Skip to content
2000
image of Advances in Structure-Based PARP1 Inhibitors: Implications for Cancer Treatment

Abstract

Cancer is characterized by the uncontrolled proliferation of abnormal cells that escape the body's standard regulatory mechanisms. Under normal conditions, cells grow, divide, and die in an orderly manner, but cancerous cells lose this control, growing uncontrollably and invading surrounding tissues. Poly(ADP-ribose) polymerase 1 (PARP1) is a crucial enzyme in this DNA repair process, helping to fix single-strand breaks. PARP inhibitors (PARPi) are a class of drugs that target and block the activity of the PARP1 enzyme, impairing its ability to repair DNA damage. By inhibiting PARP1, these drugs lead to an accumulation of DNA damage in cancer cells, which eventually becomes overwhelming and leads to cell death. This mechanism is particularly effective in cancers with deficiencies in other DNA repair pathways, such as those with BRCA1 and BRCA2 gene mutations. Several PARPi, including Olaparib, Niraparib, and Rucaparib, have been approved by the U.S. Food and Drug Administration (FDA) for use in treating cancers like breast, ovarian, and prostate cancer, particularly in patients with BRCA mutations. The evolution and development of PARP inhibitors have focused on modifying their chemical structure to increase their effectiveness. The design of PARPi also aims to improve their bioavailability, ensuring that the drugs are effectively absorbed into the body and can reach the tumor site in sufficient concentrations. Further developments may also involve combining PARPi with other treatments, such as chemotherapy or immunotherapy, to enhance their overall efficacy.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080356966250626094656
2025-07-08
2025-09-26
Loading full text...

Full text loading...

References

  1. Hejmadi M. Introduction to Cancer Biology. 2nd ed United Kingdom Ventus Publishing 2010 7 10
    [Google Scholar]
  2. Jain P.G. Patel B.D. Medicinal chemistry approaches of poly ADP-Ribose polymerase 1 (PARP1) inhibitors as anticancer agents - A recent update. Eur. J. Med. Chem. 2019 165 1 198 215 10.1016/j.ejmech.2019.01.024 30684797
    [Google Scholar]
  3. Suzuki H. Quesada P. Farina B. Leone E. In vitro poly(ADP-ribosyl)ation of seminal ribonuclease. J. Biol. Chem. 1986 261 13 6048 6055 10.1016/S0021‑9258(17)38491‑0 3700384
    [Google Scholar]
  4. Caplan A.I. Rosenberg M.J. Interrelationship between poly (ADP-Rib) synthesis, intracellular NAD levels, and muscle or cartilage differentiation from mesodermal cells of embryonic chick limb. Proc. Natl. Acad. Sci. USA 1975 72 5 1852 1857 10.1073/pnas.72.5.1852 168579
    [Google Scholar]
  5. Durkacz B.W. Omidiji O. Gray D.A. Shall S. (ADP-ribose)n participates in DNA excision repair. Nature 1980 283 5747 593 596 10.1038/283593a0 6243744
    [Google Scholar]
  6. Miwa M. Oda K. Segawa K. Cell density-dependent increase in chromatin-associated ADP-ribosyltransferase activity in simian virus 40-transformed cells. Arch. Biochem. Biophys. 1977 181 1 313 321 10.1016/0003‑9861(77)90510‑0 195534
    [Google Scholar]
  7. Nishikimi M. Ogasawara K. Kameshita I. Taniguchi T. Shizuta Y. Poly(ADP-ribose) synthetase. The DNA binding domain and the automodification domain. J. Biol. Chem. 1982 257 11 6102 6105 10.1016/S0021‑9258(20)65111‑0 6281257
    [Google Scholar]
  8. Hayaishi O. Veda K. Poly(ADP-ribose) and ADP-ribosylation of proteins. Annu. Rev. Biochem. 1977 46 1 95 116 10.1146/annurev.bi.46.070177.000523 197884
    [Google Scholar]
  9. Purnell M.R. Whish W.J. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem. J. 1980 185 3 775 777 10.1042/bj1850775 6248035
    [Google Scholar]
  10. Malyuchenko N.V. Kotova E.Y. Kulaeva O.I. Kirpichnikov M.P. Studitskiy V.M. PARP1 Inhibitors: Antitumor drug design. Acta Nat. (Engl. Ed.) 2015 7 3 27 37 10.32607/20758251‑2015‑7‑3‑27‑37 26483957
    [Google Scholar]
  11. Zhu T. Zheng J.Y. Huang L.L. Wang Y.H. Yao D.F. Dai H.B. Human PARP1 substrates and regulators of its catalytic activity: An updated overview. Front. Pharmacol. 2023 14 1137151 10.3389/fphar.2023.1137151 36909172
