑018‑31785‑9
    [Google Scholar]
  80. Kalous K.S. Wynia-Smith S.L. Olp M.D. Smith B.C. Mechanism of Sirt1 NAD+-dependent protein deacetylase inhibition by cysteine S-nitrosation. J. Biol. Chem. 2016 291 49 25398 25410 10.1074/jbc.M116.754655 27756843
    [Google Scholar]
  81. Sasaki T. Kim H.J. Kobayashi M. Induction of hypothalamic Sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology 2010 151 6 2556 2566 10.1210/en.2009‑1319 20375183
    [Google Scholar]
  82. Stumpferl S.W. Brand S.E. Jiang J.C. Natural genetic variation in yeast longevity. Genome Res. 2012 22 10 1963 1973 10.1101/gr.136549.111 22955140
    [Google Scholar]
  83. Hallows W.C. Yu W. Denu J.M. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J. Biol. Chem. 2012 287 6 3850 3858 10.1074/jbc.M111.317404 22157007
    [Google Scholar]
  84. Walker A.K. Yang F. Jiang K. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 2010 24 13 1403 1417 10.1101/gad.1901210 20595232
    [Google Scholar]
  85. Luo G. Xiao L. Wang D. Resveratrol protects against ethanol-induced impairment of insulin secretion in INS-1 cells through SIRT1-UCP2 axis. Toxicol. In Vitro 2020 65 104808 10.1016/j.tiv.2020.104808
    [Google Scholar]
  86. Song Y. Wu Z. Zhao P. The protective effects of activating Sirt1/NF-κB pathway for neurological disorders. Rev. Neurosci. 2022 33 4 427 438 10.1515/revneuro‑2021‑0118 34757706
    [Google Scholar]
  87. Qiang L. Wang L. Kon N. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 2012 150 3 620 632 10.1016/j.cell.2012.06.027 22863012
    [Google Scholar]
  88. Planavila A. Iglesias R. Giralt M. Villarroya F. Sirt1 acts in association with PPAR to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc. Res. 2011 90 2 276 284 10.1093/cvr/cvq376 21115502
    [Google Scholar]
  89. Lan F. Cacicedo J.M. Ruderman N. Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 2008 283 41 27628 27635 10.1074/jbc.M805711200 18687677
    [Google Scholar]
  90. Feringa F.M. van der Kant R. Cholesterol and Alzheimer’s disease: From risk genes to pathological effects. Front. Aging Neurosci. 2021 13 690372 10.3389/fnagi.2021.690372 34248607
    [Google Scholar]
  91. Wu M. Zhai Y. Liang X. Connecting the dots between hypercholesterolemia and alzheimer’s disease: A potential mechanism based on 27-hydroxycholesterol. Front. Neurosci. 2022 16 April 842814 10.3389/fnins.2022.842814 35464321
    [Google Scholar]
  92. Gamba P. Staurenghi E. Testa G. Giannelli S. Sottero B. Leonarduzzi G. A crosstalk between brain cholesterol oxidation and glucose metabolism in Alzheimer’s disease. Front. Neurosci. 2019 13 MAY 556 10.3389/fnins.2019.00556 31213973
    [Google Scholar]
  93. Clark C. Gholam M. Zullo L. Plant sterols and cholesterol metabolism are associated with five-year cognitive decline in the elderly population. iScience 2023 26 6 106740 10.1016/j.isci.2023.106740 37250771
    [Google Scholar]
  94. Rawat P. Sehar U. Bisht J. Selman A. Culberson J. Reddy P.H. Phosphorylated Tau in Alzheimer’s disease and other tauopathies. Int. J. Mol. Sci. 2022 23 21 12841 10.3390/ijms232112841 36361631
    [Google Scholar]
