Skip to content
2000
image of Biochemical Precision: Enzyme-Responsive Drug Delivery Systems in Cancer Therapy

Abstract

Systemic toxicity and low efficiency hinder effective cancer therapies, but Targeted Drug Delivery Systems (TDDS) offer a promising solution by focusing drug action on tumor sites, sparing healthy tissues. Among these, Enzyme-Responsive Drug Delivery Systems (ERDDS) utilize the elevated enzyme activity in the tumor microenvironment to trigger drug release. Tumor-specific enzymes such as proteases, lipases, hydrolases, lysyl oxidases, glycoxidases and oxidoreductases act as activators, ensuring precise drug release. ERDDS design involves selecting suitable carriers like polymers, nanoparticles, or lipids and incorporating enzymatically sensitive components. Based on their architecture, ERDDS are categorized into polymeric, lipid-based, inorganic, or hybrid types, each with distinct mechanisms of action. These systems have applications in various combination therapies as well as chemotherapy, gene therapy, immunotherapy, radiation therapy and photodynamic therapy, offering enhanced treatment efficacy and reduced side effects compared to conventional DDS. Despite the advantages of enzyme-responsive nano-DDS, significant challenges like scalability, enzymatic variability, resistance, toxicity, poor tumor distribution, premature drug release from liver hydrolases, and issues with solubility, stability, and unpredictable release in TDDS must be addressed for clinical viability, though combinatorial therapies offer promise in overcoming these obstacles. Ongoing clinical trials and market evaluations provide insight into regulatory hurdles and the potential for ERDDS in future therapies. Emerging technologies like CRISPR-based enzyme systems and theranostics are also expected to shape the future of cancer treatments. ERDDS represent a personalized, selective, and effective approach to drug delivery, with the potential to improve patient outcomes and advance cancer care by integrating combination therapies and cutting-edge innovations.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080363073250723061416
2025-08-18
2025-11-01
Loading full text...

Full text loading...

References

  1. Shahriari M. Zahiri M. Abnous K. Taghdisi S.M. Ramezani M. Alibolandi M. Enzyme responsive drug delivery systems in cancer treatment. J. Control. Release 2019 308 May 172 189 10.1016/j.jconrel.2019.07.004 31295542
    [Google Scholar]
  2. Li M. Zhao G. Su W.K. Shuai Q. Enzyme-responsive nanoparticles for anti-tumor drug delivery. Front Chem. 2020 8 July 647 10.3389/fchem.2020.00647 32850662
    [Google Scholar]
  3. Wen R. Umeano A.C. Chen P. Farooqi A.A. Polymer-based drug delivery systems for cancer. Crit. Rev. Ther. Drug Carrier Syst. 2018 35 6 521 553 10.1615/CritRevTherDrugCarrierSyst.2018021124 30317968
    [Google Scholar]
  4. Liu H. Yang F. Chen W. Gong T. Zhou Y. Dai X. Enzyme-responsive materials as carriers for improving photodynamic therapy. Front Chem 2021 9 763057 10.3389/fchem.2021.763057 34796163
    [Google Scholar]
  5. Amjad M.T. Chidharla A.K.A. Cancer chemotherapy. StatPearls 2024
    [Google Scholar]
  6. Xiao Y Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther 2021 221 107753 10.1016/j.pharmthera.2020.107753 33259885
    [Google Scholar]