    [Google Scholar]
  12. Ko H.L. Ren E.C. Functional aspects of PARP1 in DNA repair and transcription. Biomolecules 2012 2 4 524 548 10.3390/biom2040524 24970148
    [Google Scholar]
  13. Faraoni I Graziani G. Role of BRCA mutations in cancer treatment with poly(ADP-ribose) polymerase (PARP) inhibitors. Cancers (Basel) 2018 10 12 10120487 10.3390/cancers10120487 21718592
    [Google Scholar]
  14. Chen A. PARP inhibitors: Its role in treatment of cancer. Chin. J. Cancer 2011 30 7 463 471 10.5732/cjc.011.10111 21718592
    [Google Scholar]
  15. Ferraris D.V. Evolution of poly(ADP-ribose) polymerase-1] (PARP-1) inhibitors. From concept to clinic. J. Med. Chem. 2010 53 12 4561 4584 10.1021/jm100012m 20364863
    [Google Scholar]
  16. Zhu G.D. Gong J. Gandhi V.B. Discovery and SAR of orally efficacious tetrahydropyridopyridazinone PARP inhibitors for the treatment of cancer. Bioorg. Med. Chem. 2012 20 15 4635 4645 10.1016/j.bmc.2012.06.021 22766219
    [Google Scholar]
  17. Wang L. Liu F. Jiang N. Zhou W. Zhou X. Zheng Z. Design, synthesis, and biological evaluation of novel PARP-1 inhibitors based on a 1H-thieno[3,4-d] imidazole-4-carboxamide scaffold. Molecule 2016 21 6 772
    [Google Scholar]
  18. Dawicki-McKenna J.M. Langelier M.F. DeNizio J.E. PARP-1 activation requires local unfolding of an autoinhibitory domain. Mol. Cell 2015 60 5 755 768 10.1016/j.molcel.2015.10.013 26626480
    [Google Scholar]
  19. Donoho G. Brenneman M.A. Cui T.X. Deletion of Brca2 exon 27 causes hypersensitivity to DNA crosslinks, chromosomal instability, and reduced life span in mice. Genes Chromosomes Cancer 2003 36 4 317 331 10.1002/gcc.10148 12619154
    [Google Scholar]
  20. Liu F. Chen J. Li X. Advances in development of selective antitumor inhibitors that target PARP-1. J. Med. Chem. 2023 66 24 16464 16483 10.1021/acs.jmedchem.3c00865 38088333
    [Google Scholar]
  21. Peng X. Pan W. Jiang F. Selective PARP1 inhibitors, PARP1-based dual-target inhibitors, PROTAC PARP1 degraders, and prodrugs of PARP1 inhibitors for cancer therapy. Pharmacol. Res. 2022 186 186 106529 10.1016/j.phrs.2022.106529 36328301
    [Google Scholar]
  22. Nordstrand L.M. Ringvoll J. Larsen E. Klungland A. Genome instability and DNA damage accumulation in gene-targeted mice. Neuroscience 2007 145 4 1309 1317 10.1016/j.neuroscience.2006.10.059 17218062
    [Google Scholar]
  23. Grundy G.J. Parsons J.L. Base excision repair and its implications to cancer therapy. Essays Biochem. 2020 64 5 831 843 10.1042/EBC20200013 32648895
    [Google Scholar]
  24. Krwawicz J. Arczewska K.D. Speina E. Maciejewska A. Grzesiuk E. Bacterial DNA repair genes and their eukaryotic homologues: 1. Mutations in genes involved in base excision repair (BER) and DNA-end processors and their implication in mutagenesis and human disease. Acta Biochim. Pol. 2007 54 3 413 434 10.18388/abp.2007_3219 17893748
    [Google Scholar]
  25. Portman J.R. Strick T.R. Transcription-coupled repair and complex biology. J. Mol. Biol. 2018 430 22 4496 4512 10.1016/j.jmb.2018.04.033 29733857
    [Google Scholar]
  26. Reardon J.T. Sancar A. Nucleotide excision repair. Prog. Nucleic Acid Res. Mol. Biol. 2005 79 1 183 235 10.1016/S0079‑6603(04)79004‑2 16096029
    [Google Scholar]
  27. Rahimian E. Amini A. Alikarami F. Pezeshki S.M.S. Saki N. Safa M. DNA repair pathways as guardians of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms. DNA Repair (Amst.) 2020 96 1 102951 10.1016/j.dnarep.2020.102951 32971475
    [Google Scholar]
  28. De Falco M. De Felice M. Take a break to repair: A dip in the world of double-strand break repair mechanisms pointing the gaze on archaea. Int. J. Mol. Sci. 2021 22 24 13296 10.3390/ijms222413296 34948099
    [Google Scholar]
  29. Sakamoto Y. Kokuta T. Teshigahara A. Mitotic cells can repair DNA double-strand breaks via a homology-directed pathway. J. Radiat. Res. (Tokyo) 2021 62 1 25 33 10.1093/jrr/rraa095 33009557
    [Google Scholar]
  30. Iyama T. Wilson D.M. III DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst.) 2013 12 8 620 636 10.1016/j.dnarep.2013.04.015 23684800
    [Google Scholar]
