Skip to content
2000
image of Advances in the Production of Recombinant Protease through Expression Systems: An Updated Review

Abstract

Enzymes are proteins that act as biocatalysts and have been revolutionized in several fields and industries owing to their unique properties. Proteases are enzymes that hydrolyze peptide bonds in proteins. They are widely employed in the food, biotechnology, and pharmaceutical industries. As the demand for proteases increases, there is a growing focus on enhancing the expression and synthesis of protease enzymes in microorganisms using recombinant DNA technology, which has attracted attention due to its high potential in biotechnology. Several expression systems, such as , , and are commonly employed for the synthesis of proteases. The accurate selection of an expression system for a microorganism depends greatly on the protease in terms of functional modifications and activity. However, the native protease host does not show increased expression. As a result, the production of recombinant proteases has emerged as a crucial target that provides a high yield of protease and is cost-effective. Despite this advancement, there are still some challenges, such as the specificity and stability of the expression systems. This review presents an overview of the primary factors that enhance protein expression, as well as several strategies that increase the production of recombinant proteases, such as improving signal peptidases, promoter regions, and fermentation conditions. The applications of protease enzymes are also discussed, with the aim of presenting diverse sources and approaches for producing recombinant proteases using various expression systems. Furthermore, protease production from expression systems is still evolving, offering a wide range of applications in diverse industries.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080358248250507062836
2025-05-16
2025-09-26
Loading full text...

Full text loading...

References

  1. Chapman J. Ismail A.E. Dinu C.Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 2018 8 6 238 10.3390/catal8060238
    [Google Scholar]
  2. Chaurasiya A Shome A Chawla PA Molecular docking analysis of peptide-based antiviral agents against SARS-CoV-2 main protease: An approach towards drug repurposing. Expl. Med. 2023 4 1 33 44 10.37349/emed.2023.00123
    [Google Scholar]
  3. Solanki P Putatunda C Kumar A Bhatia R Walia A. Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech. 2021 11 10 428 10.1007/s13205‑021‑02928‑z
    [Google Scholar]
  4. Zhang W. Chao Y. Zhang W. Zhou J. Lv F. Wang K. Lin F. Luo H. Li J. Tong M. Wang E. Guo S. Emerging dual‐atomic‐site catalysts for efficient energy catalysis. Adv. Mater. 2021 33 36 2102576 10.1002/adma.202102576 34296795
    [Google Scholar]
  5. Barzkar N. Khan Z. Jahromi T.S. Pourmozaffar S. Gozari M. Nahavandi R. A critical review on marine serine protease and its inhibitors: A new wave of drugs? Int. J. Biol. Macromol. 2021 170 674 687 10.1016/j.ijbiomac.2020.12.134 33387547
    [Google Scholar]
  6. Silverstein T.P. The proton in biochemistry: Impacts on bioenergetics, biophysical chemistry, and bioorganic chemistry. Front. Mol. Biosci. 2021 8 764099 10.3389/fmolb.2021.764099 34901158
    [Google Scholar]
  7. Yang S. Song L. Wang J. Zhao J. Tang H. Bao X. Engineering Saccharomyces cerevisiae for efficient production of recombinant proteins. Engineering Microbiology 2024 4 1 100122 10.1016/j.engmic.2023.100122 39628786
    [Google Scholar]
  8. Elsässer B. Goettig P. Mechanisms of proteolytic enzymes and their inhibition in qm/mm studies. Int. J. Mol. Sci. 2021 22 6 3232 10.3390/ijms22063232 33810118
    [Google Scholar]
  9. Yu S. Thoegersen B.J. Kragh K.M. Comparative study of protease hydrolysis reaction demonstrating normalized peptide bond cleavage frequency and protease substrate broadness index. plos one 2020 15 9 e0239080 10.1371/journal.pone.0239080 32956384
    [Google Scholar]
  10. Gimenes N.C. Silveira E. Tambourgi E.B. An Overview of Proteases: Production, Downstream Processes and Industrial Applications. Separ. Purif. Rev. 2021 50 3 223 243 10.1080/15422119.2019.1677249
    [Google Scholar]
  11. Linz B. Sharafutdinov I. Tegtmeyer N. Backert S. Evolution and role of proteases in Campylobacter jejuni lifestyle and pathogenesis. Biomolecules 2023 13 2 323 10.3390/biom13020323 36830692
    [Google Scholar]
  12. Poluri K.M. Gulati K. Tripathi D.K. Nagar N. Protein-Protein Interactions: Pathophysiological and Therapeutic Aspects Singapore Springer 10.1007/978‑981‑99‑2423‑3
    [Google Scholar]