  7. Jin Z. Al Amili M. Guo S. Tumor microenvironment-responsive drug delivery based on polymeric micelles for precision cancer therapy: Strategies and prospects. Biomedicines 2024 12 2 417 10.3390/biomedicines12020417 38398021
    [Google Scholar]
  8. Cong X. Chen J. Xu R. Recent progress in bio-responsive drug delivery systems for tumor therapy. 2022 10 1 22 10.3389/fbioe.2022.916952
    [Google Scholar]
  9. Wang X. Li C. Wang Y. Chen H. Zhang X. Luo C. Zhou W. Li L. Teng L. Yu H. Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharm. Sin. B 2022 12 11 4098 4121 10.1016/j.apsb.2022.08.013 36386470
    [Google Scholar]
  10. Roop K. Lachman/Lieberman’s the theory and practise of industrial pharmacy. 4th ed 2013
    [Google Scholar]
  11. Cao Z. Li W. Liu R. Li X. Li H. Liu L. Chen Y. Lv C. Liu Y. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomed. Pharmacother. 2019 118 July 109340 10.1016/j.biopha.2019.109340 31545284
    [Google Scholar]
  12. Raza A. Rasheed T. Nabeel F. Hayat U. Bilal M. Iqbal H.M.N. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules 2019 24 6 1117 10.3390/molecules24061117 30901827
    [Google Scholar]
  13. Hu Q. Katti P.S. Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 2014 6 21 12273 12286 10.1039/C4NR04249B 25251024
    [Google Scholar]
  14. Asha A.B. Srinivas S. Hao X. Narain R. Enzyme-responsive polymers: Classifications, properties, synthesis strategies, and applications. In: Smart Polymers and their Applications 2nd ed Woodhead Publishing 2019 10.1016/B978‑0‑08‑102416‑4.00005‑3
    [Google Scholar]
  15. Marwah H. Dewangan H.K. Advancements in solid lipid nanoparticles and nanostructured lipid carriers for breast cancer therapy. Curr. Pharm. Des. 2024 30 37 2922 2936 10.2174/0113816128319233240725103706 39150028
    [Google Scholar]
  16. Elumalai K. Srinivasan S. Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed. Technol. 2024 5 109 122 10.1016/j.bmt.2023.09.001
    [Google Scholar]
  17. Chehelgerdi M Chehelgerdi M Allela OQB Daniel R Pecho C Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol Cancer 2023 22 1 169 10.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  18. Tiwari H. Rai N. Singh S. Gupta P. Verma A. Singh A.K. Kajal Salvi P. Singh S.K. Gautam V. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering 2023 10 7 760 10.3390/bioengineering10070760 37508788
    [Google Scholar]
  19. Patel J.K. Patel A.P. Passive targeting of nanoparticles to cancer. In: Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer International Publishing Cham 2019 125 143 10.1007/978‑3‑030‑06115‑9_6
    [Google Scholar]
  20. Ekinci M. Magne T.M. Alencar L.M.R. Fechine P.B.A. Santos-Oliveira R. Ilem-Özdemir D. Molecular imaging for lung cancer: Exploring small molecules, peptides, and beyond in radiolabeled diagnostics. Pharmaceutics 2024 16 3 404 10.3390/pharmaceutics16030404 38543298
    [Google Scholar]
  21. Prabahar K. Alanazi Z. Qushawy M. Targeted drug delivery system: Advantages, carriers and strategies. Indian J. Pharm. Educ. Res. 2021 55 2 346 353 10.5530/ijper.55.2.72
    [Google Scholar]
  22. Narum S.M. Le T. Le D.P. Lee J.C. Donahue N.D. Yang W. Passive targeting in nanomedicine: Fundamental concepts, body interactions, and clinical potential. In: Nanoparticles for Biomedical Applications. Elsevier 2020 37 53 10.1016/B978‑0‑12‑816662‑8.00004‑7