  31. Wang Y. Liu W. Ning Y. Progress in the research of PARP inhibitors and their mechanisms of action. Chinese J New Drugs 2018 27 3 306 313
    [Google Scholar]
  32. Keung M. Wu Y. Vadgama J. PARP inhibitors as a therapeutic agent for homologous recombination deficiency in breast cancers. J. Clin. Med. 2019 8 4 435 10.3390/jcm8040435 30934991
    [Google Scholar]
  33. Zhao F. Hu L. Yu J. Progress in the application of poly ADP-ribose polymerase inhibitors in tumor radiotherapy. Chin J Radiol Med Protect 2021 12 796 800
    [Google Scholar]
  34. Abbotts R. Dellomo A.J. Rassool F.V. Pharmacologic induction of BRCAness in BRCA-proficient cancers: Expanding PARP inhibitor use. Cancers (Basel) 2022 14 11 2640 10.3390/cancers14112640 35681619
    [Google Scholar]
  35. Giannini G. Battistuzzi G. Vesci L. Novel PARP-1 inhibitors based on a 2-propanoyl-3H-quinazolin-4-one scaffold. Bioorg. Med. Chem. Lett. 2014 24 2 462 466 10.1016/j.bmcl.2013.12.048 24388690
    [Google Scholar]
  36. Shall S. de Murcia G. Poly(ADP-ribose) polymerase-1: What have we learned from the deficient mouse model? Mutat. Res. DNA Repair 2000 460 1 1 15 10.1016/S0921‑8777(00)00016‑1 10856830
    [Google Scholar]
  37. Nishizuka Y. Ueda K. Nakazawa K. Hayaishi O. Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei. J. Biol. Chem. 1967 242 13 3164 3171 10.1016/S0021‑9258(18)95947‑8 4291072
    [Google Scholar]
  38. Fujimura S. Hasegawa S. Shimizu Y. Sugimura T. Polymerization of the adenosine 5′-diphosphate-ribose moiety of nicotinamide-adenine dinucleotide by nuclear enzyme. I. Enzymatic reactions. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 1967 145 2 247 259 10.1016/0005‑2787(67)90043‑3 4294274
    [Google Scholar]
  39. Zaremba T. Curtin N.J. PARP inhibitor development for systemic cancer targeting. Anticancer. Agents Med. Chem. 2007 7 5 515 523 10.2174/187152007781668715 17896912
    [Google Scholar]
  40. Papa A. Caruso D. Strudel M. Tomao S. Tomao F. Update on Poly-ADP-ribose polymerase inhibition for ovarian cancer treatment. J. Transl. Med. 2016 14 1 267 10.1186/s12967‑016‑1027‑1 27634150
    [Google Scholar]
  41. Bixel K. Hays J. Olaparib in the management of ovarian cancer. Pharm. Genomics Pers. Med. 2015 8 127 135 10.2147/PGPM.S62809 26309417
    [Google Scholar]
  42. Bitler B.G. Watson Z.L. Wheeler L.J. Behbakht K. PARP inhibitors: Clinical utility and possibilities of overcoming resistance. Gynecol. Oncol. 2017 147 3 695 704 10.1016/j.ygyno.2017.10.003 29037806
    [Google Scholar]
  43. Chen Y. Du H. The promising PARP inhibitors in ovarian cancer therapy: From Olaparib to others. Biomed. Pharmacother. 2018 99 552 560 10.1016/j.biopha.2018.01.094 29895102
    [Google Scholar]
  44. Syed Y.Y. Rucaparib: First global approval. Drugs 2017 77 5 585 592 10.1007/s40265‑017‑0716‑2 28247266
    [Google Scholar]
  45. Caruso D. Papa A. Tomao S. Vici P. Panici P.B. Tomao F. Niraparib in ovarian cancer: Results to date and clinical potential. Ther. Adv. Med. Oncol. 2017 9 9 579 588 10.1177/1758834017718775 29081841
    [Google Scholar]
  46. Rugo H.S. Olopade O.I. DeMichele A. Adaptive randomization of Veliparib-carboplatin treatment in breast cancer. N. Engl. J. Med. 2016 375 1 23 34 10.1056/NEJMoa1513749 27406347
    [Google Scholar]
  47. Illuzzi G. Staniszewska A.D. Gill S.J. Preclinical characterization of AZD5305, a next-generation, highly selective PARP1 inhibitor and trapper. Clin. Cancer Res. 2022 28 21 4724 4736 10.1158/1078‑0432.CCR‑22‑0301 35929986
    [Google Scholar]
  48. Zheng J. Li Z. Min W. Current status and future promise of next-generation poly (ADP-Ribose) polymerase 1-selective inhibitor AZD5305. Front. Pharmacol. 2023 13 979873 10.3389/fphar.2022.979873 36756144
    [Google Scholar]
  49. Herencia-Ropero A. Llop-Guevara A. Staniszewska A.D. The PARP1 selective inhibitor saruparib (AZD5305) elicits potent and durable antitumor activity in patient-derived BRCA1/2-associated cancer models. Genome Med. 2024 16 1 107 10.1186/s13073‑024‑01370‑z 39187844
    [Google Scholar]
  50. LaFargue C.J. Dal Molin G.Z. Sood A.K. Coleman R.L. Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol. 2019 20 1 e15 e28 10.1016/S1470‑2045(18)30786‑1 30614472