  13. Rehman A.U. Khurshid B. Ali Y. Rasheed S. Wadood A. Ng H.L. Chen H.F. Wei Z. Luo R. Zhang J. Computational approaches for the design of modulators targeting protein-protein interactions. Expert Opin. Drug Discov. 2023 18 3 315 333 10.1080/17460441.2023.2171396 36715303
    [Google Scholar]
  14. Popova N.V. Jücker M. The functional role of extracellular matrix proteins in cancer. Cancers 2022 14 1 238 10.3390/cancers14010238 35008401
    [Google Scholar]
  15. Rawlings N.D. Twenty-five years of nomenclature and classification of proteolytic enzymes. Biochim. Biophys. Acta. Prot. Prot. 2020 1868 2 140345 10.1016/j.bbapap.2019.140345 31838087
    [Google Scholar]
  16. Protease market outlook: Forecast and key developments. Available from: https://www.futuremarketinsights.com/reports/protease-market
  17. Lindberg D. Kristoffersen K.A. Wubshet S.G. Hunnes L.M.G. Dalsnes M. Dankel K.R. Høst V. Afseth N.K. Exploring effects of protease choice and protease combinations in enzymatic protein hydrolysis of poultry by-products. Molecules 2021 26 17 5280 10.3390/molecules26175280 34500712
    [Google Scholar]
  18. Boven L. Akkerman R. Vos D.P. Sustainable diets with plant-based proteins require considerations for prevention of proteolytic fermentation. Crit. Rev. Food Sci. Nutr. 2024 ••• 1 11 10.1080/10408398.2024.2352523 38950600
    [Google Scholar]
  19. Patel K. Amaresan N. Mass multiplication, production cost analysis and marketing of protease. Industrial Microbiology Based Entrepreneurship. Amaresan N. Dharumadurai D. Cundell D.R. Singapore Springer 2022 Vol. 42 11 24 10.1007/978‑981‑19‑6664‑4_2
    [Google Scholar]
  20. Higuchi Y. Membrane traffic in Aspergillus oryzae and related filamentous fungi. J. Fungi 2021 7 7 534 10.3390/jof7070534 34356913
    [Google Scholar]
  21. Naeem M. Manzoor S. Abid M.U.H. Tareen M.B.K. Asad M. Mushtaq S. Ehsan N. Amna D. Xu B. Hazafa A. Fungal proteases as emerging biocatalysts to meet the current challenges and recent developments in biomedical therapies: An updated review. J. Fungi. 2022 8 2 109 10.3390/jof8020109 35205863
    [Google Scholar]
  22. Fernandez J. Lopez V. Kinch L. Pfeifer M.A. Gray H. Garcia N. Grishin N.V. Khang C.H. Orth K. Role of two metacaspases in development and pathogenicity of the rice blast fungus magnaporthe oryzae. MBio 2021 12 1 e03471-20 10.1128/mBio.03471‑20 33563831
    [Google Scholar]
  23. Chimbekujwo K.I. Ja’afaru M.I. Adeyemo O.M. Purification, characterization and optimization conditions of protease produced by Aspergillus brasiliensis strain BCW2. Sci. Am. 2020 8 e00398 10.1016/j.sciaf.2020.e00398
    [Google Scholar]
  24. Viljoen K.S. Dakshinamurthy A. Goldberg P. Blackburn J.M. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS One 2015 10 3 e0119462 10.1371/journal.pone.0119462 25751261
    [Google Scholar]
  25. Kim K. Choe D. Lee D.H. Cho B.K. Engineering biology to construct microbial chassis for the production of difficult-to-express proteins. Int. J. Mol. Sci. 2020 21 3 990 10.3390/ijms21030990 32024292
    [Google Scholar]
  26. Garvey M. Non-mammalian eukaryotic expression systems yeast and fungi in the production of biologics. J. Fungi. 2022 8 11 1179 10.3390/jof8111179 36354946
    [Google Scholar]
  27. Sakekar A.A. Gaikwad S.R. Punekar N.S. Protein expression and secretion by filamentous fungi. J. Biosci. 2021 46 1 5 10.1007/s12038‑020‑00120‑8 33576343
    [Google Scholar]
  28. Nadeem F. Mehmood T. Naveed M. Shamas S. Saman T. Anwar Z. Protease Production from Cheotomium globusum Through Central Composite Design Using Agricultural Wastes and Its Immobilization for Industrial Exploitation. Waste Biomass Valoriz. 2020 11 12 6529 6539 10.1007/s12649‑019‑00890‑9
    [Google Scholar]
  29. Shankar R. Upadhyay P.K. Kumar M. Protease enzymes: Highlights on potential of proteases as therapeutics agents. Int. J. Pept. Res. Ther. 2021 27 2 1281 1296 10.1007/s10989‑021‑10167‑2
    [Google Scholar]
  30. Song P. Zhang X. Wang S. Xu W. Wang F. Fu R. Wei F. Microbial proteases and their applications. Front. Microbiol. 2023 14 1236368 10.3389/fmicb.2023.1236368 37779686
    [Google Scholar]
  31. Naveed M. Nadeem F. Mehmood T. Bilal M. Anwar Z. Amjad F. Protease—a versatile and ecofriendly biocatalyst with multi-industrial applications: An updated review. Catal. Lett. 2021 151 2 307 323 10.1007/s10562‑020‑03316‑7
    [Google Scholar]
  32. Helbig A.O. Tholey A. Exopeptidase assisted n- and c-terminal proteome sequencing. Anal. Chem. 2020 92 7 5023 5032 10.1021/acs.analchem.9b05288 32167277
    [Google Scholar]
  33. Gurumallesh P. Alagu K. Ramakrishnan B. Muthusamy S. A systematic reconsideration on proteases. Int. J. Biol. Macromol. 2019 128 254 267 10.1016/j.ijbiomac.2019.01.081 30664968
    [Google Scholar]