    [Google Scholar]
  23. Edis Z. Wang J. Waqas M.K. Ijaz M. Ijaz M. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives. Int. J. Nanomedicine 2021 16 1313 1330 10.2147/IJN.S289443 33628022
    [Google Scholar]
  24. Lugano R. Ramachandran M. Dimberg A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020 77 9 1745 1770 10.1007/s00018‑019‑03351‑7 31690961
    [Google Scholar]
  25. Warner J.H. Science in medicine. Osiris 1985 1 37 58 10.1086/368637 11621662
    [Google Scholar]
  26. Shi P. Cheng Z. Zhao K. Chen Y. Zhang A. Gan W. Zhang Y. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics. J. Nanobiotechnology 2023 21 1 103 10.1186/s12951‑023‑01826‑1 36944946
    [Google Scholar]
  27. Chen Y. Yang J. Fu S. Wu J. Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int. J. Nanomedicine 2020 15 9407 9430 10.2147/IJN.S272902 33262595
    [Google Scholar]
  28. Wang X. Yang L. Chen Z. Shin D.M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin. 2008 58 2 97 110 10.3322/CA.2007.0003 18227410
    [Google Scholar]
  29. Sun Y. Davis E. Nanoplatforms for targeted stimuli-responsive drug delivery: A review of platform materials and stimuli-responsive release and targeting mechanisms. Nanomaterials 2021 11 3 746 10.3390/nano11030746 33809633
    [Google Scholar]
  30. Li Y. Zhang C. Li G. Deng G. Zhang H. Sun Y. An F. Protease-triggered bioresponsive drug delivery for the targeted theranostics of malignancy. Acta Pharm. Sin. B 2021 11 8 2220 2242 10.1016/j.apsb.2021.01.017 34522585
    [Google Scholar]
  31. Egorova V.S. Kolesova E.P. Lopus M. Yan N. Parodi A. Zamyatnin A.A. Smart delivery systems responsive to cathepsin B activity for cancer treatment. Pharmaceutics 2023 15 7 1848 10.3390/pharmaceutics15071848 37514035
    [Google Scholar]
  32. Wei Y. Lv J. Zhu S. Wang S. Su J. Xu C. Enzyme-responsive liposomes for controlled drug release. Drug Discov. Today 2024 29 7 104014 10.1016/j.drudis.2024.104014 38705509
    [Google Scholar]
  33. Nultsch K. Germershaus O. Matrix metalloprotease triggered bioresponsive drug delivery systems – Design, synthesis and application. Eur. J. Pharm. Biopharm. 2018 131 189 202 10.1016/j.ejpb.2018.08.010 30145219
    [Google Scholar]
  34. Siegel R.C. Lysyl oxidase. Int Rev Connect Tissue Res 1979 8 73 118 10.1016/b978‑0‑12‑363708‑6.50009‑6 41816
    [Google Scholar]
  35. Li Y. Mei T. Han S. Han T. Sun Y. Zhang H. An F. Cathepsin B-responsive nanodrug delivery systems for precise diagnosis and targeted therapy of malignant tumors. Chin. Chem. Lett. 2020 31 12 3027 3040 10.1016/j.cclet.2020.05.027
    [Google Scholar]
  36. Alberghina M. Phospholipase A2: New lessons from endothelial cells. Microvasc. Res. 2010 80 2 280 285 10.1016/j.mvr.2010.03.013 20380842
    [Google Scholar]
  37. Khan S.A. Ilies M.A. The phospholipase A2 superfamily: Structure, isozymes, catalysis, physiologic and pathologic roles. Int. J. Mol. Sci. 2023 24 2 1353 10.3390/ijms24021353 36674864
    [Google Scholar]
  38. Chen J. Hu S. Sun M. Shi J. Zhang H. Yu H. Yang Z. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur. J. Pharm. Sci. 2024 193 106688 10.1016/j.ejps.2023.106688 38171420
    [Google Scholar]