    [Google Scholar]
  51. Uekusa R. Yokoi A. Watanabe E. Safety assessments and clinical features of PARP inhibitors from real-world data of Japanese patients with ovarian cancer. Sci. Rep. 2024 14 1 12595 10.1038/s41598‑024‑63600‑z 38824213
    [Google Scholar]
  52. Friedlander M. Lee Y.C. Tew W.P. Managing adverse effects associated with poly (ADP-ribose) polymerase inhibitors in ovarian cancer: A synthesis of clinical trial and real-world data. Am. Soc. Clin. Oncol. Educ. Book 2023 43 43 e390876 10.1200/EDBK_390876 37285556
    [Google Scholar]
  53. Shen Y. Rehman F.L. Feng Y. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin. Cancer Res. 2013 19 18 5003 5015 10.1158/1078‑0432.CCR‑13‑1391 23881923
    [Google Scholar]
  54. Murahari M. Yergeri M. Current overview on the usage of poly(ADPribose)polymerase (PARP) inhibitors in treating cancer. Clin. Cancer Drugs 2014 1 2 127 148 10.2174/2212697X01666140128002849
    [Google Scholar]
  55. Dantzer F. Amé J.C. Schreiber V. Nakamura J. Ménissier-de Murcia J. de Murcia G. Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair. Methods Enzymol. 2006 409 493 510 10.1016/S0076‑6879(05)09029‑4 16793420
    [Google Scholar]
  56. Altmeyer M. Messner S. Hassa P.O. Fey M. Hottiger M.O. Molecular mechanism of poly (ADP-ribosyl) ation by PARP1 and identification of Fig. 18. European Journal of Medicinal Chemistry 165 (2019) 198e215 213 lysine residues as ADP-ribose acceptor sites. Nucleic Acids Res. 2009 37 3723 3738 10.1093/nar/gkp229 19372272
    [Google Scholar]
  57. Desmarais Y. Ménard L. Lagueux J. Poirier G.G. Enzymological properties of poly(ADP-ribose)polymerase: Characterization of automodification sites and NADase activity. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1991 1078 2 179 186 10.1016/0167‑4838(91)99007‑F 1648406
    [Google Scholar]
  58. Passeri D. Camaioni E. Liscio P. Concepts and molecular aspects in the polypharmacology of PARP-1 inhibitors. ChemMedChem 2016 11 12 1219 1226 10.1002/cmdc.201500391 26424664
    [Google Scholar]
  59. Ruf A. Rolli V. de Murcia G. Schulz G.E. The mechanism of the elongation and branching reaction of Poly(ADP-ribose) polymerase as derived from crystal structures and mutagenesis. J. Mol. Biol. 1998 278 1 57 65 10.1006/jmbi.1998.1673 9571033
    [Google Scholar]
  60. Ruf A. Mennissier de Murcia J. de Murcia G. Schulz G.E. Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc. Natl. Acad. Sci. USA 1996 93 15 7481 7485 10.1073/pnas.93.15.7481 8755499
    [Google Scholar]
  61. Andrabi S.A. Umanah G.K.E. Chang C. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc. Natl. Acad. Sci. USA 2014 111 28 10209 10214 10.1073/pnas.1405158111 24987120
    [Google Scholar]
  62. Liu F.W. Tewari K.S. New targeted agents in gynaecologic cancers: Synthetic lethality, homologous recombination deficiency, and PARP inhibitors. Curr. Treat. Options Oncol. 2016 17 3 12 10.1007/s11864‑015‑0378‑9 26931795
    [Google Scholar]
  63. Rottenberg S. Jaspers J.E. Kersbergen A. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. USA 2008 105 44 17079 17084 10.1073/pnas.0806092105 18971340
    [Google Scholar]
  64. Evers B. Drost R. Schut E. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin. Cancer Res. 2008 14 12 3916 3925 10.1158/1078‑0432.CCR‑07‑4953 18559613
    [Google Scholar]
  65. Hay T. Matthews J.R. Pietzka L. Poly(ADP-ribose) polymerase-1 inhibitor treatment regresses autochthonous Brca2/p53-mutant mammary tumors in vivo and delays tumor relapse in combination with carboplatin. Cancer Res. 2009 69 9 3850 3855 10.1158/0008‑5472.CAN‑08‑2388 19383921
    [Google Scholar]
  66. Shen H. Ge Y. Wang J. Li H. Xu Y. Zhu Q. Design, synthesis and biological evaluation of novel molecules as potent PARP-1 inhibitors. Bioorg. Med. Chem. Lett. 2021 47 128169 10.1016/j.bmcl.2021.128169 34091044
    [Google Scholar]
  67. Longoria T.C. Tewari K.S. Pharmacokinetic drug evaluation of niraparib for the treatment of ovarian cancer. Expert Opin. Drug Metab. Toxicol. 2018 14 5 543 550 10.1080/17425255.2018.1461838 29620474
    [Google Scholar]