  34. Porto De Souza Vandenberghe L. Karp S.G. Pagnoncelli B.M.G. Von Linsingen Tavares M. Libardi N. Junior Diestra V.K. Classification of enzymes and catalytic properties. Biomass, Biofuels, Biochemicals. Amsterdam, Netherlands Elsevier 2020 11 30 10.1016/B978‑0‑12‑819820‑9.00002‑8
    [Google Scholar]
  35. Razzaq A. Shamsi S. Ali A. Ali Q. Sajjad M. Malik A. Ashraf M. Microbial proteases applications. Front. Bioeng. Biotechnol. 2019 7 110 10.3389/fbioe.2019.00110 31263696
    [Google Scholar]
  36. Srivastava N. Kumar S. Khare S.K. Proteases from thermophilic bacteria: Their significant characteristics and recombinant production. Microbial Enzymes. 1st ed Chowdhary P. Yadav D. Anand G. Gaur R.K. Hoboken, New Jersey Wiley 2025 293 308 10.1002/9783527844340.ch14
    [Google Scholar]
  37. Banerjee G. Ray A.K. Impact of microbial proteases on biotechnological industries. Biotechnol. Genet. Eng. Rev. 2017 33 2 119 143 10.1080/02648725.2017.1408256 29205093
    [Google Scholar]
  38. Rivero-Pino F. Espejo-Carpio F.J. Guadix E.M. Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources. Food Chem. 2021 354 129473 10.1016/j.foodchem.2021.129473 33743449
    [Google Scholar]
  39. Dhillon A. Sharma K. Rajulapati V. Goyal A. Proteolytic Enzymes. Current Developments in Biotechnology and Bioengineering. Amsterdam, Netherlands Elsevier 2017 149 173 10.1016/B978‑0‑444‑63662‑1.00007‑5
    [Google Scholar]
  40. Danilova I. Sharipova M. The practical potential of bacilli and their enzymes for industrial production. Front. Microbiol. 2020 11 1782 10.3389/fmicb.2020.01782 32849401
    [Google Scholar]
  41. Contesini F.J. Melo R.R. Sato H.H. An overview of Bacillus proteases: From production to application. Crit. Rev. Biotechnol. 2018 38 3 321 334 10.1080/07388551.2017.1354354 28789570
    [Google Scholar]
  42. Lario L.D. Pillaca-Pullo O.S. Sette C.L. Converti A. Casati P. Spampinato C. Pessoa A. Optimization of protease production and sequence analysis of the purified enzyme from the cold adapted yeast Rhodotorula mucilaginosa CBMAI 1528. Biotechnol. Rep. 2020 28 e00546 10.1016/j.btre.2020.e00546 33204658
    [Google Scholar]
  43. Mandal S. Banerjee D. Proteases from Endophytic Fungi with Potential Industrial Applications. Recent Advancement in White Biotechnology Through Fungi. Yadav A.N. Mishra S. Singh S. Gupta A. Cham Springer 2019 319 359 10.1007/978‑3‑030‑10480‑1_10
    [Google Scholar]
  44. Rad N.S. Shirazi MM Kargari A Marzban R. Application of membrane separation technology in downstream processing of bacillus thuringiensis biopesticide: A review. JMSR 2016 2 2 66 77 10.22079/jmsr.2016.19154
    [Google Scholar]
  45. Ravindran R. Hassan S.S. Williams G.A. Jaiswal A.K. A review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering 2018 5 4 93 10.3390/bioengineering5040093 30373279
    [Google Scholar]
  46. Zanutto-Elgui M.R. Vieira J.C.S. Prado D.Z. Buzalaf M.A.R. Padilha P.M. Elgui de Oliveira D. Fleuri L.F. Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chem. 2019 278 823 831 10.1016/j.foodchem.2018.11.119 30583449
    [Google Scholar]
  47. Zare H. Meiguni F. Najafpour G.D. Production of alkaline protease using industrial waste effluent as low-cost fermentation substrate. Iran. J. Energy Environ. 2021 12 3 264 272 10.5829/IJEE.2021.12.03.11
    [Google Scholar]
  48. Cotabarren J. Lufrano D. Parisi M.G. Obregón W.D. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. Plant Sci. 2020 292 110398 10.1016/j.plantsci.2019.110398 32005400
    [Google Scholar]
  49. Sultan HM A comprehensive review on aflatoxin contamination, its impact on human health and management strategies. J. Health Rehabilit. Res. 2024 4 2 1212 1220 10.61919/jhrr.v4i2.1087
    [Google Scholar]
  50. Morellon-Sterling R. El-Siar H. Tavano O.L. Berenguer-Murcia Á. Fernández-Lafuente R. Ficin: A protease extract with relevance in biotechnology and biocatalysis. Int. J. Biol. Macromol. 2020 162 394 404 10.1016/j.ijbiomac.2020.06.144 32574740
    [Google Scholar]
  51. Ghasemi M. Ghattavi S. Qeshmi F.I. Homaei A. Separation and identification of bacteria producing protease from the intestine of Sillago sihama and Rastrelliger kanagurta. Biocatal. Agric. Biotechnol. 2024 59 103242 10.1016/j.bcab.2024.103242
    [Google Scholar]
  52. Arshad Z.I.M. Amid A. Yusof F. Jaswir I. Ahmad K. Loke S.P. Bromelain: An overview of industrial application and purification strategies. Appl. Microbiol. Biotechnol. 2014 98 17 7283 7297 10.1007/s00253‑014‑5889‑y 24965557
    [Google Scholar]
  53. Srujana A. Mirza A. Jhonson V.J. Significance of papain enzyme extracted from papaya. Think India J. 2019 22 349 356
    [Google Scholar]