  39. Jensen S.S. Andresen T.L. Davidsen J. Høyrup P. Shnyder S.D. Bibby M.C. Gill J.H. Jørgensen K. Secretory phospholipase A2 as a tumor-specific trigger for targeted delivery of a novel class of liposomal prodrug anticancer etherlipids. Mol. Cancer Ther. 2004 3 11 1451 1458 10.1158/1535‑7163.1451.3.11 15542784
    [Google Scholar]
  40. Belkhiri A. El-Rifai W. Advances in targeted therapies and new promising targets in esophageal cancer. Oncotarget 2015 6 3 1348 1358 10.18632/oncotarget.2752 25593196
    [Google Scholar]
  41. Amendola P.G. Reuten R. Erler J.T. Interplay between LOX enzymes and integrins in the tumor microenvironment. Cancers 2019 11 5 729 10.3390/cancers11050729 31130685
    [Google Scholar]
  42. Huang Y. Li C. Zhang X. Zhang M. Ma Y. Qin D. Tang S. Fei W. Qin J. Nanotechnology-integrated ovarian cancer metastasis therapy: Insights from the metastatic mechanisms into administration routes and therapy strategies. Int. J. Pharm. 2023 636 122827 10.1016/j.ijpharm.2023.122827 36925023
    [Google Scholar]
  43. de la Rica R. Aili D. Stevens M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 2012 64 11 967 978 10.1016/j.addr.2012.01.002 22266127
    [Google Scholar]
  44. Zhou Q. Xiang J. Qiu N. Wang Y. Piao Y. Shao S. Tang J. Zhou Z. Shen Y. Tumor abnormality-oriented nanomedicine design. Chem. Rev. 2023 123 18 10920 10989 10.1021/acs.chemrev.3c00062 37713432
    [Google Scholar]
  45. Xu K, Cui Y, Guan B, et al. Nanozymes with biomimetically designed properties for cancer treatment. Nanoscale 2024 16 16 7786 824 10.1039/D4NR00155A 38568434
    [Google Scholar]
  46. Ma T, Huang K, Cheng N. Recent advances in nanozyme-mediated strategies for pathogen detection and control. Int J Mol Sci 202324 17 13342 10.3390/ijms241713342 37686145
    [Google Scholar]
  47. Mi Y. Wolfram J. Mu C. Liu X. Blanco E. Shen H. Ferrari M. Enzyme-responsive multistage vector for drug delivery to tumor tissue. Pharmacol. Res. 2016 113 Pt A 92 99 10.1016/j.phrs.2016.08.024 27546164
    [Google Scholar]
  48. Alejo T. Uson L. Arruebo M. Reversible stimuli-responsive nanomaterials with on-off switching ability for biomedical applications. J. Control. Release 2019 314 162 176 10.1016/j.jconrel.2019.10.036 31644937
    [Google Scholar]
  49. Salahshoori I Golriz M Nobre MAL Mahdavi S Eshaghi Malekshah R Javdani-Mallak A Simulation-based approaches for drug delivery systems: Navigating advancements, opportunities, and challenges. J. Mol. Liq. 2024 395 123888 10.1016/j.molliq.2023.123888
    [Google Scholar]
  50. Andresen T.L. Thompson D.H. Kaasgaard T. Enzyme-triggered nanomedicine: Drug release strategies in cancer therapy (Invited Review). Mol. Membr. Biol. 2010 27 7 353 363 10.3109/09687688.2010.515950 20939771
    [Google Scholar]
  51. Brouns J.E.P. Dankers P.Y.W. Introduction of enzyme-responsivity in biomaterials to achieve dynamic reciprocity in cell–material interactions. Biomacromolecules 2021 22 1 4 23 10.1021/acs.biomac.0c00930 32813514
    [Google Scholar]
  52. Sikdar P. Uddin M.M. Dip T.M. Islam S. Hoque M.S. Dhar A.K. Wu S. Recent advances in the synthesis of smart hydrogels. Mater. Adv. 2021 2 14 4532 4573 10.1039/D1MA00193K
    [Google Scholar]
  53. Recent advances in novel drug delivery systems. Available from: https://www.azonano.com/article.aspx?articleid=1538 2006
  54. Kamble A. Patil D.K.C. Novel drug delivery system. Int. J. Pharm. Res. Anal. Rev.. 2023 10 1 1 32
    [Google Scholar]