  68. Balasubramaniam S. Beaver J.A. Horton S. FDA approval summary: Rucaparib for the treatment of patients with deleterious BRCA mutation–associated advanced ovarian cancer. Clin. Cancer Res. 2017 23 23 7165 7170 10.1158/1078‑0432.CCR‑17‑1337 28751443
    [Google Scholar]
  69. Weil M.K. Chen A.P. PARP inhibitor treatment in ovarian and breast cancer. Curr. Probl. Cancer 2011 35 1 7 50 10.1016/j.currproblcancer.2010.12.002 21300207
    [Google Scholar]
  70. Coleman R.L. Fleming G.F. Brady M.F. Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N. Engl. J. Med. 2019 381 25 2403 2415 10.1056/NEJMoa1909707 31562800
    [Google Scholar]
  71. Derby S.J. Chalmers A.J. Carruthers R.D. Radiotherapy-Poly (ADP-ribose) polymerase inhibitor combinations: Progress to date. Semin. Radiat. Oncol. 2022 32 1 15 28 10.1016/j.semradonc.2021.09.005 34861992
    [Google Scholar]
  72. McCann K.E. Advances in the use of PARP inhibitors for BRCA1/2-associated breast cancer. Talazoparib. Future Oncol 2019 15 15 1707 1715 10.2217/fon‑2018‑0751 30912451
    [Google Scholar]
  73. Evans T. Matulonis U. PARP inhibitors in ovarian cancer: Evidence, experience and clinical potential. Ther. Adv. Med. Oncol. 2017 9 4 253 267 10.1177/1758834016687254 28491146
    [Google Scholar]
  74. Sun K. Mikule K. Wang Z. A comparative pharmacokinetic study of PARP inhibitors demonstrates favorable properties for niraparib efficacy in preclinical tumor models. Oncotarget 2018 9 98 37080 37096 10.18632/oncotarget.26354 30647846
    [Google Scholar]
  75. Antolin A.A. Ameratunga M. Banerji U. Clarke P.A. Workman P. Al-Lazikani B. The kinase polypharmacology landscape of clinical PARP inhibitors. Sci. Rep. 2020 10 1 2585 10.1038/s41598‑020‑59074‑4 32066817
    [Google Scholar]
  76. Banerjee S. Gonzalez-Martin A. Harter P. First-line PARP inhibitors in ovarian cancer: Summary of an ESMO Open - Cancer Horizons round-table discussion. ESMO Open 2020 5 6 e001110 10.1136/esmoopen‑2020‑001110 33310779
    [Google Scholar]
  77. Livraghi L. Garber J.E. PARP inhibitors in the management of breast cancer: Current data and future prospects. BMC Med. 2015 13 1 188 10.1186/s12916‑015‑0425‑1 26268938
    [Google Scholar]
  78. Papeo G. Posteri H. Borghi D. Discovery of 2-[1-(4, 4-difluorocyclohexyl) piperidin-4-yl]-6-fluoro-3-oxo-2, 3-dihydro-1 H-isoindole-4-carboxamide (NMS-P118): A potent, orally available, and highly selective parp-1 inhibitor for cancer therapy. J. Med. Chem. 2015 58 17 6875 6898 10.1021/acs.jmedchem.5b00680 26222319
    [Google Scholar]
  79. Hopkins T.A. Ainsworth W.B. Ellis P.A. PARP1 trapping by PARP inhibitors drives cytotoxicity in both cancer cells and healthy bone marrow. Mol. Cancer Res. 2019 17 2 409 419 10.1158/1541‑7786.MCR‑18‑0138 30429212
    [Google Scholar]
  80. Fu L. Wang S. Wang X. Crystal structure-based discovery of a novel synthesized PARP1 inhibitor (OL-1) with apoptosis-inducing mechanisms in triple-negative breast cancer. Sci. Rep. 2016 6 1 3 10.1038/s41598‑016‑0007‑2 28442756
    [Google Scholar]
  81. Nilov D.K. Yashina K.I. Gushchina I.V. 2, 5 Diketopiperazines: A new class of Poly (ADP ribose) polymerase inhibitors. Biochemistry (Mosc.) 2018 83 2 152 158 10.1134/S0006297918020074 29618301
    [Google Scholar]
  82. Almahli H. Hadchity E. Jaballah M.Y. Development of novel synthesized phthalazinone-based PARP-1 inhibitors with apoptosis inducing mechanism in lung cancer. Bioorg. Chem. 2018 77 443 456 10.1016/j.bioorg.2018.01.034 29453076
    [Google Scholar]
  83. Yuan B. Ye N. Song S.S. Poly (ADP-ribose) polymerase (PARP) inhibition and anticancer activity of simmiparib, a new inhibitor undergoing clinical trials. Cancer Lett. 2017 386 47 56
    [Google Scholar]
  84. Jain M.R. Mohapatra J. Bandhyopadhyay D. Identification and preclinical characterization of a novel and potent poly (ADP-ribose) polymerase (PARP) inhibitor ZYTP1. Cancer Chemother. Pharmacol. 2018 82 4 635 647 10.1007/s00280‑018‑3653‑1 30046848
    [Google Scholar]
  85. Chen W. Guo N. Qi M. Discovery, mechanism and metabolism studies of 2,3-difluorophenyl-linker-containing PARP1 inhibitors with enhanced in vivo efficacy for cancer therapy. Eur. J. Med. Chem. 2017 138 514 531 10.1016/j.ejmech.2017.06.053 28692916