  54. Kumar M. Tomar M. Potkule J. Verma R. Punia S. Mahapatra A. Belwal T. Dahuja A. Joshi S. Berwal M.K. Satankar V. Bhoite A.G. Amarowicz R. Kaur C. Kennedy J.F. Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocoll. 2021 115 106595 10.1016/j.foodhyd.2021.106595
    [Google Scholar]
  55. Franca-Oliveira G. Fornari T. Hernández-Ledesma B. A review on the extraction and processing of natural source-derived proteins through eco-innovative approaches. Processes 2021 9 9 1626 10.3390/pr9091626
    [Google Scholar]
  56. Somayaji A. Dhanjal C.R. Lingamsetty R. Vinayagam R. Selvaraj R. Varadavenkatesan T. Govarthanan M. An insight into the mechanisms of homeostasis in extremophiles. Microbiol. Res. 2022 263 127115 10.1016/j.micres.2022.127115 35868258
    [Google Scholar]
  57. Elleuche S. Schäfers C. Blank S. Schröder C. Antranikian G. Exploration of extremophiles for high temperature biotechnological processes. Curr. Opin. Microbiol. 2015 25 113 119 10.1016/j.mib.2015.05.011 26066287
    [Google Scholar]
  58. Schröder C. Burkhardt C. Antranikian G. What we learn from extremophiles. ChemTexts. 2020 6 1 8 10.1007/s40828‑020‑0103‑6
    [Google Scholar]
  59. Poli A. Finore I. Romano I. Gioiello A. Lama L. Nicolaus B. Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 2017 5 2 25 10.3390/microorganisms5020025 28509857
    [Google Scholar]
  60. Arya P. Trivedi M. Ramani N. Patel K. Rajput K.N. Isolation, Production and Applications of Alkaline Protease From Hot Springs Bacterial Isolates. Biosci. Biotech. Res. Commun. 2020 13 1 85 91 10.21786/bbrc/13..1
    [Google Scholar]
  61. Kristjansson J.K. Stetter K.O. Thermophilic bacteria. Thermophilic Bacteria. 1st ed Kristjansson J.K. Boca Raton, FL CRC Press 2021 1 18 10.1201/9781003068334‑1
    [Google Scholar]
  62. Arya P.S. Yagnik S.M. Rajput K.N. Panchal R.R. Raval V.H. Understanding the basis of occurrence, biosynthesis, and implications of thermostable alkaline proteases. Appl. Biochem. Biotechnol. 2021 193 12 4113 4150 10.1007/s12010‑021‑03701‑x 34648116
    [Google Scholar]
  63. Gulmus O.E. Gormez A. Characterization and biotechnological application of protease from thermophilic Thermomonas haemolytica. Arch. Microbiol. 2020 202 1 153 159 10.1007/s00203‑019‑01728‑7 31541265
    [Google Scholar]
  64. Liu X. Lian M. Zhao M. Huang M. Advances in recombinant protease production: Current state and perspectives. World J. Microbiol. Biotechnol. 2024 40 5 144 10.1007/s11274‑024‑03957‑5 38532149
    [Google Scholar]
  65. Sampaio de Oliveira K.B. Leite M.L. Rodrigues G.R. Duque H.M. Costa D.R.A. Cunha V.A. de Loiola Costa L.S. Cunha D.N.B. Franco O.L. Dias S.C. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev. Clin. Pharmacol. 2020 13 4 367 390 10.1080/17512433.2020.1764347 32357080
    [Google Scholar]
  66. Zhao L. Ye B. Zhang Q. Cheng D. Zhou C. Cheng S. Yan X. Construction of second generation protease‐deficient hosts of Bacillus subtilis for secretion of foreign proteins. Biotechnol. Bioeng. 2019 116 8 2052 2060 10.1002/bit.26992 30989640
    [Google Scholar]
  67. Liu N. Tang M. Ding J. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. Chemosphere 2020 245 125624 10.1016/j.chemosphere.2019.125624 31864050
    [Google Scholar]
  68. Soltani S. Hammami R. Cotter P.D. Rebuffat S. Said L.B. Gaudreau H. Bédard F. Biron E. Drider D. Fliss I. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiol. Rev. 2021 45 1 fuaa039 10.1093/femsre/fuaa039 32876664
    [Google Scholar]
  69. Su Y. Liu C. Fang H. Zhang D. Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Fact. 2020 19 1 173 10.1186/s12934‑020‑01436‑8 32883293
    [Google Scholar]
  70. Rozanov A.S. Shekhovtsov S.V. Bogacheva N.V. Pershina E.G. Ryapolova A.V. Bytyak D.S. Peltek S.E. S E Peltek Production of subtilisin proteases in bacteria and yeast. Vavilovskii Zhurnal Genet. Selektsii 2021 25 1 125 134 10.18699/VJ21.015 34901710
    [Google Scholar]
  71. Kour D. Rana K.L. Thakur S. Sharma S. Yadav N. Rastegari A.A. Disruption of Protease Genes in Microbes for Production of Heterologous Proteins. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam, Netherlands Elsevier 2019 35 75 10.1016/B978‑0‑444‑63503‑7.00003‑6
    [Google Scholar]
  72. Kang X.M. Cai X. Huang Z.H. Liu Z.Q. Zheng Y.G. Construction of a highly active secretory expression system in Bacillus subtilis of a recombinant amidase by promoter and signal peptide engineering. Int. J. Biol. Macromol. 2020 143 833 841 10.1016/j.ijbiomac.2019.09.144 31765756
    [Google Scholar]
  73. Ainutajriani A. Darmawati S. Zilda D.S. Afriansyah M.A. Saptaningtyas R. Ethica S.N. Production optimization, partial purification, and thrombolytic activity evaluation of protease of bacillus cereus HSFI-10. Biotropia 2023 30 2 147 157 10.11598/btb.2023.30.2.1765
