Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4080
  • E-ISSN: 1875-6662

Abstract

Microorganisms thriving in extreme environments produce extremozymes, which have attracted increased interest due to their extraordinary stability and catalytic competence under various environmental stress conditions. This broad review discusses extremozymes' functional efficiency and structural adaptations, encouraging them to survive in extreme environmental niches. In addition, the article discusses different strategies and methodologies used in the bioprospecting of extremozymes, from their isolation, screening, and characterization to explore them for broader utilization. Extremozymes that can operate under extreme salinity, temperatures, and pH ranges are valuable tools for detecting the evolving problems different industries face. Extremozymes are also of great importance in solving environmental issues. These materials' specific capabilities and properties have contributed to waste management solutions, bioremediation efforts, and the sustainable use of resources. Moreover, extremozymes are very useful in agricultural applications. Enzyme engineering plays a significant role in making extremozymes more effective. Overall, this review will explore the power of extremozymes from basic to sustainable applications and innovation in different fields.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080360789250414062505
2025-04-24
2025-09-14
Loading full text...

Full text loading...

References

  1. AntranikianG. Extremophiles and biotechnology.Encyclopedia of life sciences ELS.ChichesterJohn Wiley & Sons, Ltd200910.1002/9780470015902.a0000391.pub2
    [Google Scholar]
  2. LongC. OuY. GuoP. Cellulase production by solid state fermentation using bagasse with Penicillium decumbens L-06.Ann. Microbiol.200959351752310.1007/BF03175140
    [Google Scholar]
  3. SetatiM.E. Diversity and industrial potential of hydrolase-producing halophilic/halotolerant eubacteria.Afr. J. Biotechnol.20098815551560
    [Google Scholar]
  4. EspinaG. Muñoz-IbacacheS.A. Cáceres-MorenoP. AmenabarM.J. BlameyJ.M. From the discovery of extremozymes to an enzymatic product: Roadmap based on their applications.Front. Bioeng. Biotechnol.2022975228110.3389/fbioe.2021.752281 35096788
    [Google Scholar]
  5. BenattiA.L.T. PolizeliM.L.T.M. Lignocellulolytic biocatalysts: The main players involved in multiple biotechnological processes for biomass valorization.Microorganisms202311116210.3390/microorganisms11010162 36677454
    [Google Scholar]
  6. JinM. GaiY. GuoX. HouY. ZengR. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: A mini review.Mar. Drugs2019171265610.3390/md17120656 31766541
    [Google Scholar]
  7. SharmaA. KumarR. KumarR. Biodiversity prospecting: An overview.Environ. Adv.20202100006
    [Google Scholar]
  8. WeissC. EisnerT. Partnerships for value-added through bioprospecting.Technol. Soc.199820448149810.1016/S0160‑791X(98)00029‑3
    [Google Scholar]
  9. AmannR. Rosselló-MóraR. WiddelF. The species concept for prokaryotes.FEMS Microbiol. Rev.2022463
    [Google Scholar]
  10. MousaviS.M. HashemiS.A. MoezziS.M.I. Recent advances in enzymes for the bioremediation of pollutants.Biochem. Res. Int.202111210.1155/2021/5599204
    [Google Scholar]
  11. RobinsonP.K. Enzymes: Principles and biotechnological applications.Essays Biochem.20155914110.1042/bse0590001 26504249
    [Google Scholar]
  12. KohliI. JoshiN.C. MohapatraS. VarmaA. Extremophile - An adaptive strategy for extreme conditions and applications.Curr. Genomics20202129611010.2174/1389202921666200401105908 32655304
    [Google Scholar]
  13. FongaroG. MaiaG.A. RogovskiP. Extremophile microbial communities and enzymes for bioenergetic application based on multi-omics tools.Curr. Genomics202021424025210.2174/1389202921999200601144137 33071618
    [Google Scholar]
  14. FenicalW. Bioprospecting - New concepts and drug discovery.J. Biotechnol.19975614150 9246790
    [Google Scholar]
  15. Baker-AustinC. DopsonM. WexlerM. Extremophiles: Microorganisms adapted to extreme environments.John Wiley & Sons2010
    [Google Scholar]
  16. SaikiR.K. GelfandD.H. StoffelS. Isolation, characterization, and lipase production of a cold-adapted bacterial strain Pseudomonas sp. LSK25 isolated from Signy Island, Antarctica.Molecules201924411410.3390/molecules24040715
    [Google Scholar]
  17. MargesinR. SchinnerF. Potential of halotolerant and halophilic microorganisms for biotechnology.Extremophiles200152738310.1007/s007920100184 11354458
    [Google Scholar]
  18. BezuidtO.K. GomriM.A. BotesM. CullumR. Diversity of culturable thermophilic Actinobacteria in hot springs in northern Morocco.FEMS Microbiol. Ecol.200970110
    [Google Scholar]
  19. JosephB RamtekePW ThomasG ShrivastavaN Standardization of procedures for isolation and characterization of enzymeproducing thermophilic bacteria. 3 Biotech20155329730510.1007/s13205‑014‑0247‑8
  20. CavicchioliR. CharltonT. ErtanH. OmarS.M. SiddiquiK.S. WilliamsT.J. Biotechnological uses of enzymes from psychrophiles.Microb. Biotechnol.20114444946010.1111/j.1751‑7915.2011.00258.x 21733127
    [Google Scholar]
  21. EkkersD.M. CretoiuM.S. KielakA.M. van ElsasJ.D. The great screen anomaly—a new frontier in product discovery through functional metagenomics.Appl. Microbiol. Biotechnol.20129331005102010.1007/s00253‑011‑3804‑3 22189864
    [Google Scholar]
  22. HandelsmanJ. RondonM.R. BradyS.F. ClardyJ. GoodmanR.M. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products.Chem. Biol.1998510R245R24910.1016/S1074‑5521(98)90108‑9 9818143
    [Google Scholar]
  23. SimonC. DanielR. Metagenomic analyses: Past and future trends.Appl. Environ. Microbiol.20117741153116110.1128/AEM.02345‑10 21169428
    [Google Scholar]
  24. FerrandiE.E. SuvorovaI.A. RavasioS. GandiniA. Bioinformatic tools in functional metagenomics: Challenges and future perspectives.Comput. Struct. Biotechnol. J.201917234241
    [Google Scholar]
  25. SarmientoF. PeraltaR. BlameyJ.M. Cold adaptation in enzymes: Structural determinants of protein flexibility.In: Satyanarayana T, Johri BN, Eds. Microorganisms in Environmental Management.Springer20155980
    [Google Scholar]
  26. DekkerC. MagliaG. Engineered protein nanopores for single-molecule sensing and analysis.Chem. Soc. Rev.2015441243384398