    [Google Scholar]
  86. Kulkarni S.S. Singh S. Shah J.R. Low W.K. Talele T.T. Synthesis and SAR optimization of quinazolin-4(3H)-ones as poly(ADP-ribose)polymerase-1 inhibitors. Eur. J. Med. Chem. 2012 50 264 273 10.1016/j.ejmech.2012.02.001 22365563
    [Google Scholar]
  87. Cepeda V. Fuertes M. Castilla J. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors in cancer chemotherapy. Rec Pat Anticanc Drug Discov 2006 1 1 39 53 10.2174/157489206775246430 18221025
    [Google Scholar]
  88. Ishida J. Yamamoto H. Kido Y. Discovery of potent and selective PARP-1 and PARP-2 inhibitors: SBDD analysis via a combination of X-ray structural study and homology modelling. Bioorg. Med. Chem. 2006 14 1378 1390 10.1016/j.bmc.2005.09.061 16288880
    [Google Scholar]
  89. Iwashita A. Hattori K. Yamamoto H. Discovery of quinazolinone and quinoxaline derivatives as potent and selective poly(ADP‐ribose) polymerase‐1/2 inhibitors. FEBS Lett. 2005 579 6 1389 1393 10.1016/j.febslet.2005.01.036 15733846
    [Google Scholar]
  90. Guleria M. Kumar A. Singh A.K. Kumar P. Synthesis and in silico studies of quinazolinones as PARP-1 inhibitors. Comb. Chem. High Throughput Screen. 2024 27 9 1329 1343 10.2174/1386207326666230905153443 37691193
    [Google Scholar]
  91. Rizza P. Pellegrino M. Caruso A. 3-(Dipropylamino)-5-hydroxybenzofuro [2,3-f[quinazolin-1(2 H)-one (DPA-HBFQ-1) plays an inhibitory role on breast cancer cell growth and progression. Eur. J. Med. 2015 107 275 287 10.1016/J.EJMECH.2015.11.004 26599533
    [Google Scholar]
  92. Zhou Q. Ji M. Zhou J. Poly (ADP-ribose) polymerases inhibitor, Zj6413, as a potential therapeutic agent against breast cancer. Biochem. Pharmacol. 2016 107 29 40 10.1016/j.bcp.2016.02.015 26920250
    [Google Scholar]
  93. Zhou J. Ji M. Yao H. Discovery of quinazoline-2,4(1 H, 3 H)-dione derivatives as novel PARP-1/2 inhibitors: Design, synthesis and their antitumor activity. Org. Biomol. Chem. 2018 16 17 3189 3202 10.1039/C8OB00286J 29648554
    [Google Scholar]
  94. Chadha N. Jaggi A.S. Silakari O. Structure-based design of new poly (ADP-ribose) polymerase (PARP-1) inhibitors. Mol. Divers. 2017 21 3 655 660 10.1007/s11030‑017‑9754‑7 28653128
    [Google Scholar]
  95. Goodfellow E. Senhaji Mouhri Z. Williams C. Jean-Claude B.J. Design, synthesis and biological activity of novel molecules designed to target PARP and DNA. Bioorg. Med. Chem. Lett. 2017 27 3 688 694 10.1016/j.bmcl.2016.09.054 28003142
    [Google Scholar]
  96. Dai Q. Chen J. Gao C. Sun Q. Yuan Z. Jiang Y. Design, synthesis and biological evaluation of novel phthalazinone acridine derivatives as dual PARP and Topo inhibitors for potential anticancer agents. Chin. Chem. Lett. 2020 31 2 404 408 10.1016/j.cclet.2019.06.019
    [Google Scholar]
  97. Xin M. Sun J. Huang W. Design and synthesis of novel phthalazinone derivatives as potent poly(ADP-ribose)polymerase 1 inhibitors. Future Med. Chem. 2020 12 19 1691 1707 10.4155/fmc‑2020‑0009 33012191
    [Google Scholar]
  98. Tian Y. Xie Z. Liao C. Design, synthesis and anticancer activities of novel dual poly(ADP-ribose) polymerase-1/histone deacetylase-1 inhibitors. Bioorg. Med. Chem. Lett. 2020 30 8 127036 10.1016/j.bmcl.2020.127036 32088129
    [Google Scholar]
  99. Lin S. Zhang L. Zhang X. Synthesis of novel dual target inhibitors of PARP and HSP90 and their antitumor activities. Bioorg. Med. Chem. 2020 28 9 115434 10.1016/j.bmc.2020.115434 32222339
    [Google Scholar]
  100. Xiang H.Y. Chen J.Y. Huan X.J. Identification of 2-substituted pyrrolo[1,2-b]pyridazine derivatives as new PARP-1 inhibitors. Bioorg. Med. Chem. Lett. 2021 31 127710 10.1016/j.bmcl.2020.127710 33246105
    [Google Scholar]
  101. Zheng L. Ren R. Sun X. Discovery of a dual tubulin and poly (ADP-ribose) polymerase-1 inhibitor by structure-based pharmacophore modeling, virtual screening, molecular docking, and biological evaluation. J. Med. Chem. 2021 64 21 15702 15715 10.1021/acs.jmedchem.1c00932 34670362
    [Google Scholar]