  95. Chauhan A. Dubey S. Jain S. Association between type 2 diabetes mellitus and alzheimer’s disease: Common molecular mechanism and therapeutic targets. Cell Biochem. Funct. 2024 42 7 e4111 10.1002/cbf.4111 39228117
    [Google Scholar]
  96. Akbulut K.G. Keskin-Aktan A. Abgarmi S.A. Akbulut H. The role of SIRT2 inhibition on the aging process of brain in male rats. Aging Brain 2023 4 100087 10.1016/j.nbas.2023.100087 37519449
    [Google Scholar]
  97. Ma X. Zhao Y. Yang T. Integration of network pharmacology and molecular docking to explore the molecular mechanism of Cordycepin in the treatment of Alzheimer’s disease. Front. Aging Neurosci. 2022 14 1058780 10.3389/fnagi.2022.1058780 36620771
    [Google Scholar]
  98. Kim M.J. Hwang J.W. Yun C.K. Lee Y. Choi Y.S. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci. Rep. 2018 8 1 3330 10.1038/s41598‑018‑21539‑y 29463809
    [Google Scholar]
  99. Mariani S. Di Giorgio M.R. Rossi E. Blood SIRT1 shows a Coherent Association with Leptin and Adiponectin in relation to the degree and distribution of adiposity: A study in obesity, normal weight and Anorexia Nervosa. Nutrients 2020 12 11 3506 10.3390/nu12113506 33202604
    [Google Scholar]
  100. Qiu X. Lu P. Zeng X. Jin S. Chen X. Study on the mechanism for SIRT1 during the process of exercise improving depression. Brain Sci. 2023 13 5 719 10.3390/brainsci13050719
    [Google Scholar]
  101. Tetsuka S. Depression and dementia in older adults: A neuropsychological review. Aging Dis. 2021 12 8 1920 1934 10.14336/AD.2021.0526 34881077
    [Google Scholar]
  102. Jain S. Chauhan N. Exploring non-canonical targets in Alzheimer’s disease: A departure from the norm. Egypt. J. Neurol. Psychiat. Neurosurg. 2024 60 1 135 10.1186/s41983‑024‑00908‑7
    [Google Scholar]
  103. Zhang Y. Anoopkumar-Dukie S. Davey A.K. SIRT1 and SIRT2 modulators: Potential anti-inflammatory treatment for depression? Biomolecules 2021 11 3 353 10.3390/biom11030353 33669121
    [Google Scholar]
  104. Abdolmaleky H.M. Zhou J.R. Underlying mechanisms of brain aging and neurodegenerative diseases as potential targets for preventive or therapeutic strategies using phytochemical. Nutrients 2023 15 3456 10.3390/nu15153456
    [Google Scholar]
  105. Harris A.L. DNA repair and resistance to chemotherapy. Cancer Surv. 1985 4 3 601 624 3916657
    [Google Scholar]
  106. Tsukamoto S. Akashi-Tanaka S. Shien T. Terada K. Kinoshita T. Brain metastases after achieving local pathological complete responses with neoadjuvant chemotherapy. Breast Cancer 2007 14 4 420 424 10.2325/jbcs.14.420 17986809
    [Google Scholar]
  107. Yu L. Li Y. Song S. The dual role of sirtuins in cancer: Biological functions and implications. Front. Oncol. 2024 14 1384928 10.3389/fonc.2024.1384928 38947884
    [Google Scholar]
  108. Shi Z.D. Pang K. Wu Z.X. Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies. Signal Transduct. Target. Ther. 2023 8 113 10.1038/s41392‑023‑01383‑x
    [Google Scholar]
  109. Fajardo-Orduña G.R. Ledesma-Martínez E. Aguiñiga-Sanchez I. Weiss-Steider B. Santiago-Osorio E. Role of SIRT1 in chemoresistant leukemia. Int. J. Mol. Sci. 2023 24 19 14470 10.3390/ijms241914470 37833921
    [Google Scholar]