    [Google Scholar]
  27. RampelottoP. Extremophiles and extreme environments.Life20133348248510.3390/life3030482
    [Google Scholar]
  28. MesbahN.M. Industrial biotechnology based on enzymes from extreme environments.Front. Bioeng. Biotechnol.20221087008310.3389/fbioe.2022.870083 35480975
    [Google Scholar]
  29. BisswangerH. Enzyme assays.Perspect. Sci.201411-6415510.1016/j.pisc.2014.02.005
    [Google Scholar]
  30. Marti-ArbonaR. XuC. SteeleS. WeeksA. KutyG.F. Structural enzymology using X-ray free electron lasers.Arch. Biochem. Biophys.20176282136
    [Google Scholar]
  31. RoodynD.B. Determination of Michaelis constant by varying substrate concentration in sample cups.Anal. Biochem.196511116119
    [Google Scholar]
  32. SteinW.H. MooreS. PriceN.C. On the use of a diode array scanner in the measurement of enzyme activities.Anal. Biochem.1965132402410
    [Google Scholar]
  33. NguyenH. ParkJ. KangS. KimM. Surface plasmon resonance: A versatile technique for biosensor applications.Sensors2015155104811051010.3390/s150510481 25951336
    [Google Scholar]
  34. BedendiG. De Moura TorquatoL.D. WebbS. Enzymatic and microbial electrochemistry: Approaches and methods.ACS Meas. Sci. Au20222651754110.1021/acsmeasuresciau.2c00042 36573075
    [Google Scholar]
  35. AndryukovB.G. BesednovaN.N. RomashkoR.V. ZaporozhetsT.S. EfimovT.A. Label-free biosensors for laboratory-based diagnostics of infections: Current achievements and new trends.Biosensors20201021110.3390/bios10020011 32059538
    [Google Scholar]
  36. DattaS ChristenaLR RajaramYR Enzyme immobilization: An overview on techniques and support materials. 3 Biotech2013311910.1007/s13205‑012‑0071‑7
    [Google Scholar]
  37. DurowojuI.B. BhandalK.S. HuJ. CarpickB. KirkitadzeM. Differential scanning calorimetry - A method for assessing the thermal stability and conformation of protein antigen.J. Vis. Exp.2017121121e5526210.3791/55262 28287565
    [Google Scholar]
  38. DuffM.R.Jr GrubbsJ. HowellE.E. Isothermal titration calorimetry for measuring macromolecule-ligand affinity.J. Vis. Exp.20115555e279610.3791/2796 21931288
    [Google Scholar]
  39. ShiY. A glimpse of structural biology through X-ray crystallography.Cell20141595995101410.1016/j.cell.2014.10.051 25416941
    [Google Scholar]
  40. BenjinX. LingL. Developments, applications, and prospects of cryo‐electron microscopy.Protein Sci.202029487288210.1002/pro.3805 31854478
    [Google Scholar]
  41. BatesM JonesSA ZhuangX Stochastic optical reconstruction microscopy (STORM): A method for superresolution fluorescence imaging. Cold Spring Harb Protoc201320136pdb.top07514310.1101/pdb.top075143 23734025
    [Google Scholar]
  42. CorrêaD. RamosC. The use of circular dichroism spectroscopy to study protein folding, form and function.Afr. J. Biochem. Res.20093164173
    [Google Scholar]
  43. PalmerA.G.III Enzyme dynamics from NMR spectroscopy.Acc. Chem. Res.201548245746510.1021/ar500340a 25574774
    [Google Scholar]
  44. WaltherT.C. MannM. Mass spectrometry–based proteomics in cell biology.J. Cell Biol.2010190449150010.1083/jcb.201004052 20733050
    [Google Scholar]
  45. SchuckP. Analytical ultracentrifugation as a tool for studying protein interactions.Biophys. Rev.20135215917110.1007/s12551‑013‑0106‑2 23682298
    [Google Scholar]
  46. PatelT. ChaudhariH.G. PrajapatiV. PatelS. MehtaV. SoniN. A brief account on enzyme mining using metagenomic approach.Front. Syst. Biol.20222104623010.3389/fsysb.2022.1046230
    [Google Scholar]
  47. JovicD. LiangX. ZengH. LinL. XuF. LuoY. Single‐cell RNA sequencing technologies and applications: A brief overview.Clin. Transl. Med.2022123e69410.1002/ctm2.694 35352511
    [Google Scholar]
  48. JangW.D. KimG.B. KimY. LeeS.Y. Applications of artificial intelligence to enzyme and pathway design for metabolic engineering.Curr. Opin. Biotechnol.20227310110710.1016/j.copbio.2021.07.024 34358728
    [Google Scholar]
  49. CokerJ.A. Extremophiles and biotechnology: current uses and prospects.F1000 Research2016539610.12688/f1000research.7432.1
    [Google Scholar]
  50. HorikoshiK. Alkaliphiles: Some applications of their products for biotechnology.Microbiol. Mol. Biol. Rev.199963473575010.1128/MMBR.63.4.735‑750.1999 10585964
    [Google Scholar]
  51. DasSarmaS. DasSarmaP. Halophiles and their enzymes: Negativity put to good use.Curr. Opin. Microbiol.20152512012610.1016/j.mib.2015.05.009 26066288
    [Google Scholar]
  52. FellerG. Psychrophilic enzymes: From folding to function and biotechnology.Scientifica2013201312810.1155/2013/512840 24278781
    [Google Scholar]
  53. JiangY. RanX. YangZ.J. Data-driven enzyme engineering to identify function-enhancing enzymes.Protein Eng. Des. Sel.202336gzac00910.1093/protein/gzac009 36214500
    [Google Scholar]
  54. ElleucheS. SchröderC. SahmK. AntranikianG. Extremozymes—biocatalysts with unique properties from extremophilic microorganisms.Curr. Opin. Biotechnol.20142911612310.1016/j.copbio.2014.04.003 24780224
    [Google Scholar]
  55. AshaoluT.J. MalikT. SoniR. PrietoM.A. JafariS.M. Extremophilic microorganisms as a source of emerging enzymes for the food industry: A review.Food Sci. Nutr.2025131e454010.1002/fsn3.4540 39803234
    [Google Scholar]
  56. GalloG. PuopoloR. CarbonaroM. MarescaE. FiorentinoG. Extremophiles, a nifty tool to face environmental pollution: From exploitation of metabolism to genome engineering.Int. J. Environ. Res. Public Health20211810522810.3390/ijerph18105228 34069056
    [Google Scholar]
  57. BabavalianH. AmoozegarM.A. PourbabaeeA.A. MoghaddamM.M. ShakeriF. Isolation and identification of moderately halophilic bacteria producing hydrolytic enzymes from the largest hypersaline playa in Iran.Microbiology201382446647410.1134/S0026261713040176
    [Google Scholar]
  58. SouiiA. GhorrabA. HammamiK. MasmoudiA. CherifA. NeifarM. Extremozyme-based technology for biofuel generation.In: Biomolecules from Natural Sources.Wiley202121425110.1002/9781119769620.ch7
    [Google Scholar]
  59. ZhuD. AdebisiW.A. AhmadF. SethupathyS. DansoB. SunJ. Recent development of extremophilic bacteria and their application in biorefinery.Front. Bioeng. Biotechnol.2020848310.3389/fbioe.2020.00483 32596215
    [Google Scholar]