  102. Li S. Li X. Zhang T. Novel 4,5-dihydrospiro[benzo[c]azepine-1,1′-cyclohexan]-3(2H)-one derivatives as PARP-1 inhibitors: Design, synthesis and biological evaluation. Bioorg. Chem. 2021 111 104840 10.1016/j.bioorg.2021.104840 33780687
    [Google Scholar]
  103. Yu J. Gou W. Shang H. Design and synthesis of benzodiazepines as brain penetrating PARP-1 inhibitors. J. Enzyme Inhib. Med. Chem. 2022 37 1 952 972 10.1080/14756366.2022.2053524 35317687
    [Google Scholar]
  104. Yu J. Luo L. Hu T. Structure-based design, synthesis, and evaluation of inhibitors with high selectivity for PARP-1 over PARP-2. Eur. J. Med. Chem. 2022 227 113898 10.1016/j.ejmech.2021.113898 34656898
    [Google Scholar]
  105. Zhao Y. Zhang L.X. Jiang T. The ups and downs of Poly(ADP-ribose) Polymerase-1 inhibitors in cancer therapy–Current progress and future direction. Eur. J. Med. Chem. 2020 203 112570 10.1016/j.ejmech.2020.112570 32717529
    [Google Scholar]
  106. Levi V. Jacobson E.L. Jacobson M.K. Inhibition of poly(ADP‐ribose) polymerase by methylated xanthines and cytokinins. FEBS Lett. 1978 88 1 144 146 10.1016/0014‑5793(78)80627‑9 205432
    [Google Scholar]
  107. Lin K.Y. Kraus W.L. PARP inhibitors for cancer therapy. Cell 2017 169 2 183 10.1016/j.cell.2017.03.034 28388401
    [Google Scholar]
  108. Wang R. Cong Y. Li M. Bao J. Qi Y. Zhang J.Z.H. Molecular mechanism of selective binding of NMS-P118 to PARP-1 and PARP-2: A computational perspective. Front. Mol. Biosci. 2020 7 7 50 10.3389/fmolb.2020.00050 32373627
    [Google Scholar]
  109. Papeo G. Orsini P. Avanzi N.R. Discovery of stereospecific PARP-1 inhibitor isoindolinone NMS-P515. ACS Med. Chem. Lett. 2019 10 4 534 538 10.1021/acsmedchemlett.8b00569 30996792
    [Google Scholar]
  110. Wang J. Wang X. Li H. Design, synthesis and biological evaluation of novel 5-fluoro-1H-benzimidazole-4-carboxamide derivatives as potent PARP-1 inhibitors. Bioorg. Med. Chem. Lett. 2016 26 16 4127 4132 10.1016/j.bmcl.2016.06.045 27353531
    [Google Scholar]
  111. Zhou J. Ji M. Zhu Z. Cao R. Chen X. Xu B. Discovery of 2-substituted 1 H -benzo[ d]immidazole-4-carboxamide derivatives as novel poly(ADP-ribose)polymerase-1 inhibitors with in vivo anti-tumor activity. Eur. J. Med. Chem. 2017 132 26 41 10.1016/j.ejmech.2017.03.013 28340412
    [Google Scholar]
  112. Reddy K.B. Rao G.M. Kumar B.V. Choudhury C. Rajan K.S. Design and synthesis of benzimidazole-4-carboxamides as potent poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors. Curr. Bioact. Compd. 2018 14 2 100 111 10.2174/1573407213666170109154209
    [Google Scholar]
  113. Chen X. Huan X. Liu Q. Design and synthesis of 2-(4,5,6,7-tetrahydrothienopyridin-2-yl)-benzoimidazole carboxamides as novel orally efficacious Poly(ADP-ribose)polymerase (PARP) inhibitors. Eur. J. Med. Chem. 2018 145 389 403 10.1016/j.ejmech.2018.01.018 29335205
    [Google Scholar]
  114. Zhang X. Zhang C. Tang L. Synthesis and biological evaluation of piperidyl benzimidazole carboxamide derivatives as potent PARP-1 inhibitors and antitumor agents. Chin. Chem. Lett. 2020 31 1 136 140 10.1016/j.cclet.2019.04.045
    [Google Scholar]
  115. He J.X. Wang M. Huan X.J. Novel PARP1/2 inhibitor mefuparib hydrochloride elicits potent in vitro and in vivo anticancer activity, characteristic of high tissue distribution. Oncotarget 2017 8 3 4156 4168 10.18632/oncotarget.13749 27926532
    [Google Scholar]
  116. Griffin R.J. Pemberton L.C. Rhodes D. Novel potent inhibitors of the DNA repair enzyme poly(ADP-ribose)polymerase (PARP). Anticancer Drug Des. 1995 10 6 507 514 7575991
    [Google Scholar]
  117. White A.W. Almassy R. Calvert A.H. Resistance-modifying agents. 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase. J. Med. Chem. 2000 43 22 4084 4097 10.1021/jm000950v 11063605
    [Google Scholar]
  118. Delaney C.A. Wang L.Z. Kyle S. Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin. Cancer Res. 2000 6 7 2860 2867 10914735
    [Google Scholar]
  119. Penning T.D. Zhu G.D. Gandhi V.B. Discovery and SAR of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide: A potent inhibitor of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Bioorg. Med. Chem. 2008 16 14 6965 6975 10.1016/j.bmc.2008.05.044 18541433