  110. Dilmac S. Kuscu N. Caner A. SIRT1/FOXO signaling pathway in breast cancer progression and metastasis. Int. J. Mol. Sci. 2022 23 18 10227 10.3390/ijms231810227 36142156
    [Google Scholar]
  111. Jain S. Bhushan B. Mishra A.K. Singh R. Unlocking therapeutic potential of siRNA-based drug delivery system for treatment of Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 2024 102 106413 10.1016/j.jddst.2024.106413
    [Google Scholar]
  112. Goebel J. Chmielewski J. Hrycyna C.A. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: Future opportunities for structure-based drug design of inhibitors. Cancer Drug Resist. 2021 4 4 784 804 10.20517/cdr.2021.19 34993424
    [Google Scholar]
  113. Yousafzai N.A. Jin H. Ullah M. Wang X. Recent advances of SIRT1 and implications in chemotherapeutics resistance in cancer. Am. J. Cancer Res. 2021 11 11 5233 5248 34873458
    [Google Scholar]
  114. Wang Y. Tong L. Gu N. Association of Sirtuin 1 gene polymorphisms with the risk of coronary heart disease in chinese han patients with type 2 diabetes mellitus. J. Diabetes Res. 2022 2022 1 7 10.1155/2022/8494502 35469171
    [Google Scholar]
  115. Salazar-García S. Ibáñez-Salazar A. Lares-Villaseñor E. Analysis of SIRT1 genetic variants in young Mexican individuals: Relationships with overweight and obesity. Front. Genet. 2024 15 1278201 10.3389/fgene.2024.1278201 38645486
    [Google Scholar]
  116. da Fonseca A.C.P. Assis I.S.S. Salum K.C.R. Genetic variants in DBC1, SIRT1, UCP2 and ADRB2 as potential biomarkers for severe obesity and metabolic complications. Front. Genet. 2024 15 1363417 10.3389/fgene.2024.1363417 38841722
    [Google Scholar]
  117. Nan D. Yuqi C. Zonglin S. Association of a SIRT1 polymorphism with changes of gray matter volume in patients with first-episode medication-naïve major depression. Psychiatry Res. Neuroimaging 2020 301 111101 10.1016/j.pscychresns.2020.111101 32447184
    [Google Scholar]
  118. D’Angelo S. Mele E. Di Filippo F. Viggiano A. Meccariello R. Sirt1 activity in the brain: Simultaneous effects on energy homeostasis and reproduction. Int. J. Environ. Res. Public Health 2021 18 3 1243 10.3390/ijerph18031243 33573212
    [Google Scholar]
  119. Lei Y. Wang J. Wang D. SIRT1 in forebrain excitatory neurons produces sexually dimorphic effects on depression-related behaviors and modulates neuronal excitability and synaptic transmission in the medial prefrontal cortex. Mol. Psychiatry 2020 25 5 1094 1111 10.1038/s41380‑019‑0352‑1 30705425
    [Google Scholar]
  120. Hou Y. Su B. Chen P. Association of SIRT1 gene polymorphism and its expression for the risk of alcoholic fatty liver disease in the Han population. Hepatol. Int. 2018 12 1 56 66 10.1007/s12072‑017‑9836‑8 29189974
    [Google Scholar]
  121. Zhao Y. Wei J. Hou X. SIRT1 rs10823108 and FOXO1 rs17446614 responsible for genetic susceptibility to diabetic nephropathy. Sci. Rep. 2017 7 1 10285 10.1038/s41598‑017‑10612‑7 28860538
    [Google Scholar]
  122. Aftanas L.I. Anisimenko M.S. Berdyugina D.A. SIRT1 allele frequencies in depressed patients of European Descent in Russia. Front. Genet. 2019 9 JAN 686 10.3389/fgene.2018.00686 30662452
    [Google Scholar]