  60. NeifarM. ChouchaneH. JaouaniA. MasmoudiA.S. CherifA. Extremozymes as efficient green biocatalysts in bioremediation of industrial wastewaters.In: Wastewater Treatment: Processes, Management Strategies and Envirenmental/Health Impacts.New YorkNova Science Pub Inc2015
    [Google Scholar]
  61. GunjalA. WaghmodeM. PatilN. Role of extremozymes in bioremediation: A review.Res. J. Biotechnol.202116240252
    [Google Scholar]
  62. ShanmugamS. SunC. ChenZ. WuY.R. Enhanced bioconversion of hemicellulosic biomass by microbial consortium for biobutanol production with bioaugmentation strategy.Bioresour. Technol.201927914915510.1016/j.biortech.2019.01.121 30716607
    [Google Scholar]
  63. AtifF. MaqsoodN. AliW. AliW. IrfanM. Extremophiles and their enzymatic diversity and biotechnological potential.Syst. Microbiol. Biomanuf.20244383384910.1007/s43393‑024‑00275‑7
    [Google Scholar]
  64. AyilaraM.S. BabalolaO.O. Bioremediation of environmental wastes: The role of microorganisms.Frontiers in Agronomy20235118369110.3389/fagro.2023.1183691
    [Google Scholar]
  65. GaoW. HeJ. ChenL. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme.Nat. Commun.202314116010.1038/s41467‑023‑35828‑2 36631476
    [Google Scholar]
  66. YadavA.N. Beneficial role of extremophilic microbes for plant health and soil fertility.J Agric Sci Bot2017111410.35841/2591‑7897.1.1.30‑33
    [Google Scholar]
  67. CardosoV.M. CampaniG. SantosM.P. Cost analysis based on bioreactor cultivation conditions: Production of a soluble recombinant protein using Escherichia coli BL21(DE3).Biotechnol. Rep.202026e0044110.1016/j.btre.2020.e00441 32140446
    [Google Scholar]
  68. GirfoglioM. RossiM. CannioR. Cell-free translation goes high yield and multiscale.Trends Biotechnol.20123015361
    [Google Scholar]
  69. KeshavarzT. BornscheuerU.T. Microbial and enzymatic bioprocess technology for biofuel production from palm oil: Recent advances and perspectives.Biofuel Research Journal201962753768
    [Google Scholar]
  70. NielsenJ. ArcherJ.A. EssackM. GustafssonL. SalinasF. Promoting sustainability through biotechnology innovation: A critical review of current practices and challenges.Sustainability201351250655083
    [Google Scholar]
  71. BangaruA. KamasaniA. KruthiventiC. Role of enzymes in biofuel production: Recent developments and challenges.In: Bio-Clean Energy Technologies: Clean Energy Production Technologies.SingaporeSpringer202210.1007/978‑981‑16‑8090‑8_4
    [Google Scholar]
  72. WangS. SunX. YuanQ. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review.Bioresour. Technol.201825830230910.1016/j.biortech.2018.03.064 29567023
    [Google Scholar]
  73. KikaniB. PatelR. ThumarJ. Solvent tolerant enzymes in extremophiles: Adaptations and applications.Int. J. Biol. Macromol.202323812405110.1016/j.ijbiomac.2023.124051 36933597
    [Google Scholar]
  74. BhattH.B. SaniR.K. AmoozegarM.A. SinghS.P. Editorial: Extremozymes: Characteristics, structure, protein engineering and applications.Front. Microbiol.202415142346310.3389/fmicb.2024.1423463 38779500
    [Google Scholar]
  75. WangF.S. LiC.C. LinY.S. LeeW.C. Enhanced ethanol production by continuous fermentation in a two-tank system with cell recycling.Process Biochem.20134891425142810.1016/j.procbio.2013.06.023
    [Google Scholar]
  76. MohidemN.A. MohamadM. RashidM.U. NorizanM.N. HamzahF. MatH. Recent advances in enzyme immobilisation strategies: An overview of techniques and composite carriers.J. Compos. Sci.202371248810.3390/jcs7120488
    [Google Scholar]
  77. TrisoliniL. GambacortaN. GorgoglioneR. FAD/NADH dependent oxidoreductases: From different amino acid sequences to similar protein shapes for playing an ancient function.J. Clin. Med.2019812211710.3390/jcm8122117 31810296
    [Google Scholar]
  78. VandenbergheL.P de S. Karp SG, Pagnoncelli MGB, Tavares ML. Chapter 2 - Classification of enzymes and catalytic properties. In: Biomass, Biofuels, Biochemicals. Elsevier2020113010.1016/B978‑0‑12‑819820‑9.00002‑8
    [Google Scholar]
  79. SinghS. SinghV. AamirM. Cellulase in pulp and paper industry.In: New and Future Developments in Microbial Biotechnology and Bioengineering.Elsevier201615216210.1016/B978‑0‑444‑63507‑5.00013‑7
    [Google Scholar]
  80. SingaravelV. RamakrishnanS. Enzymes: Classification, structure, mechanism, and kinetics.Int. J. Pharm. Sci. Rev. Res.2013182115121
    [Google Scholar]
  81. AgarwalP.K. Enzymes: An integrated view of structure, dynamics and function.Microb. Cell Fact.200651210.1186/1475‑2859‑5‑2 16409630
    [Google Scholar]
  82. TattaE.R. ImchenM. MoopantakathJ. KumavathR. Bioprospecting of microbial enzymes: Current trends in industry and healthcare.Appl. Microbiol. Biotechnol.20221065-61813183510.1007/s00253‑022‑11859‑5 35254498
    [Google Scholar]
  83. StekhanovaT.N. MardanovA.V. BezsudnovaE.Y. Characterization of a thermostable short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus.Appl. Environ. Microbiol.201076124096409810.1128/AEM.02797‑09 20418438
    [Google Scholar]
  84. BezsudnovaE.Y. BoykoK.M. PolyakovK.M. Structural insight into the molecular basis of polyextremophilicity of short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus.Biochimie201294122628263810.1016/j.biochi.2012.07.024 22885278
    [Google Scholar]
  85. MerceronR. FoucaultM. HaserR. MattesR. WatzlawickH. GouetP. The molecular mechanism of thermostable α-galactosidases AgaA and AgaB explained by x-ray crystallography and mutational studies.J. Biol. Chem.201228747396423965210.1074/jbc.M112.394114 23012371
    [Google Scholar]
  86. LiaoS.M. LiangG. ZhuJ. Influence of calcium ions on the thermal characteristics of α-amylase from thermophilic Anoxybacillus sp. GXS-BL.Protein Pept. Lett.201926214815710.2174/0929866526666190116162958 30652633
    [Google Scholar]
  87. SunnaA. BergquistP.L. A gene encoding a novel extremely thermostable 1,4-β-xylanase isolated directly from an environmental DNA sample.Extremophiles200371637010.1007/s00792‑002‑0296‑1 12579381
    [Google Scholar]
  88. CannioR. Di PrizitoN. RossiM. MoranaA. A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity.Extremophiles20048211712410.1007/s00792‑003‑0370‑3 15064978
    [Google Scholar]
  89. KumarM BrarA VivekanandV PareekN Production of chitinase from thermophilic Humicola grisea and its application in production of bioactive chitooligosaccharides.Int J Biol Macromol2017104B1641710.1016/j.ijbiomac.2017.04.100