    [Google Scholar]
  74. Romanova N. Noll T. Engineered and natural promoters and chromatin‐modifying elements for recombinant protein expression in cho cells. Biotechnol. J. 2018 13 3 1700232 10.1002/biot.201700232 29145694
    [Google Scholar]
  75. Liu Z. Zheng W. Ge C. Cui W. Zhou L. Zhou Z. High-level extracellular production of recombinant nattokinase in Bacillus subtilis WB800 by multiple tandem promoters. BMC Microbiol. 2019 19 1 89 10.1186/s12866‑019‑1461‑3 31064343
    [Google Scholar]
  76. Ali S. Kim W.C. A fruitful decade using synthetic promoters in the improvement of transgenic plants. Front. Plant Sci. 2019 10 1433 10.3389/fpls.2019.01433 31737027
    [Google Scholar]
  77. Wang X. Zhang T. Mao H. Mi Y. Zhong B. Wei L. Liu X. Hu C. Grass carp (Ctenopharyngodon idella) ATF6 (activating transcription factor 6) modulates the transcriptional level of GRP78 and GRP94 in CIK cells. Fish Shellfish Immunol. 2016 52 65 73 10.1016/j.fsi.2016.03.028 26988288
    [Google Scholar]
  78. Owji H. Nezafat N. Negahdaripour M. Hajiebrahimi A. Ghasemi Y. A comprehensive review of signal peptides: Structure, roles, and applications. Eur. J. Cell Biol. 2018 97 6 422 441 10.1016/j.ejcb.2018.06.003 29958716
    [Google Scholar]
  79. Wu Z. Yang K.K. Liszka M.J. Lee A. Batzilla A. Wernick D. Weiner D.P. Arnold F.H. Signal peptides generated by attention-based neural networks. ACS Synth. Biol. 2020 9 8 2154 2161 10.1021/acssynbio.0c00219 32649182
    [Google Scholar]
  80. Tang X.M. Shen W. Lakay F.M. Shao W.L. Wang Z.X. Prior B.A. Zhuge J. Cloning and over-expression of an alkaline protease from Bacillus licheniformis. Biotechnol. Lett. 2004 26 12 975 979 10.1023/B:BILE.0000030042.91094.38 15269522
    [Google Scholar]
  81. Wang H. Zhang X. Qiu J. Wang K. Meng K. Luo H. Su X. Ma R. Huang H. Yao B. Development of Bacillus amyloliquefaciens as a high-level recombinant protein expression system. J. Ind. Microbiol. Biotechnol. 2019 46 1 113 123 10.1007/s10295‑018‑2089‑2 30406346
    [Google Scholar]
  82. Fang J. Zhou G. Ji X. Zhang G. Peng Z. Zhang J. Design of 5′-UTR to enhance keratinase activity in bacillus subtilis. Fermentation 2022 8 9 426 10.3390/fermentation8090426
    [Google Scholar]
  83. Chen P.T. Chiang C.J. Chao Y.P. Strategy to approach stable production of recombinant nattokinase in Bacillus subtilis. Biotechnol. Prog. 2007 23 4 808 813 10.1002/bp070108j 17595111
    [Google Scholar]
  84. Yoon J. Kimura S. Maruyama J. Kitamoto K. Construction of quintuple protease gene disruptant for heterologous protein production in Aspergillus oryzae. Appl. Microbiol. Biotechnol. 2009 82 4 691 701 10.1007/s00253‑008‑1815‑5 19107471
    [Google Scholar]
  85. Degering C. Eggert T. Puls M. Bongaerts J. Evers S. Maurer K.H. Jaeger K.E. Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Appl. Environ. Microbiol. 2010 76 19 6370 6376 10.1128/AEM.01146‑10 20709850
    [Google Scholar]
  86. Yao Z. Meng Y. Le H.G. Lee S.J. Jeon H.S. Yoo J.Y. Kim J.H. Increase of a fibrinolytic enzyme production through promoter replacement of aprE3-5 from Bacillus subtilis CH3-5. J. Microbiol. Biotechnol. 2021 31 6 833 839 10.4014/jmb.2103.03027 33958509
    [Google Scholar]
  87. Tian J. Long X. Tian Y. Shi B. Enhanced extracellular recombinant keratinase activity in Bacillus subtilis SCK6 through signal peptide optimization and site-directed mutagenesis. RSC Advances 2019 9 57 33337 33344 10.1039/C9RA07866E 35529123
    [Google Scholar]
  88. Muras A. Romero M. Mayer C. Otero A. Biotechnological applications of Bacillus licheniformis. Crit. Rev. Biotechnol. 2021 41 4 609 627 10.1080/07388551.2021.1873239 33593221
    [Google Scholar]
  89. Ansari F.A. Ahmad I. Fluorescent pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci. Rep. 2019 9 1 4547 10.1038/s41598‑019‑40864‑4 30872708
    [Google Scholar]
  90. Zhou C. Zhou H. Li D. Zhang H. Wang H. Lu F. Optimized expression and enhanced production of alkaline protease by genetically modified Bacillus licheniformis 2709. Microb. Cell Fact. 2020 19 1 45 10.1186/s12934‑020‑01307‑2 32093734
    [Google Scholar]
  91. Liu Y. Shi C. Li D. Chen X. Li J. Zhang Y. Yuan H. Li Y. Lu F. Engineering a highly efficient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide. Int. J. Biol. Macromol. 2019 138 903 911 10.1016/j.ijbiomac.2019.07.175 31356949
    [Google Scholar]
  92. Cui W. Suo F. Cheng J. Han L. Hao W. Guo J. Zhou Z. Stepwise modifications of genetic parts reinforce the secretory production of nattokinase in Bacillus subtilis. Microb. Biotechnol. 2018 11 5 930 942 10.1111/1751‑7915.13298 29984489
    [Google Scholar]