  55. Yu H. Gao R. Liu Y. Fu L. Zhou J. Li L. Stimulus‐responsive hydrogels as drug delivery systems for inflammation targeted therapy. Adv. Sci. 2024 11 1 2306152 10.1002/advs.202306152 37985923
    [Google Scholar]
  56. Sobczak M. Enzyme-responsive hydrogels as potential drug delivery systems—state of knowledge and future prospects. Int. J. Mol. Sci. 2022 23 8 4421 10.3390/ijms23084421 35457239
    [Google Scholar]
  57. Zelzer M. Ulijn R.V. Enzyme-responsive polymers: Properties, synthesis and applications. In: Smart Polymers and their Applications Woodhead Publishing 2014 166 203 10.1533/9780857097026.1.166
    [Google Scholar]
  58. Concheiro C.A.L.A. Smart materials for drug delivery. The Royal Society of Chemistry 2013 420 10.1039/9781849736800
    [Google Scholar]
  59. Thang N.H. Chien T.B. Cuong D.X. Polymer-based hydrogels applied in drug delivery: An overview. Gels 2023 9 7 523 10.3390/gels9070523 37504402
    [Google Scholar]
  60. Caponi PF Ulijn RV Enzyme-responsive drug-delivery systems. In: Smart Materials for Drug Delivery The Royal Society of Chemistry 2013 1 2 232 255 10.1039/9781849736800‑00232
    [Google Scholar]
  61. Wehl L. Biocompatible nanocarriers for drug delivery applications. Thesis, Münster, Deutschland 2023 1 249
    [Google Scholar]
  62. Karimi M. Zangabad P.S. Ghasemi A. Hamblin M.R. Smart internal stimulus-responsive nanocarriers for drug and gene delivery. IOP Concise Physic 2015 10.1088/978‑1‑6817‑4257‑1
    [Google Scholar]
  63. Dristant U. Mukherjee K. Saha S. Maity D. RETRACTED: An overview of polymeric nanoparticles-based drug delivery system in cancer treatment. Technol. Cancer Res. Treat. 2023 22 15330338231152083 [Retracted] 10.1177/15330338231152083 36718541
    [Google Scholar]
  64. Lou J. Best M.D. A general approach to enzyme‐responsive liposomes. Chemistry 2020 26 39 8597 8607 10.1002/chem.202000529 32301193
    [Google Scholar]
  65. Wan D. Wu Y. Zhang Y. Liu Y. Pan J. Enzyme-responsive micelles with high drug-loading capacity for antitumor therapy. Macromol Rapid Commun 2025 46 7 e2400503 10.1002/marc.202400503 39212311
    [Google Scholar]
  66. German-Cortés J. Vilar-Hernández M. Rafael D. Abasolo I. Andrade F. Solid lipid nanoparticles: Multitasking nano-carriers for cancer treatment. Pharmaceutics 2023 15 3 831 10.3390/pharmaceutics15030831 36986692
    [Google Scholar]
  67. Mohamed Isa E.D. Ahmad H. Abdul Rahman M.B. Gill M.R. Progress in mesoporous silica nanoparticles as drug delivery agents for cancer treatment. Pharmaceutics 2021 13 2 152 10.3390/pharmaceutics13020152 33498885
    [Google Scholar]
  68. Siddique S. Chow J.C.L. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci. 2020 10 11 3824 10.3390/app10113824
    [Google Scholar]
  69. Li X. Xu X. Xu M. Geng Z. Ji P. Liu Y. Hydrogel systems for targeted cancer therapy. Front. Bioeng. Biotechnol. 2023 11 1140436 10.3389/fbioe.2023.1140436 36873346
    [Google Scholar]
  70. Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020 10 10 4557 4588 10.7150/thno.38069 32292515
    [Google Scholar]
  71. Thakor P. Bhavana V. Sharma R. Srivastava S. Singh S.B. Mehra N.K. Polymer–drug conjugates: Recent advances and future perspectives. Drug Discov. Today 2020 25 9 1718 1726 10.1016/j.drudis.2020.06.028 32629170
    [Google Scholar]