    [Google Scholar]
  90. YangS. FuX. YanQ. GuoY. LiuZ. JiangZ. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii.Food Chem.20161921041104810.1016/j.foodchem.2015.07.092 26304445
    [Google Scholar]
  91. MechriS. BouacemK. Zaraî JaouadiN. Identification of a novel protease from the thermophilic Anoxybacillus kamchatkensis M1V and its application as laundry detergent additive.Extremophiles201923668770610.1007/s00792‑019‑01123‑6 31407121
    [Google Scholar]
  92. AlquéresS.M.C. BrancoR.V. FreireD.M.G. AlvesT.L.M. MartinsO.B. AlmeidaR.V. Characterization of the recombinant thermostable lipase Pf2001 from Pyrococcus furiosus: Effects of thioredoxin fusion tag and triton X-100.Enzyme Res.201120111710.4061/2011/316939 21760993
    [Google Scholar]
  93. RanjanB. SatyanarayanaT. Recombinant HAP phytase of the thermophilic mold Sporotrichum thermophile: expression of the codon-optimized phytase gene in Pichia pastoris and applications.Mol. Biotechnol.201658213714710.1007/s12033‑015‑9909‑7 26758064
    [Google Scholar]
  94. FuciñosP. AtanesE. López-LópezO. Cloning, expression, purification and characterization of an oligomeric His-tagged thermophilic esterase from Thermus thermophilus HB27.Process Biochem.201449692793510.1016/j.procbio.2014.03.006
    [Google Scholar]
  95. WangJ GongY ZhaoS LiuG. A new regulator of cellulase and xylanase in the thermophilic fungus Myceliophthora thermophila strain ATCC 42464. 3 Biotech201883160
    [Google Scholar]
  96. PotprommaneeL. WangX.Q. HanY.J. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass.PLoS One2017124e017500410.1371/journal.pone.0175004 28406925
    [Google Scholar]
  97. FusiP. GrisaM. MombelliE. ConsonniR. TortoraP. VanoniM. Expression of a synthetic gene encoding P2 ribonuclease from the extreme thermoacidophilic archaebacterium sulfolobus solfataricus in mesophylic hosts.Gene199515419910310.1016/0378‑1119(94)00828‑G 7867957
    [Google Scholar]
  98. InoueA. AnrakuM. NakagawaS. OjimaT. Discovery of a novel alginate lyase from Nitratiruptor sp. SB155-2 thriving at deep-sea hydrothermal vents and identification of the residues responsible for its heat stability.J. Biol. Chem.201629130155511556310.1074/jbc.M115.713230 27231344
    [Google Scholar]
  99. WangQ.F. HouY.H. XuZ. MiaoJ.L. LiG.Y. Purification and properties of an extracellular cold-active protease from the psychrophilic bacterium Pseudoalteromonas sp. NJ276.Biochem. Eng. J.200838336236810.1016/j.bej.2007.07.025
    [Google Scholar]
  100. JiM. BarnwellC.V. GrundenA.M. Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea.Extremophiles201519486387410.1007/s00792‑015‑0762‑1 26101017
    [Google Scholar]
  101. BiroloL. TutinoM.L. FontanellaB. Aspartate aminotransferase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125.Eur. J. Biochem.200026792790280210.1046/j.1432‑1327.2000.01299.x 10785402
    [Google Scholar]
  102. ShirazianP. AsadS. AmoozegarM.A. The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase.EXCLI J.201615268279 27330530
    [Google Scholar]
  103. CieślińskiH. KurJ. BiałkowskaA. BaranI. MakowskiK. TurkiewiczM. Cloning, expression, and purification of a recombinant cold-adapted β-galactosidase from antarctic bacterium Pseudoalteromonas sp. 22b.Protein Expr. Purif.2005391273410.1016/j.pep.2004.09.002 15596357
    [Google Scholar]
  104. TurkiewiczM. KurJ. BiałkowskaA. CieślińskiH. KalinowskaH. BieleckiS. Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted β-galactosidase.Biomol. Eng.2003204-631732410.1016/S1389‑0344(03)00039‑X 12919815
    [Google Scholar]
  105. HouY. QiaoC. WangY. Cold-adapted glutathione S-transferases from Antarctic psychrophilic bacterium Halomonas sp. ANT108: Heterologous expression, characterization, and oxidative resistance.Mar. Drugs201917314710.3390/md17030147 30832239
    [Google Scholar]
  106. FanY. YiJ. HuaX. ZhangY. YangR. Preparation and characterization of gellan gum microspheres containing a cold-adapted β-galactosidase from Rahnella sp. R3.Carbohydr. Polym.2017162101510.1016/j.carbpol.2017.01.033 28224885
    [Google Scholar]
  107. SongQ. WangY. YinC. ZhangX.H. LaaA. LaaA, a novel high-active alkalophilic alpha-amylase from deep-sea bacterium Luteimonas abyssi XH031T.Enzyme Microb. Technol.201690839210.1016/j.enzmictec.2016.05.003 27241296
    [Google Scholar]
  108. HumphryD.R. GeorgeA. BlackG.W. CummingsS.P. Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica.Int. J. Syst. Evol. Microbiol.20015141235124310.1099/00207713‑51‑4‑1235 11491319
    [Google Scholar]
  109. ChenS. KaufmanM.G. MiazgowiczK.L. BagdasarianM. WalkerE.D. Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis.Bioresour. Technol.201312814515510.1016/j.biortech.2012.10.087 23196234
    [Google Scholar]
  110. MatsuiM. KawamataA. KosugiM. ImuraS. KurosawaN. Diversity of proteolytic microbes isolated from Antarctic freshwater lakes and characteristics of their cold-active proteases.Polar Sci.201713829010.1016/j.polar.2017.02.002
    [Google Scholar]
  111. de PascaleD. GiulianiM. De SantiC. PhAP protease from Pseudoalteromonas haloplanktis TAC125: Gene cloning, recombinant production in E. coli and enzyme characterization.Polar Sci.20104228529410.1016/j.polar.2010.03.009
    [Google Scholar]
  112. WiA.R. JeonS.J. KimS. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus.Biotechnol. Lett.20143661295130210.1007/s10529‑014‑1475‑8 24563306
    [Google Scholar]
  113. SalwoomL. Raja Abd RahmanR.N.Z. SallehA.B. Mohd ShariffF. ConveyP. Mohamad AliM.S. New recombinant cold-adapted and organic solvent tolerant lipase from psychrophilic Pseudomonas sp. LSK25, isolated from Signy Island Antarctica.Int. J. Mol. Sci.2019206126410.3390/ijms20061264 30871178
    [Google Scholar]
  114. GuptaG. PrakashV. Isolation and identification of a novel, cold active lipase producing psychrophilic bacterium Pseudomonas vancouverensi.Trends Biosci.201472237083711
    [Google Scholar]
  115. YuP. WangX.T. LiuJ.W. Purification and characterization of a novel cold‐adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic.J. Basic Microbiol.20155581029103910.1002/jobm.201400865 25727311
    [Google Scholar]
  116. BorgiM.A. BoudebbouzeS. AghajariN. The attractive recombinant phytase from Bacillus licheniformis: Biochemical and molecular characterization.Appl. Microbiol. Biotechnol.201498135937594710.1007/s00253‑013‑5421‑9 24337251