  93. Cai D. Wang H. He P. Zhu C. Wang Q. Wei X. Nomura C.T. Chen S. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis. Microb. Cell Fact. 2017 16 1 70 10.1186/s12934‑017‑0688‑7 28438200
    [Google Scholar]
  94. Wang H. Liu H. Wang L. Zhao G. Tang H. Sun X. Ni W. Yang Q. Wang P. Zheng Z. Improvement of menaquinone-7 production by Bacillus subtilis natto in a novel residue-free medium by increasing the redox potential. Appl. Microbiol. Biotechnol. 2019 103 18 7519 7535 10.1007/s00253‑019‑10044‑5 31378837
    [Google Scholar]
  95. Yuan L. Liangqi C. Xiyu T. Jinyao L. Biotechnology, bioengineering and applications of bacillus nattokinase. Biomolecules 2022 12 7 980 10.3390/biom12070980 35883536
    [Google Scholar]
  96. Balachandran C. Vishali A. Nagendran N.A. Baskar K. Hashem A. Allah A.E.F. Optimization of protease production from Bacillus halodurans under solid state fermentation using agrowastes. Saudi J. Biol. Sci. 2021 28 8 4263 4269 10.1016/j.sjbs.2021.04.069 34354408
    [Google Scholar]
  97. Fan B. Blom J. Klenk H.P. Borriss R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis Species Complex. Front. Microbiol. 2017 8 22 10.3389/fmicb.2017.00022 28163698
    [Google Scholar]
  98. Mülner P. Schwarz E. Dietel K. Junge H. Herfort S. Weydmann M. Lasch P. Cernava T. Berg G. Vater J. Profiling for bioactive peptides and volatiles of plant growth promoting strains of the Bacillus subtilis complex of industrial relevance. Front. Microbiol. 2020 11 1432 10.3389/fmicb.2020.01432 32695084
    [Google Scholar]
  99. Yang H. Qu J. Zou W. Shen W. Chen X. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl. Microbiol. Biotechnol. 2021 105 18 6607 6626 10.1007/s00253‑021‑11533‑2 34468804
    [Google Scholar]
  100. Singh S. Yang Y. Póczos B. Ma J. Predicting enhancer‐promoter interaction from genomic sequence with deep neural networks. Quant. Biol. 2019 7 2 122 137 10.1007/s40484‑019‑0154‑0 34113473
    [Google Scholar]
  101. Ma Y. Shen W. Chen X. Liu L. Zhou Z. Xu F. Yang H. Significantly enhancing recombinant alkaline amylase production in Bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization. J. Biol. Eng. 2016 10 1 13 10.1186/s13036‑016‑0035‑2 27777616
    [Google Scholar]
  102. Shah T.A. Li Z. Zhang A. Akhtar H.M.S. Salamatullah A.M.M. Bourhia M. Production of alkaline protease from bacillus amyloliquefaciens tas-2 and optimizing fermentation conditions 2024 Available from: https://www.researchsquare.com/article/rs-4296273/v1 10.21203/rs.3.rs‑4296273/v1
  103. Ramírez-Larrota J.S. Eckhard U. An introduction to bacterial biofilms and their proteases, and their roles in host infection and immune evasion. Biomolecules 2022 12 2 306 10.3390/biom12020306 35204806
    [Google Scholar]
  104. Zhi Y. Wu Q. Xu Y. Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Sci. Rep. 2017 7 1 40976 10.1038/srep40976 28112210
    [Google Scholar]
  105. Chen W. Li L. Ye C. Zhao Z. Huang K. Zou D. Wei X. Efficient production of extracellular alkaline protease in Bacillus amyloliquefaciens by host strain construction. Lebensm. Wiss. Technol. 2022 163 113620 10.1016/j.lwt.2022.113620
    [Google Scholar]
  106. Yang D. Prabowo C.P.S. Eun H. Park S.Y. Cho I.J. Jiao S. Lee S.Y. Escherichia coli as a platform microbial host for systems metabolic engineering. Essays Biochem. 2021 65 2 225 246 10.1042/EBC20200172 33956149
    [Google Scholar]
  107. Gaur S.K. Pradhan P. Yadav A. Recombinant protein expression in Escherichia coli. Fundamentals of Recombinant Protein Production, Purification and Characterization. Amsterdam, Netherlands Elsevier 2025 39 55 10.1016/B978‑0‑323‑98388‑4.00006‑X
    [Google Scholar]
  108. Ahmad I. Nawaz N. Darwesh N.M. Rahman U.S. Mustafa M.Z. Khan S.B. Patching S.G. Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expr. Purif. 2018 144 12 18 10.1016/j.pep.2017.11.005 29180019
    [Google Scholar]
  109. Lutfullin MT Lutfullina GF Pudova DS Akosah YA Shagimardanova EI Vologin SG Identification, characterization, and genome sequencing of Brevibacterium sediminis MG-1 isolate with growth-promoting properties. 3 Biotech. 2022 12 11 326 10.1007/s13205‑022‑03392‑z
    [Google Scholar]
  110. Kleiner-Grote G.R.M. Risse J.M. Friehs K. Secretion of recombinant proteins from E. coli. Eng. Life Sci. 2018 18 8 532 550 10.1002/elsc.201700200 32624934
    [Google Scholar]
  111. Mirzadeh K. Shilling P.J. Elfageih R. Cumming A.J. Cui H.L. Rennig M. Nørholm M.H.H. Daley D.O. Increased production of periplasmic proteins in Escherichia coli by directed evolution of the translation initiation region. Microb. Cell Fact. 2020 19 1 85 10.1186/s12934‑020‑01339‑8 32264894
    [Google Scholar]