  123. Libert S. Pointer K. Bell E.L. SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 2011 147 7 1459 1472 10.1016/j.cell.2011.10.054 22169038
    [Google Scholar]
  124. Han J. Wei M. Wang Q. Association of genetic variants of SIRT1 with type 2 diabetes mellitus. Gene Expr. 2015 16 4 177 185 10.3727/105221615X14399878166195 26637398
    [Google Scholar]
  125. Kishi T. Yoshimura R. Kitajima T. SIRT1 gene is associated with major depressive disorder in the Japanese population. J. Affect. Disord. 2010 126 1-2 167 173 10.1016/j.jad.2010.04.003 20451257
    [Google Scholar]
  126. Rizzi L. Roriz-Cruz M. Sirtuin 1 and Alzheimer’s disease: An up-to-date review. Neuropeptides 2018 71 54 60 10.1016/j.npep.2018.07.001 30007474
    [Google Scholar]
  127. Li H. Wang R. Blocking SIRT1 inhibits cell proliferation and promotes aging through the PI3K/AKT pathway. Life Sci. 2017 190 July 84 90 10.1016/j.lfs.2017.09.037 28962864
    [Google Scholar]
  128. Mishra P. Mittal A.K. Kalonia H. SIRT1 promotes neuronal fortification in neurodegenerative diseases through attenuation of pathological hallmarks and enhancement of cellular lifespan. Curr. Neuropharmacol. 2021 19 7 1019 1037 10.2174/18756190MTA44NjIg1 32727328
    [Google Scholar]
  129. Lu S. Yin X. Wang J. SIRT1 regulates O-GlcNAcylation of tau through OGT. Aging (Albany NY) 2020 12 8 7042 7055 10.18632/aging.103062 32310828
    [Google Scholar]
  130. Zhu Y. Shan X. Yuzwa S.A. Vocadlo D.J. The emerging link between O-GlcNAc and Alzheimer disease. J. Biol. Chem. 2014 289 50 34472 34481 10.1074/jbc.R114.601351 25336656
    [Google Scholar]
  131. Hart G.W. Slawson C. Ramirez-Correa G. Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 2011 80 1 825 858 10.1146/annurev‑biochem‑060608‑102511 21391816
    [Google Scholar]
  132. Chatham J. Marchase R. Protein O-GlcNAcylation: A critical regulator of the cellular response to stress. Curr. Signal Transduct. Ther. 2010 5 1 49 59 10.2174/157436210790226492 22308107
    [Google Scholar]
  133. Bao W. Xie F. Zuo C. Guan Y. Huang Y.H. PET neuroimaging of Alzheimer’s disease: Radiotracers and their utility in clinical research. Front. Aging Neurosci. 2021 13 624330 10.3389/fnagi.2021.624330 34025386
    [Google Scholar]
  134. Thapa R. Afzal M. Goyal A. Exploring ncRNA-mediated regulation of EGFR signalling in glioblastoma: From mechanisms to therapeutics. Life Sci. 2024 345 122613 10.1016/j.lfs.2024.122613 38582393
    [Google Scholar]
  135. Xu Y. Chen Z. Wey H.Y. Molecular imaging of NAD + ‐dependent deacetylase SIRT1 in the brain. Alzheimers Dement. 2021 17 12 1988 1997 10.1002/alz.12344 33860595
    [Google Scholar]
  136. Sharma H. Kim D.Y. Shim K.H. Sharma N. An S.S.A. Multi-targeting neuroprotective effects of Syzygium aromaticum bud extracts and their key phytocompounds against neurodegenerative diseases. Int. J. Mol. Sci. 2023 24 9 8148 10.3390/ijms24098148 37175851
    [Google Scholar]
  137. Li Q. Zeng J. Su M. He Y. Zhu B. Acetylshikonin from Zicao attenuates cognitive impairment and hippocampus senescence in d-galactose-induced aging mouse model via upregulating the expression of SIRT1. Brain Res. Bull. 2018 137 January 311 318 10.1016/j.brainresbull.2018.01.007 29325995
    [Google Scholar]