    [Google Scholar]
  117. De LucaV. VulloD. Del PreteS. Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea.Bioorg. Med. Chem.201624483584010.1016/j.bmc.2016.01.005 26778292
    [Google Scholar]
  118. LemakS. TchigvintsevA. PetitP. Structure and activity of the cold-active and anion-activated carboxyl esterase OLEI01171 from the oil-degrading marine bacterium Oleispira antarctica.Biochem. J.2012445219320310.1042/BJ20112113 22519667
    [Google Scholar]
  119. DongJ. ZhaoW. GasmallaM.A.A. A novel extracellular cold-active esterase of Pseudomonas sp. TB11 from glacier No.1: Differential induction, purification and characterisation.J. Mol. Catal., B Enzym.2015121536310.1016/j.molcatb.2015.07.015
    [Google Scholar]
  120. MiaoL.L. HouY.J. FanH.X. Molecular structural basis for the cold adaptedness of the Psychrophilic β-glucosidase BglU in Micrococcus antarcticus.Appl. Environ. Microbiol.20168272021203010.1128/AEM.03158‑15 26801571
    [Google Scholar]
  121. CafY. ValipourE. ArikanB. Study on cold-active and acidophilic cellulase CMCase from a novel psychrotrophic isolate Bacillus sp. K-11.Int. J. Curr. Microbiol. Appl. Sci.201431625
    [Google Scholar]
  122. WangY. HouY. NieP. A novel cold-adapted and salt-tolerant RNase R from Antarctic sea-ice Bacterium Psychrobacter sp. ANT206.Molecules20192412222910.3390/molecules24122229 31207974
    [Google Scholar]
  123. GolotinV. BalabanovaL. LikhatskayaG. RasskazovV. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina.Mar. Biotechnol.201517213014310.1007/s10126‑014‑9601‑0 25260971
    [Google Scholar]
  124. DoH. YunJ.S. LeeC.W. Crystal structure and comparative sequence analysis of GmhA from Colwellia psychrerythraea strain 34H provides insight into functional similarity with DiaA.Mol. Cells201538121086109510.14348/molcells.2015.0191 26612680
    [Google Scholar]
  125. TangY. WuP. JiangS. SelvarajJ.N. YangS. ZhangG. A new cold-active and alkaline pectate lyase from Antarctic bacterium with high catalytic efficiency.Appl. Microbiol. Biotechnol.2019103135231524110.1007/s00253‑019‑09803‑1 31028436
    [Google Scholar]
  126. See TooW.C. FewL.L. Cloning of triose phosphate isomerase gene from an antarctic psychrophilic Pseudomonas sp. by degenerate and splinkerette PCR.World J. Microbiol. Biotechnol.20102671251125910.1007/s11274‑009‑0295‑9 24026930
    [Google Scholar]
  127. AlbinoA. MarcoS. Di MaroA. ChamberyA. MasulloM. De VendittisE. Characterization of a cold-adapted glutathione synthetase from the psychrophile Pseudoalteromonas haloplanktis.Mol. Biosyst.2012892405241410.1039/c2mb25116g 22777241
    [Google Scholar]
  128. GeorletteD. JónssonZ.O. Van PetegemF. A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures.Eur. J. Biochem.2000267123502351210.1046/j.1432‑1327.2000.01377.x 10848966
    [Google Scholar]
  129. IsobeK. YamadaM. β-Galactosidases from an Acidophilic Fungus, Teratosphaeria acidotherma AIU BGA-1.In: Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Cham: Springer International Publishing20194194010.1007/978‑3‑030‑19030‑9_21
    [Google Scholar]
  130. TanakaH. OkunoT. MoriyamaS. MugurumaM. OhtaK. Acidophilic xylanase from Aureobasidium pullulans: efficient expression and secretion in Pichia pastoris and mutational analysis.J. Biosci. Bioeng.200498533834310.1016/S1389‑1723(04)00292‑0 16233716
    [Google Scholar]
  131. BekliS. AktasB. GencerD. AslimB. Biochemical and molecular characterizations of a novel pH- and temperature-stable pectate lyase from Bacillus amyloliquefaciens S6 for industrial application.Mol. Biotechnol.201961968169310.1007/s12033‑019‑00194‑2 31218650
    [Google Scholar]
  132. GolyshinaO.V. TimmisK.N. Ferroplasma and relatives, recently discovered cell wall‐lacking archaea making a living in extremely acid, heavy metal‐rich environments.Environ. Microbiol.2005791277128810.1111/j.1462‑2920.2005.00861.x 16104851
    [Google Scholar]
  133. WuH. LiuB. OuX. PanS. ShaoY. HuangF. Streptomyces thermoalkaliphilus sp. nov., an alkaline cellulase producing thermophilic actinomycete isolated from tropical rainforest soil.Antonie van Leeuwenhoek2018111341342210.1007/s10482‑017‑0964‑x 29110157
    [Google Scholar]
  134. SuganthiC. MageswariA. KarthikeyanS. AnbalaganM. SivakumarA. GothandamK.M. Screening and optimization of protease production from a halotolerant Bacillus licheniformis isolated from saltern sediments.J. Genet. Eng. Biotechnol.2013111475210.1016/j.jgeb.2013.02.002
    [Google Scholar]
  135. RizzariC. ZucchettiM. ConterV. L-asparagine depletion and L-asparaginase activity in children with acute lymphoblastic leukemia receiving i.m. or i.v. Erwinia C. or E. coli L-asparaginase as first exposure.Ann. Oncol.200011218919310.1023/A:1008368916800 10761754
    [Google Scholar]
  136. RaddadiN. CherifA. DaffonchioD. FavaF. Halo-alkalitolerant and thermostable cellulases with improved tolerance to ionic liquids and organic solvents from Paenibacillus tarimensis isolated from the Chott El Fejej, Sahara desert, Tunisia.Bioresour. Technol.201315012112810.1016/j.biortech.2013.09.089 24161550
    [Google Scholar]
  137. MaoS. JiangJ. XiongK. Enzyme engineering: Performance optimization, novel sources, and applications in the food industry.Foods20241323384610.3390/foods13233846 39682920
    [Google Scholar]
  138. AkalA.L. KaranR. HohlA. A polyextremophilic alcohol dehydrogenase from the Atlantis II deep red sea brine pool.FEBS Open Bio20199219420510.1002/2211‑5463.12557 30761247
    [Google Scholar]
  139. WeiT. PanT. PengX. Janus liposozyme for the modulation of redox and immune homeostasis in infected diabetic wounds.Nat. Nanotechnol.20241981178118910.1038/s41565‑024‑01660‑y 38740936
    [Google Scholar]
  140. LiG. LiuH. HuT. PuF. RenJ. QuX. Dimensionality engineering of single-atom nanozyme for efficient peroxidase-mimicking.J. Am. Chem. Soc.202314530168351684210.1021/jacs.3c05162 37487021
    [Google Scholar]
  141. KooS. SohnH.S. KimT.H. Ceria-vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis model.Nat. Nanotechnol.202318121502151410.1038/s41565‑023‑01523‑y 37884660
    [Google Scholar]
  142. JiangW. LiQ. ZhangR. Chiral metal-organic frameworks incorporating nanozymes as neuroinflammation inhibitors for managing Parkinson’s disease.Nat. Commun.2023141813710.1038/s41467‑023‑43870‑3 38065945