  72. Qin Xing Li Yongsheng Strategies to design and synthesize polymer-based stimuli-responsive drug-delivery nanosystems. Chembiochem 2020 21 9 1236 1253 10.1002/cbic.201900550 31889379
    [Google Scholar]
  73. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  74. Sun Y. Development of polydopamine nanotubes into a multi-functional drug delivery system. 2021 Available from: https://etd.auburn.edu//handle/10415/7841
  75. Grabielle-Madelmont, C., Lesieur, S., Ollivon, M. Characterization of loaded liposomes by size exclusion chromatography. J Biochem Biophysical Methods 2003 56 1–3 189 217 10.1016/s0165‑022x(03)00059‑9
    [Google Scholar]
  76. Shashi Kant A complete review on: Liposomes. Int Res J Pharm 2012 3 7 10 16
    [Google Scholar]
  77. Shen M.Y. Liu T.I. Yu T.W. Kv R. Chiang W.H. Tsai Y.C. Chen H.H. Lin S.C. Chiu H.C. Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer. Biomaterials 2019 197 86 100 10.1016/j.biomaterials.2019.01.019 30641267
    [Google Scholar]
  78. Hu J. Zhang G. Liu S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem. Soc. Rev. 2012 41 18 5933 5949 10.1039/c2cs35103j 22695880
    [Google Scholar]
  79. Martínez-Carmona M. Colilla M. Vallet-Regí M. Smart mesoporous nanomaterials for antitumor therapy. Nanomaterials 2015 5 4 1906 1937 10.3390/nano5041906 28347103
    [Google Scholar]
  80. Liu Y. Ding X. Li J. Luo Z. Hu Y. Liu J. Dai L. Zhou J. Hou C. Cai K. Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo . Nanotechnology 2015 26 14 145102 10.1088/0957‑4484/26/14/145102 25789511
    [Google Scholar]
  81. Khoz R. Yazdian F. Pourmadadi M. Rahdar A. Fathi-karkan S. Pandey S. Current trends in silica based drug delivery systems. Eur. J. Med. Chem. Rep. 2024 12 100206 10.1016/j.ejmcr.2024.100206
    [Google Scholar]
  82. Campora S. Ghersi G. Recent developments and applications of smart nanoparticles in biomedicine. Nanotechnol. Rev. 2022 11 1 2595 2631 10.1515/ntrev‑2022‑0148
    [Google Scholar]
  83. Guha A. Shaharyar M.A. Ali K.A. Roy S.K. Kuotsu K. Smart and intelligent stimuli responsive materials: An innovative step in drug delivery system. Curr. Biochem. Eng. 2020 6 1 41 52 10.2174/2212711906666190723142057
    [Google Scholar]
  84. Vivero-escoto J.L. Inorganic-organic hybrid nanomaterials for therapeutic and diagnostic imaging applications. Int J Mol Sci 2011 12 6 3888 3927 10.3390/ijms12063888 21747714
    [Google Scholar]
  85. Parveen S. Gupta P. Kumar S. Banerjee M. Lipid polymer hybrid nanoparticles as potent vehicles for drug delivery in cancer therapeutics. Med. Drug Discov. 2023 20 100165 10.1016/j.medidd.2023.100165
    [Google Scholar]
  86. Jiang T. Mo R. Bellotti A. Zhou J. Gu Z. Gel-liposome-mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv. Funct. Mater. 2014 24 16 2295 2304 10.1002/adfm.201303222
    [Google Scholar]
  87. Mahdi Karimi M.R.H. Smart nanoparticles in drug/gene delivery. 1st ed CRC Press 2020
    [Google Scholar]
  88. Wang Y. Wang S. Cheng Z. Dong R. Jia X. Yang F. Temperature sensitive PNIPAm-g-PEI/gold nanotriangle for gene delivery promotion. Mol Biotechnol 2024 2024 10.1007/s12033‑024‑01274‑8
    [Google Scholar]
  89. Chemotherapy to treat cancer. 2022 Available from: https://www.cancer.gov/about-cancer/treatment/types/chemotherapy#:~:text=Working%20during%20chemotherapy-,How%20chemotherapy%20works%20against%20cancer,stop%20or%20slow%20its%20growth.