  138. Sehar U. Rawat P. Reddy A.P. Kopel J. Reddy P.H. Amyloid Beta in Aging and Alzheimer’s Disease. Int. J. Mol. Sci. 2022 23 21 12924 10.3390/ijms232112924 36361714
    [Google Scholar]
  139. Li R. Li Y. Zuo H. Pei G. Huang S. Hou Y. Alzheimer’s Amyloid-β accelerates cell senescence and suppresses SIRT1 in human neural stem cells. Biomolecules 2024 14 2 189 10.3390/biom14020189 38397428
    [Google Scholar]
  140. An Y. Li Y. Hou Y. Huang S. Pei G. Alzheimer’s Amyloid-β accelerates cell senescence and suppresses the SIRT1/NRF2 pathway in human microglial cells. Oxid. Med. Cell. Longev. 2022 2022 1 17 10.1155/2022/3086010 36035216
    [Google Scholar]
  141. Xu F. Xu J. Xiong X. Deng Y. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Rep. 2019 24 1 70 74 10.1080/13510002.2019.1658377 31495284
    [Google Scholar]
  142. Gao J. Zhou R. You X. Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer’s disease via SIRT1/NF-κB pathway. Metab. Brain Dis. 2016 31 4 771 778 10.1007/s11011‑016‑9813‑2 26909502
    [Google Scholar]
  143. Wu C. Yang L. Feng S. Therapeutic non-invasive brain treatments in Alzheimer’s disease: Recent advances and challenges. Inflamm. Regen. 2022 42 1 31 10.1186/s41232‑022‑00216‑8 36184623
    [Google Scholar]
  144. Zhang Z. Shen Q. Wu X. Zhang D. Xing D. Activation of PKA/SIRT1 signaling pathway by photobiomodulation therapy reduces Aβ levels in Alzheimer’s disease models. Aging Cell 2020 19 1 e13054 10.1111/acel.13054 31663252
    [Google Scholar]
  145. Chen Y. He Y. Han J. Wei W. Chen F. Blood-brain barrier dysfunction and Alzheimer’s disease: Associations, pathogenic mechanisms, and therapeutic potential. Front. Aging Neurosci. 2023 15 1258640 10.3389/fnagi.2023.1258640 38020775
    [Google Scholar]
  146. Stamatovic S.M. Martinez-Revollar G. Hu A. Choi J. Keep R.F. Andjelkovic A.V. Decline in Sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging. Neurobiol. Dis. 2019 126 126 105 116 10.1016/j.nbd.2018.09.006 30196051
    [Google Scholar]
  147. Hussain M.S. Altamimi A.S.A. Afzal M. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Exp. Gerontol. 2024 188 112389 10.1016/j.exger.2024.112389 38432575
    [Google Scholar]
  148. Li N. Bai N. Zhao X. Cooperative effects of SIRT1 and SIRT2 on APP acetylation. Aging Cell 2023 22 10 e13967 10.1111/acel.13967 37602729
    [Google Scholar]
  149. Shekhar S. Yadav Y. Singh A.P. Neuroprotection by ethanolic extract of Syzygium aromaticum in Alzheimer’s disease like pathology via maintaining oxidative balance through SIRT1 pathway. Exp. Gerontol. 2018 110 May 277 283 10.1016/j.exger.2018.06.026 29959974
    [Google Scholar]
  150. Hadar A. Kapitansky O. Ganaiem M. Introducing ADNP and SIRT1 as new partners regulating microtubules and histone methylation. Mol. Psychiatry 2021 26 11 6550 6561 10.1038/s41380‑021‑01143‑9 33967268
    [Google Scholar]
  151. Moussa C. Hebron M. Huang X. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation 2017 14 1 1 10 10.1186/s12974‑016‑0779‑0 28086917
    [Google Scholar]
/content/journals/cei/10.2174/0115734080366376250630054928
Loading
/content/journals/cei/10.2174/0115734080366376250630054928
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test