    [Google Scholar]
  143. SuJ. WangP. ZhouW. Single-site iron-anchored amyloid hydrogels as catalytic platforms for alcohol detoxification.Nat. Nanotechnol.20241981168117710.1038/s41565‑024‑01657‑7 38740933
    [Google Scholar]
  144. HakimS. NaqqashT. NawazM.S. Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability.Front. Sustain. Food Syst.2021561715710.3389/fsufs.2021.617157
    [Google Scholar]
  145. RizwanuddinS. KumarV. SinghP. Insight into phytase-producing microorganisms for phytate solubilization and soil sustainability.Front. Microbiol.202314112724910.3389/fmicb.2023.1127249 37113239
    [Google Scholar]
  146. ChoctM. HughesR.J. BedfordM.R. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat.Br. Poult. Sci.199940341942210.1080/00071669987548 10475642
    [Google Scholar]
  147. EjazU. SohailM. GhanemiA. Cellulases: From bioactivity to a variety of industrial applications.Biomimetics2021634410.3390/biomimetics6030044 34287227
    [Google Scholar]
  148. El KhouryD. CudaC. LuhovyyB.L. AndersonG.H. Beta glucan: Health benefits in obesity and metabolic syndrome.J. Nutr. Metab.2012201212810.1155/2012/851362 22187640
    [Google Scholar]
  149. KimH.J. YooS.H. Effects of combined α-amylase and endo-xylanase treatments on the properties of fresh and frozen doughs and final breads.Polymers2020126134910.3390/polym12061349 32549311
    [Google Scholar]
  150. RuanY. ZhangR. XuY. Directed evolution of maltogenic amylase from Bacillus licheniformis R-53: Enhancing activity and thermostability improves bread quality and extends shelf life.Food Chem.202238113222210.1016/j.foodchem.2022.132222 35124495
    [Google Scholar]
  151. MohammadiH.M. ZoghiA. AziziM.H. Effect of Xylanase and pentosanase enzymes on dough rheological properties and quality of baguette bread.J. Food Qual.2022291082110.1155/2022/2910821
    [Google Scholar]
  152. MelisS. Meza MoralesW.R. DelcourJ.A. Lipases in wheat flour bread making: Importance of an appropriate balance between wheat endogenous lipids and their enzymatically released hydrolysis products.Food Chem.201929812500210.1016/j.foodchem.2019.125002 31260958
    [Google Scholar]
  153. Kouassi-KoffiJ.D. SturzaA. PăuceanA. Effect of glucose oxidase addition on the textural characteristics of wheat-maize dough and bread.Food Sci Technol201939112713310.1590/fst.27117
    [Google Scholar]
  154. Heredia-SandovalN. Valencia-TapiaM. Calderón de la BarcaA. Islas-RubioA. Microbial proteases in baked goods: Modification of gluten and effects on immunogenicity and product quality.Foods2016535910.3390/foods5030059 28231153
    [Google Scholar]
  155. AltınelB. ÜnalS.S. The effects of certain enzymes on the rheology of dough and the quality characteristics of bread prepared from wheat meal.J. Food Sci. Technol.20175461628163710.1007/s13197‑017‑2594‑8 28559622
    [Google Scholar]
  156. GerrardJ.A. NewberryM.P. RossM. WilsonA.J. FayleS.E. KavaleS. Pastry lift and croissant volume as affected by microbial transglutaminase.J. Food Sci.200065231231410.1111/j.1365‑2621.2000.tb15999.x
    [Google Scholar]
  157. SouzaP.M. MagalhãesP.O. Application of microbial α-amylase in industry - A review.Braz. J. Microbiol.201041485086110.1590/S1517‑83822010000400004 24031565
    [Google Scholar]
  158. DhimanS.S. GargG. SharmaJ. MahajanR. Characterization of statistically produced xylanase for enrichment of fruit juice clarification process.N. Biotechnol.201128674675510.1016/j.nbt.2010.11.004 21093618
    [Google Scholar]
  159. CaseiroC. DiasJ.N.R. de Andrade FontesC.M.G. BuleP. From cancer therapy to winemaking: The molecular structure and applications of β-glucans and β-1, 3-glucanases.Int. J. Mol. Sci.2022236315610.3390/ijms23063156 35328577
    [Google Scholar]
  160. HiiS.L. TanJ.S. LingT.C. AriffA.B. Pullulanase: Role in starch hydrolysis and potential industrial applications.Enzyme Res.2012201211410.1155/2012/921362 22991654
    [Google Scholar]
  161. Kumar PeguB. Microbial naringinase and its applications in debittering technology –a mini review.Biosci. Biotechnol. Res. Commun.202114249349810.21786/bbrc/14.2.7
    [Google Scholar]
  162. NandanA. NampoothiriK.M. Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases.Appl. Microbiol. Biotechnol.2020104125243525710.1007/s00253‑020‑10641‑9 32342144
    [Google Scholar]
  163. BauerJ.A. ZámockáM. MajtánJ. Bauerová-HlinkováV. Glucose oxidase, an enzyme “Ferrari”: Its structure, function, production and properties in the light of various industrial and biotechnological applications.Biomolecules202212347210.3390/biom12030472 35327664
    [Google Scholar]
  164. WangF. XuH. WangM. Application of immobilized enzymes in juice clarification.Foods20231223425810.3390/foods12234258 38231709
    [Google Scholar]
  165. GargG SinghA KaurA. Microbial pectinases: An ecofriendly tool of nature for industries. 3 Biotech201664710.1007/s13205‑016‑0371‑4
    [Google Scholar]
  166. PiddockeM.P. FazioA. VongsangnakW. Revealing the beneficial effect of protease supplementation to high gravity beer fermentations using “-omics” techniques.Microb. Cell Fact.20111012710.1186/1475‑2859‑10‑27 21513553
    [Google Scholar]
  167. PatiS. SamantarayD.P. Novel Food Grade Enzymes.SingaporeSpringer202210.1007/978‑981‑19‑1288‑7_6
    [Google Scholar]
  168. BhardwajN. KumarB. VermaP. A detailed overview of xylanases: An emerging biomolecule for current and future prospective.Bioresour. Bioprocess.2019614010.1186/s40643‑019‑0276‑2
    [Google Scholar]
  169. ClausH. MojsovK. Enzymes for wine fermentation: Current and perspective applications.Fermentation2018435210.3390/fermentation4030052
    [Google Scholar]
  170. KaurB. ChakrabortyD. KumarB. Phenolic biotransformations during conversion of ferulic acid to vanillin by lactic acid bacteria.BioMed Res. Int.201320131610.1155/2013/590359 24066293
    [Google Scholar]
  171. ShraddhaS. ShekherR. SehgalS. KamthaniaM. KumarA. Laccase: microbial sources, production, purification, and potential biotechnological applications.Enzyme Res.2011201111110.4061/2011/217861 21755038
    [Google Scholar]
  172. ZhengX. ShiX. WangB. A review on the general cheese processing technology, flavour biochemical pathways and the influence of yeasts in cheese.Front. Microbiol.20211270328410.3389/fmicb.2021.703284 34394049