  90. Types of surgery for cancer treatment. 2025 Available from: https://stanfordhealthcare.org/medical-treatments/c/cancer-surgery/types.html
  91. Radiation therapy to treat cancer. 2019 Available from: https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy
  92. Immunotherapy to treat cancer. 2019 Available from: https://www.cancer.gov/about-cancer/treatment/types/immunotherapy
  93. Liu B. Zhou H. Tan L. Siu K.T.H. Guan X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024 9 1 175 10.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  94. Kuna K. Baddam S.R. Kalagara S. Akkiraju P.C. Tade R.S. Enaganti S. Emerging natural polymer-based architectured nanotherapeutics for the treatment of cancer. Int. J. Biol. Macromol. 2024 262 Pt 1 129434 10.1016/j.ijbiomac.2024.129434 38232877
    [Google Scholar]
  95. Institute N.H.G.R. Gene therapy. 2024 Available from: https://www.genome.gov/genetics-glossary/Gene-Therapy#:~:text=
  96. Photodynamic therapy to treat cancer. 2021 Available from: https://www.cancer.gov/about-cancer/treatment/types/photodynamic-therapy
  97. Ali Hazis N.U. Aneja N. Rajabalaya R. David S.R. Systematic patent review of nanoparticles in drug delivery and cancer therapy in the last decade. Recent Adv. Drug Deliv. Formul. 2021 15 1 59 74 10.2174/1872211314666210521105534 34602031
    [Google Scholar]
  98. Zhang Q. Kuang G. Li W. Wang J. Ren H. Zhao Y. Stimuli-responsive gene delivery nanocarriers for cancer therapy. Nano-Micro Lett. 2023 15 1 44 10.1007/s40820‑023‑01018‑4 36752939
    [Google Scholar]
  99. Barker H.E. Paget J.T.E. Khan A.A. Harrington K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer 2015 15 7 409 425 10.1038/nrc3958 26105538
    [Google Scholar]
  100. Shuai Y. A tumor-microenvironment-activated nanoplatform of modified SnFe2O4 nanozyme in scaffold for enhanced PTT/PDT tumor therapy. Heliyon 2023 9 7 e18019 10.1016/j.heliyon.2023.e18019 37483724
    [Google Scholar]
  101. Advances N.K.J. Controlled and novel drug delivery. New Delhi 2001
    [Google Scholar]
  102. Han Y. Tian X. Zhai J. Zhang Z. Clinical application of immunogenic cell death inducers in cancer immunotherapy: Turning cold tumors hot. Front. Cell Dev. Biol. 2024 12 1363121 10.3389/fcell.2024.1363121 38774648
    [Google Scholar]
  103. Xie D. Wang Q. Wu G. Research progress in inducing immunogenic cell death of tumor cells. Front. Immunol. 2022 13 1017400 10.3389/fimmu.2022.1017400 36466838
    [Google Scholar]
  104. Liu H. Sun M. Liu Z. Kong C. Kong W. Ye J. Gong J. Huang D.C.S. Qian F. KRAS-enhanced macropinocytosis and reduced FcRn-mediated recycling sensitize pancreatic cancer to albumin-conjugated drugs. J. Control. Release 2019 296 296 40 53 10.1016/j.jconrel.2019.01.014 30653981
    [Google Scholar]
  105. Su T. Tang Z. He H. Li W. Wang X. Liao C. Sun Y. Wang Q. Glucose oxidase triggers gelation of N-hydroxyimide–heparin conjugates to form enzyme-responsive hydrogels for cell-specific drug delivery. Chem. Sci. 2014 5 11 4204 4209 10.1039/C4SC01603C
    [Google Scholar]
  106. Zhu J. Niu Y. Li Y. Gong Y. Shi H. Huo Q. Liu Y. Xu Q. Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: Recent advances and challenges. J. Mater. Chem. B Mater. Biol. Med. 2017 5 7 1339 1352 10.1039/C6TB03066A 32264626
    [Google Scholar]
  107. Rijt SHV Bo DA Eickelberg O Ko M Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors. ACS Nano 2015 9 3 2377 2389 10.1021/nn5070343 25703655
    [Google Scholar]
  108. Lock L.L. Tang Z. Keith D. Reyes C. Cui H. Enzyme-specific doxorubicin drug beacon as drug-resistant theranostic molecular probes. ACS Macro Lett. 2015 4 5 552 555 10.1021/acsmacrolett.5b00170 35596281
    [Google Scholar]
  109. Minehan R.L. Del Borgo M.P. Controlled release of therapeutics from enzyme-responsive biomaterials. Front. Biomater. Sci. 2022 1 June 916985 10.3389/fbiom.2022.916985