  112. Praznik A. Fink T. Franko N. Lonzarić J. Benčina M. Jerala N. Plaper T. Roškar S. Jerala R. Regulation of protein secretion through chemical regulation of endoplasmic reticulum retention signal cleavage. Nat. Commun. 2022 13 1 1323 10.1038/s41467‑022‑28971‑9 35260576
    [Google Scholar]
  113. Vergnolle N. Protease inhibition as new therapeutic strategy for GI diseases. Gut 2016 65 7 1215 1224 10.1136/gutjnl‑2015‑309147 27196587
    [Google Scholar]
  114. Dyer R.P. Weiss G.A. Making the cut with protease engineering. Cell Chem. Biol. 2022 29 2 177 190 10.1016/j.chembiol.2021.12.001 34921772
    [Google Scholar]
  115. Kielkopf C.L. Bauer W. Urbatsch I.L. Expressing cloned genes for protein production, purification, and analysis. Cold Spring Harb. Protoc. 2021 2021 2 pdb.top102129 10.1101/pdb.top102129 33272973
    [Google Scholar]
  116. Shi T. Zhou J. Xue A. Lu H. He Y. Yu Y. Characterization and modulation of endoplasmic reticulum stress response target genes in Kluyveromyces marxianus to improve secretory expressions of heterologous proteins. Biotechnol. Biofuels 2021 14 1 236 10.1186/s13068‑021‑02086‑7 34906221
    [Google Scholar]
  117. Karbalaei M. Rezaee S.A. Farsiani H. Pichia pastoris : A highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol. 2020 235 9 5867 5881 10.1002/jcp.29583 32057111
    [Google Scholar]
  118. Ningrum R.A. Mustopa A.Z. Agustiyanti D.F. Fathurahman A.T. Swasthikawati S. Purification and stability expression of open reading frames encoding fusion and non fusion human interferon alpha-2a produced in methilotropic yeast pichia pastoris. IOP Conf. Ser. Earth Environ. Sci. 2020 439 1 012026 10.1088/1755‑1315/439/1/012026
    [Google Scholar]
  119. Malik A Author C Gupta A Dahiya S Sehrawat V Das S. A review on Pichia pastoris: A successful tool for expression of recombinant proteins. Pharma. Innov. 2021 SP-10 11 550 556
    [Google Scholar]
  120. Abdel-Hamed A.R. Abo-Elmatty D.M. Wiegel J. Mesbah N.M. Biochemical characterization of a halophilic, alkalithermophilic protease from Alkalibacillus sp. NM-Da2. Extremophiles 2016 20 6 885 894 10.1007/s00792‑016‑0879‑x 27757695
    [Google Scholar]
  121. Zhou K. Dong Y. Zheng H. Chen B. Mao R. Zhou L. Wang Y. Expression, fermentation, purification and lyophilisation of recombinant Subtilisin QK in Pichia pastoris. Process Biochem. 2017 54 1 8 10.1016/j.procbio.2016.12.028
    [Google Scholar]
  122. Kangwa M. Salgado J.A.G. Fernandez-Lahore H.M. Identification and characterization of N-glycosylation site on a Mucor circinelloides aspartic protease expressed in Pichia pastoris: Effect on secretion, activity and thermo-stability. AMB Express 2018 8 1 157 10.1186/s13568‑018‑0691‑3 30276572
    [Google Scholar]
  123. Han C. Wang Q. Sun Y. Yang R. Liu M. Wang S. Liu Y. Zhou L. Li D. Improvement of the catalytic activity and thermostability of a hyperthermostable endoglucanase by optimizing N-glycosylation sites. Biotechnol. Biofuels 2020 13 1 30 10.1186/s13068‑020‑1668‑4 32127917
    [Google Scholar]
  124. Guo J.P. Ma Y. High-level expression, purification and characterization of recombinant Aspergillus oryzae alkaline protease in Pichia pastoris. Protein Expr. Purif. 2008 58 2 301 308 10.1016/j.pep.2007.12.005 18226921
    [Google Scholar]
  125. Guangbo Y. Min S. Wei S. Lixin M. Chao Z. Yaping W. Zunxi H. Heterologous expression of nattokinase from B. subtilis natto using Pichia pastoris GS115 and assessment of its thrombolytic activity. BMC Biotechnol. 2021 21 1 49 10.1186/s12896‑021‑00708‑4 34372833
    [Google Scholar]
  126. Shu M. Shen W. Yang S. Wang X. Wang F. Wang Y. Ma L. High-level expression and characterization of a novel serine protease in Pichia pastoris by multi-copy integration. Enzyme Microb. Technol. 2016 92 56 66 10.1016/j.enzmictec.2016.06.007 27542745
    [Google Scholar]
  127. Han M. Wang W. Zhou J. Gong X. Xu C. Li Y. Li Q. Activation of the unfolded protein response via co-expression of the HAC1i gene enhances expression of recombinant elastase in pichia pastoris. Biotechnol. Bioprocess Eng.; BBE 2020 25 2 302 307 10.1007/s12257‑019‑0381‑2
    [Google Scholar]
  128. Ma X. Liu Y. Li Q. Liu L. Yi L. Ma L. Zhai C. Expression, purification and identification of a thermolysin-like protease, neutral protease I, from Aspergillus oryzae with the Pichia pastoris expression system. Protein Expr. Purif. 2016 128 52 59 10.1016/j.pep.2016.08.008 27539551
    [Google Scholar]
  129. Liu X. Lu Q. Xiao H. Feng Y. Su G. Zhao M. Huang M. Expression of a salt-tolerant pseudolysin in yeast for efficient protein hydrolysis under high-salt conditions. Biomolecules 2022 13 1 83 10.3390/biom13010083 36671468
    [Google Scholar]
  130. Xiao H. Liu X. Feng Y. Zheng L. Zhao M. Huang M. Secretion of collagenases by Saccharomyces cerevisiae for collagen degradation. Biotech. Biof. Bioprod. 2022 15 1 89 10.1186/s13068‑022‑02186‑y 36031598