    [Google Scholar]
  173. Del RossoJ.Q. Application of protease technology in dermatology: rationale for incorporation into skin care with initial observations on formulations designed for skin cleansing, maintenance of hydration, and restoration of the epidermal permeability barrier.J. Clin. Aesthet. Dermatol.2013661422 23882305
    [Google Scholar]
  174. RajaV.S. EmmadiP. NamasivayamA. ThyegarajanR. RajaramanV. The periodontal - Eendodontic continuum: A review.J. Conserv. Dent.2008112546210.4103/0972‑0707.44046 20142886
    [Google Scholar]
  175. KumarD KumarA SondhiS SharmaP GuptaN An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis. 3 Biotech20188318210.1007/s13205‑018‑1181‑7
    [Google Scholar]
  176. Ansorge-SchumacherM.B. ThumO. Immobilised lipases in the cosmetics industry.Chem. Soc. Rev.201342156475649010.1039/c3cs35484a 23515487
    [Google Scholar]
  177. KaurS. Application of plant proteases in hydrolysis of dairy proteins.Doctoral dissertation, Victoria University2024
    [Google Scholar]
  178. WilkinsonM.G. KilcawleyK.N. Mechanisms of incorporation and release of enzymes into cheese during ripening.Int. Dairy J.2005156-981783010.1016/j.idairyj.2004.08.021
    [Google Scholar]
  179. ChandraP.E. SinghR. AroraP.K. Microbial lipases and their industrial applications: A comprehensive review.Microb. Cell Fact.202019116910.1186/s12934‑020‑01428‑8
    [Google Scholar]
  180. SaqibS AkramA HalimSA TassaduqR Sources of β-galactosidase and its applications in food industry. 3 Biotech2017717910.1007/s13205‑017‑0645‑5
    [Google Scholar]
  181. GattiM. De Dea LindnerJ. GardiniF. A model to assess lactic acid bacteria aminopeptidase activities in Parmigiano Reggiano cheese during ripening.J. Dairy Sci.200891114129413710.3168/jds.2008‑1069 18946116
    [Google Scholar]
  182. BalboaM.A. BalsindeJ. Phospholipases: From structure to biological function.Biomolecules202111342810.3390/biom11030428 33803937
    [Google Scholar]
  183. StruchM. LinkeD. MokoonlallA. HinrichsJ. BergerR.G. Laccase-catalysed cross-linking of a yoghurt-like model system made from skimmed milk with added food-grade mediators.Int. Dairy J.201549899410.1016/j.idairyj.2015.04.002
    [Google Scholar]
  184. Velazquez-DominguezA. HiolleM. AbdallahM. DelaplaceG. PeixotoP.P.S. Transglutaminase cross-linking on dairy proteins: Functionalities, patents, and commercial uses.Int. Dairy J.202314310568810.1016/j.idairyj.2023.105688
    [Google Scholar]
  185. DasA ShivakumarS BhattacharyaS ShakyaS SwathiSS Purification and characterization of a surfactant-compatible lipase from Aspergillus tamarii JGIF06 exhibiting energy-efficient removal of oil stains from polycotton fabric. 3 Biotech20166210.1007/s13205‑016‑0449‑z
    [Google Scholar]
  186. NiyonzimaF.N. MoreS. Detergent-compatible proteases: Microbial production, properties, and stain removal analysis.Prep. Biochem. Biotechnol.201545323325810.1080/10826068.2014.907183 24678620
    [Google Scholar]
  187. ChenS. TongX. WoodardR.W. DuG. WuJ. ChenJ. Identification and characterization of bacterial cutinase.J. Biol. Chem.200828338258542586210.1074/jbc.M800848200 18658138
    [Google Scholar]
  188. DawoodA. MaK. Applications of Microbial β-Mannanases.Front. Bioeng. Biotechnol.2020859863010.3389/fbioe.2020.598630 33384989
    [Google Scholar]
  189. Roman-BennA. ContadorC.A. LiM.W. Pectin: An overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues.Food Chem. Adv.2023210019210.1016/j.focha.2023.100192
    [Google Scholar]
  190. Mohd AzmiS. KumarP. SharmaN. SaziliA. LeeS.J. Ismail-FitryM. Application of plant proteases in meat tenderization: Recent trends and future prospects.Foods2023126133610.3390/foods12061336 36981262
    [Google Scholar]
  191. KimM.R. ShimJ.Y. ParkK.H. ImmJ. Functional properties of enzymatically modified egg yolk powder produced by phospholipase A2 treatment.Food Sci. Biotechnol.20081712891293
    [Google Scholar]
  192. KorneckiJ.F. CarballaresD. TardioliP.W. Enzyme production of d -gluconic acid and glucose oxidase: successful tales of cascade reactions.Catal. Sci. Technol.202010175740577110.1039/D0CY00819B
    [Google Scholar]
  193. LeeE.J. HongG.P. Effects of microbial transglutaminase and alginate on the water-binding, textural and oil absorption properties of soy patties.Food Sci. Biotechnol.202029677778210.1007/s10068‑019‑00713‑6 32523787
    [Google Scholar]
  194. SooE. S.O. Characterization of nariginase obtained from Aspergillus niger by submerged fermentation using naringin extracted from lemon peels. Res Dev Mater Sci20184510.31031/RDMS.2018.04.000599
    [Google Scholar]
  195. ShakilanishiS. MrudulaP. ShanthiC. Production of dehairing protease by Bacillus cereus VITSN04: A model cradle-to-cradle approach for sustainable greener production of leathers.Environ. Technol.202445118019110.1080/09593330.2022.2102938 35848414
    [Google Scholar]
  196. MoujehedE. ZaraiZ. KhemirH. Cleaner degreasing of sheepskins by the Yarrowia lipolytica LIP2 lipase as a chemical-free alternative in the leather industry.Colloids Surf. B Biointerfaces202221111229210.1016/j.colsurfb.2021.112292 34954514
    [Google Scholar]
  197. RamamoorthiP. RathinamA. JonnalagaddaR.R. PalanisamyT. Non-aqueous green solvents improve alpha-amylase induced fiber opening in leather processing.Sci. Rep.20201012227410.1038/s41598‑020‑79406‑8 33335283
    [Google Scholar]
  198. GharbyS. Refining vegetable oils: Chemical and physical refining.ScientificWorldJournal2022202211010.1155/2022/6627013 35069038
    [Google Scholar]
  199. PerezE.E. FernándezM.B. NolascoS.M. CrapisteG.H. Effect of pectinase on the oil solvent extraction from different genotypes of sunflower (Helianthus annuus L.).J. Food Eng.2013117339339810.1016/j.jfoodeng.2013.03.006
    [Google Scholar]
  200. PratushA SethA BhallaTC Purification and characterization of nitrile hydratase of mutant 4D of Rhodococcus rhodochrous PA-34. 3 Biotech2013321657110.1007/s13205‑012‑0081‑5
    [Google Scholar]
  201. WeijersC.A.G.M. FranssenM.C.R. VisserG.M. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides.Biotechnol. Adv.200826543645610.1016/j.biotechadv.2008.05.001 18565714
    [Google Scholar]