    [Google Scholar]
  110. Puccetti M. Pariano M. Schoubben A. Giovagnoli S. Ricci M. Biologics, theranostics, and personalized medicine in drug delivery systems. Pharmacol. Res. 2024 201 107086 10.1016/j.phrs.2024.107086 38295917
    [Google Scholar]
  111. Kalaydina R.V. Bajwa K. Qorri B. DeCarlo A. Szewczuk M.R. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int. J. Nanomedicine 2018 13 4727 4745 10.2147/IJN.S168053 30154657
    [Google Scholar]
  112. Krzyszczyk P. Acevedo A. Davidoff E.J. Timmins L.M. Marrero-Berrios I. Patel M. The growing role of precision and personalized medicine for cancer treatment. Technology 2018 6 3-4 79 100 10.1142/S2339547818300020 30713991
    [Google Scholar]
  113. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  114. Singh S. Kachhawaha K. Singh S.K. Comprehensive approaches to preclinical evaluation of monoclonal antibodies and their next-generation derivatives. Biochem. Pharmacol. 2024 225 116303 10.1016/j.bcp.2024.116303 38797272
    [Google Scholar]
  115. Uinarni H. Kadhum W.R. Saleh R.O. Alawadi A. Alnajar M.J. Shalaby N.S. Alkhafaji A.T. Kumar A. Sahib R.S. Mustafa Y.F. Nanoparticle-based theranostics in nuclear medicine. J. Radioanal. Nucl. Chem. 2024 333 4 1661 1672 10.1007/s10967‑024‑09432‑7
    [Google Scholar]
  116. Kumar D. Sachdeva K. Tanwar R. Devi S. Review on novel targeted enzyme drug delivery systems: Enzymosomes. Soft Matter 2024 20 23 4524 4543 10.1039/D4SM00301B 38738579
    [Google Scholar]
  117. Behera A. Nayak A.K. Mohapatra R.K. Rabaan A.A. Smart micro- and nanomaterials for drug delivery. 1st ed CRC Press Boca Raton 2024 10.1201/9781003468424
    [Google Scholar]
  118. Sharma S. Mahajan S.D. Chevli K. Schwartz S.A. Aalinkeel R. Nanotherapeutic approach to delivery of chemo- and gene therapy for organ-confined and advanced castration-resistant prostate cancer. Crit. Rev. Ther. Drug Carrier Syst. 2023 40 4 69 100 10.1615/CritRevTherDrugCarrierSyst.2022043827 37075068
    [Google Scholar]
  119. Mokhtari R.B. Homayouni T.S. Baluch N. Morgatskaya E. Kumar S. Das B. Yeger H. Combination therapy in combating cancer. Oncotarget 2017 8 23 38022 38043 10.18632/oncotarget.16723 28410237
    [Google Scholar]
  120. Garg P. Malhotra J. Kulkarni P. Horne D. Salgia R. Singhal S.S. Emerging therapeutic strategies to overcome drug resistance in cancer cells. Cancers 2024 16 13 2478 10.3390/cancers16132478 39001539
    [Google Scholar]
  121. Yadav N. Narang J. Chhillar A.K. Rana J.S. CRISPR: A new paradigm of theranostics. Nanomedicine 2021 33 102350 10.1016/j.nano.2020.102350 33359413
    [Google Scholar]
  122. Lino C.A. Harper J.C. Carney J.P. Timlin J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018 25 1 1234 1257 10.1080/10717544.2018.1474964 29801422
    [Google Scholar]
  123. Al-Thani A.N. Jan A.G. Abbas M. Geetha M. Sadasivuni K.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci. 2024 352 March 122899 10.1016/j.lfs.2024.122899 38992574
    [Google Scholar]
  124. Akanksha K. Pharmaceutical Nano technology and Application: A Short Review. Int. J. Pharm. Res. Appl. 2022 7 2 1504 1509
    [Google Scholar]
  125. Aboagye E.O. Barwick T.D. Haberkorn U. Radiotheranostics in oncology: Making precision medicine possible. CA Cancer J. Clin. 2023 73 3 255 274 10.3322/caac.21768 36622841
    [Google Scholar]
  126. Ross J. Hunter VRP. Nanomedicine in health and disease. 1st ed CRC Press Boca Raton 2011
    [Google Scholar]
  127. Mu J. Lin J. Huang P. Chen X. Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem. Soc. Rev. 2018 47 15 5554 5573 10.1039/C7CS00663B 29856446
    [Google Scholar]
/content/journals/cei/10.2174/0115734080363073250723061416
Loading
/content/journals/cei/10.2174/0115734080363073250723061416
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test