    [Google Scholar]
  131. Parapouli M. Vasileiadi A. Afendra A.S. Hatziloukas E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol. 2020 6 1 1 32 10.3934/microbiol.2020001 32226912
    [Google Scholar]
  132. Gomes V.A.M. Carmo S.T. Carvalho S.L. Bahia M.F. Parachin N.S. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 2018 6 2 38 10.3390/microorganisms6020038 29710826
    [Google Scholar]
  133. Rudan M. Dib B.P. Musa M. Kanunnikau M. Sobočanec S. Rueda D. Warnecke T. Kriško A. Normal mitochondrial function in Saccharomyces cerevisiae has become dependent on inefficient splicing. eLife 2018 7 e35330 10.7554/eLife.35330 29570052
    [Google Scholar]
  134. Rapala-Kozik M. Bochenska O. Zajac D. Karkowska-Kuleta J. Gogol M. Zawrotniak M. Kozik A. Extracellular proteinases of Candida species pathogenic yeasts. Mol. Oral Microbiol. 2018 33 2 113 124 10.1111/omi.12206 29139623
    [Google Scholar]
  135. Kachhawaha K. Singh S. Joshi K. Nain P. Singh S.K. Bioprocessing of recombinant proteins from Escherichia coli inclusion bodies: Insights from structure-function relationship for novel applications. Prep. Biochem. Biotechnol. 2023 53 7 728 752 10.1080/10826068.2022.2155835 36534636
    [Google Scholar]
  136. Davison S.A. Haan D.R. Zyl V.W.H. Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2020 104 12 5163 5184 10.1007/s00253‑020‑10602‑2 32337628
    [Google Scholar]
  137. So K.K. Le N.M.T. Nguyen N.L. Kim D.H. Improving expression and assembly of difficult-to-express heterologous proteins in Saccharomyces cerevisiae by culturing at a sub-physiological temperature. Microb. Cell Fact. 2023 22 1 55 10.1186/s12934‑023‑02065‑7 36959657
    [Google Scholar]
  138. Amatto V.D.S.I. Garzon G.D.R.N. Simões A.D.R.F. Santiago F. Leite P.D.S.N. Martins R.J. Cabral H. Enzyme engineering and its industrial applications. Biotechnol. Appl. Biochem. 2022 69 2 389 409 10.1002/bab.2117 33555054
    [Google Scholar]
  139. Matter I.R. Al-Omari A.W. Mohammed N. Industrial applications of microbial protease. Acad. Sci. J. 2023 1 3 141 160 10.24237/ASJ.01.03.721CC
    [Google Scholar]
  140. Sharma N. Vuppu S. Computational modelling and molecular docking of industrial leather enzymes. Mol. Biotechnol. 2023 1 9 10.1007/s12033‑023‑00689‑z 36807269
    [Google Scholar]
  141. Mohsin A.Z. Norsah E. Marzlan A.A. Rahim A.M.H. Hussin M.A.S. Exploring the applications of plant-based coagulants in cheese production: A review. Int. Dairy J. 2024 148 105792 10.1016/j.idairyj.2023.105792
    [Google Scholar]
  142. Beltrán-Espinoza J.A. Domínguez-Lujan B. Gutiérrez-Méndez N. Chávez-Garay D.R. Nájera-Domínguez C. Leal-Ramos M.Y. The impact of chymosin and plant‐derived proteases on the acid‐induced gelation of milk. Int. J. Dairy Technol. 2021 74 2 297 306 10.1111/1471‑0307.12760
    [Google Scholar]
  143. Hosseini S.B. Azizi M. Nojoumi S.A. Valizadeh V. An up-to-date review of biomedical applications of serratiopeptidase and its biobetter derivatives as a multi-potential metalloprotease. Arch. Microbiol. 2024 206 4 180 10.1007/s00203‑024‑03889‑6 38502196
    [Google Scholar]
  144. Holyavka M. Faizullin D. Koroleva V. Olshannikova S. Zakhartchenko N. Zuev Y. Kondratyev M. Zakharova E. Artyukhov V. Novel biotechnological formulations of cysteine proteases, immobilized on chitosan. Structure, stability and activity. Int. J. Biol. Macromol. 2021 180 161 176 10.1016/j.ijbiomac.2021.03.016 33676977
    [Google Scholar]
  145. Troncoso D.F. Sánchez A.D. Ferreira L.M. Production of plant proteases and new biotechnological applications: An updated review. ChemistryOpen 2022 11 3 e202200017 10.1002/open.202200017 35286022
    [Google Scholar]
  146. Contesini F.J. Davanço M.G. Borin G.P. Vanegas K.G. Cirino J.P.G. Melo R.R. Mortensen U.H. Hildén K. Campos D.R. Carvalho P.O. Advances in recombinant lipases: Production, engineering, immobilization and application in the pharmaceutical industry. Catalysts 2020 10 9 1032 10.3390/catal10091032
    [Google Scholar]
  147. Bashir N. Sood M. Bandral J.D. Enzyme immobilization and its applications in food processing: A review. Int. J. Chem. Stud. 2020 8 2 254 261 10.22271/chemi.2020.v8.i2d.8779
    [Google Scholar]
  148. Manavalan T. Manavalan A. Ramachandran S. Heese K. Identification of a novel thermostable alkaline protease from Bacillus megaterium-TK1 for the detergent and leather industry. Biology 2020 9 12 472 10.3390/biology9120472 33339223
    [Google Scholar]
/content/journals/cei/10.2174/0115734080358248250507062836
Loading
/content/journals/cei/10.2174/0115734080358248250507062836
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test