  202. Mokale KognouA.L. ShresthaS. JiangZ. XuC.C. SunF. QinW. High-fructose corn syrup production and its new applications for 5-hydroxymethylfurfural and value-added furan derivatives: Promises and challenges.J Bioresour Bioproducts20227314816010.1016/j.jobab.2022.03.004
    [Google Scholar]
  203. AlamM.A. Methods for hydroxamic acid synthesis.Curr. Org. Chem.201923997899310.2174/1385272823666190424142821 32565717
    [Google Scholar]
  204. GutiérrezA. del RíoJ.C. MartínezA.T. Microbial and enzymatic control of pitch in the pulp and paper industry.Appl. Microbiol. Biotechnol.20098261005101810.1007/s00253‑009‑1905‑z 19242691
    [Google Scholar]
  205. Elyasi FarB. AhmadiY. Yari KhosroshahiA. DilmaghaniA. Microbial alpha-amylase production: Progress, challenges, and perspectives.Adv. Pharm. Bull.202010335035810.34172/apb.2020.043 32665893
    [Google Scholar]
  206. JeeS.C. KimM. SungJ.S. KadamA.A. Efficient biofilms eradication by enzymatic-cocktail of pancreatic protease type-i and bacterial α-amylase.Polymers20201212303210.3390/polym12123032 33348879
    [Google Scholar]
  207. LinX. HanS. ZhangN. Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp.Enzyme Microb. Technol.2013522919810.1016/j.enzmictec.2012.10.011 23273277
    [Google Scholar]
  208. WoolridgeE. Mixed enzyme systems for delignification of lignocellulosic biomass.Catalysts20144113510.3390/catal4010001
    [Google Scholar]
  209. HaileS. AyeleA. Pectinase from microorganisms and its industrial applications.ScientificWorldJournal2022202211510.1155/2022/1881305 35311220
    [Google Scholar]
  210. YeniadB. NaikH. HeiseA. Lipases in polymer chemistry.Adv. Biochem. Eng. Biotechnol.2010125699510.1007/10_2010_90 20859733
    [Google Scholar]
  211. GermanN. PopovA. RamanavicieneA. RamanaviciusA. Enzymatic formation of polyaniline, polypyrrole, and polythiophene nanoparticles with embedded glucose oxidase.Nanomaterials20199580610.3390/nano9050806 31137827
    [Google Scholar]
  212. UchidaH. FukudaT. MiyamotoH. KawabataT. SuzukiM. UwajimaT. Polymerization of bisphenol A by purified laccase from Trametes villosa.Biochem. Biophys. Res. Commun.2001287235535810.1006/bbrc.2001.5593 11554734
    [Google Scholar]
  213. HeckT. FaccioG. RichterM. Thöny-MeyerL. Enzyme-catalyzed protein crosslinking.Appl. Microbiol. Biotechnol.201397246147510.1007/s00253‑012‑4569‑z 23179622
    [Google Scholar]
  214. CapecchiE. PiccininoD. DelfinoI. BollellaP. AntiochiaR. SaladinoR. Functionalized tyrosinase-lignin nanoparticles as sustainable catalysts for the oxidation of phenols.Nanomaterials20188643810.3390/nano8060438 29914085
    [Google Scholar]
  215. RajendranR. Karthik SuS. RadhaiR. RajapriyaP. Bioscouring of cotton fabrics using pectinase enzyme its optimization and comparison with conventional scouring process.Pak. J. Biol. Sci.201114951952510.3923/pjbs.2011.519.525 22032080
    [Google Scholar]
  216. JayasekaraS. RatnayakeR. Microbial cellulases: An overview and applications.Intech Open201910.5772/intechopen.84531
    [Google Scholar]
  217. ChandN. SajediR.H. NateriA.S. KhajehK. RassaM. Fermentative desizing of cotton fabric using an α-amylase-producing Bacillus strain: Optimization of simultaneous enzyme production and desizing.Process Biochem.201449111884188810.1016/j.procbio.2014.07.007
    [Google Scholar]
  218. WuZ. LiuC. ZhangZ. ZhengR. ZhengY. Amidase as a versatile tool in amide-bond cleavage: From molecular features to biotechnological applications.Biotechnol. Adv.20204310757410.1016/j.biotechadv.2020.107574 32512219
    [Google Scholar]
  219. AwasthiM.K. WongJ.W.C. KumarS. Biodegradation of food waste using microbial cultures producing thermostable α-amylase and cellulase under different pH and temperature.In: Bioresource Technology201824816017010.1016/j.biortech.2017.06.160
    [Google Scholar]
  220. LiM. HanfordM.J. KimJ.W. PeeplesT.L. Amyloglucosidase enzymatic reactivity inside lipid vesicles.J. Biol. Eng.200711410.1186/1754‑1611‑1‑4 18271982
    [Google Scholar]
  221. AbubakarA. AbioyeO.P. AransiolaS.A. MaddelaN.R. PrasadR. Crude oil biodegradation potential of lipase produced by Bacillus subtilis and Pseudomonas aeruginosa isolated from hydrocarbon contaminated soil.Environ Chem Ecotoxicol20246263210.1016/j.enceco.2023.12.001
    [Google Scholar]
  222. ChengZ. XiaY. ZhouZ. Recent advances and promises in nitrile hydratase: From mechanism to industrial applications.Front. Bioeng. Biotechnol.2020835210.3389/fbioe.2020.00352 32391348
    [Google Scholar]
  223. PangR. LiM. ZhangC. Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: Diffusional limitation investigation.Talanta2015131384510.1016/j.talanta.2014.07.045 25281070
    [Google Scholar]
  224. AkhterM. Wal MarzanL. AkterY. ShimizuK. Microbial bioremediation of feather waste for keratinase production: An outstanding solution for leather dehairing in tanneries.Microbiol. Insights202013117863612091328010.1177/1178636120913280 32440139
    [Google Scholar]
  225. Abdel-MotaalFF El-SayedMA El-ZayatSA Biodegradation of poly (ε-caprolactone) (PCL) film and foam plastic by Pseudozyma japonica sp. nov., a novel cutinolytic ustilaginomycetous yeast species. 3 Biotech201445071210.1007/s13205‑013‑0182‑9
    [Google Scholar]
  226. HiguchiT. Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase, and laccase.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.200480520421410.2183/pjab.80.204
    [Google Scholar]
  227. XuH. GuoM.Y. GaoY.H. BaiX.H. ZhouX.W. Expression and characteristics of manganese peroxidase from Ganoderma lucidum in Pichia pastoris and its application in the degradation of four dyes and phenol.BMC Biotechnol.20171711910.1186/s12896‑017‑0338‑5 28231778
    [Google Scholar]
  228. FurukawaK. Oxygenases and dehalogenases: Molecular approaches to efficient degradation of chlorinated environmental pollutants.Biosci. Biotechnol. Biochem.200670102335234810.1271/bbb.60218 17031039
    [Google Scholar]
  229. PimviriyakulP. WongnateT. TinikulR. ChaiyenP. Microbial degradation of halogenated aromatics: Molecular mechanisms and enzymatic reactions.Microb. Biotechnol.2020131678610.1111/1751‑7915.13488 31565852
    [Google Scholar]
/content/journals/cei/10.2174/0115734080360789250414062505
Loading
/content/journals/cei/10.2174/0115734080360789250414062505
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test