    [Google Scholar]
  120. Chen M. Huang H. Wu K. Synthesis and evaluation of 2‐(4‐[4‐acetylpiperazine‐1‐carbonyl] phenyl)‐1H‐benzo[d]imidazole‐4‐carboxamide derivatives as potential PARP ‐1 inhibitors and preliminary study on structure‐activity relationship. Drug Dev. Res. 2022 83 1 55 63 10.1002/ddr.21843 34151456
    [Google Scholar]
  121. Li X. Delzer J. Voorman R. de Morais S.M. Lao Y. Disposition and drug-drug interaction potential of veliparib (ABT-888), a novel and potent inhibitor of poly(ADP-ribose) polymerase. Drug Metab. Dispos. 2011 39 7 1161 1169 10.1124/dmd.110.037820 21436403
    [Google Scholar]
  122. Banasik M. Komura H. Shimoyama M. Ueda K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J. Biol. Chem. 1992 267 3 1569 1575 10.1016/S0021‑9258(18)45983‑2 1530940
    [Google Scholar]
  123. Herrero I. Miras-Portugal M.T. Sánchez-Prieto J. PKC‐independent inhibition of glutamate exocytosis by arachidonic acid in rat cerebrocortical synaptosomes. FEBS Lett. 1992 296 3 317 319 10.1016/0014‑5793(92)80312‑5 1347020
    [Google Scholar]
  124. Burkart V. Blaeser K. Kolb H. Potent β-cell protection in vitro by an isoquinolinone-derived PARP inhibitor. Horm. Metab. Res. 1999 31 12 641 644 10.1055/s‑2007‑978813 10668915
    [Google Scholar]
  125. Moree W.J. Goldman P. Demaggio A.J. Identification of ring-fused pyrazolo pyridin-2-ones as novel poly(ADP-ribose)polymerase-1 inhibitors. Bioorg. Med. Chem. Lett. 2008 18 18 5126 5129 10.1016/j.bmcl.2008.07.091 18713665
    [Google Scholar]
  126. Docherty J.C. Kuzio B. Silvester J.A. Bowes J. Thiemermann C. An inhibitor of poly (ADP‐ribose) synthetase activity reduces contractile dysfunction and preserves high energy phosphate levels during reperfusion of the ischaemic rat heart. Br. J. Pharmacol. 1999 127 6 1518 1524 10.1038/sj.bjp.0702705 10455304
    [Google Scholar]
  127. Wang H. Ren B. Liu Y. Discovery of pamiparib (BGB-290), a potent and selective poly (ADP-ribose) polymerase (PARP) inhibitor in clinical development. J. Med. Chem. 2020 63 24 15541 15563 10.1021/acs.jmedchem.0c01346 33264017
    [Google Scholar]
  128. Giovannelli L. Cozzi A. Guarnieri I. Dolara P. Moroni F. Comet assay as a novel approach for studying DNA damage in focal cerebral ischemia: Differential effects of NMDA receptor antagonists and poly(ADP-ribose) polymerase inhibitors. J. Cereb. Blood Flow Metab. 2002 22 6 697 704 10.1097/00004647‑200206000‑00008 12045668
    [Google Scholar]
  129. Dulaney C. Marcrom S. Stanley J. Yang E.S. Poly (ADP-ribose) polymerase activity and inhibition in cancer. Semin. Cell Dev. Biol. 2017 63 144 153
    [Google Scholar]
  130. Huang S. Zhang B. Chen Y. Poly (ADP-ribose) polymerase inhibitor PJ34 attenuated hepatic triglyceride accumulation in alcoholic fatty liver disease in mice. J. Pharmacol. Exp. Ther. 2018 364 3 452 461 10.1124/jpet.117.243105 29317476
    [Google Scholar]
  131. Kim Y. Kim Y.S. Noh M.Y. Neuroprotective effects of a novel poly (ADP ‐ribose) polymerase‐1 inhibitor, JPI ‐289, in hypoxic rat cortical neurons. Clin. Exp. Pharmacol. Physiol. 2017 44 6 671 679 10.1111/1440‑1681.12757 28370165
    [Google Scholar]
  132. Kim Y. Kim Y.S. Kim H.Y. Early treatment with poly (ADP-ribose) polymerase-1 inhibitor (JPI-289) reduces infarct volume and improves long-term behavior in an animal model of ischemic stroke. Mol. Neurobiol. 2018 55 9 7153 7163 10.1007/s12035‑018‑0910‑6 29383691
    [Google Scholar]
  133. Bai X.T. Moles R. Chaib-Mezrag H. Nicot C. Small PARP inhibitor PJ-34 induces cell cycle arrest and apoptosis of adult T-cell leukemia cells. J. Hematol. Oncol. 2015 8 1 117 10.1186/s13045‑015‑0217‑2
    [Google Scholar]
  134. Li L. Zhong S. Li R. Aldehyde dehydrogenase 2 and PARP1 interaction modulates hepatic HDL biogenesis by LXRα-mediated ABCA1 expression. JCI Insight 2022 7 7 e155869 10.1172/jci.insight.155869 35393951
    [Google Scholar]
  135. Han S. Kim Y.H. Choi H.Y. Safety, tolerability, and pharmacokinetics of single and multiple dose JPI-289, a novel poly (ADP-Ribose) polymerase-1 inhibitor in first-in-human study of healthy volunteers. Clin. Ther. 2017 39 8 e48 10.1016/j.clinthera.2017.05.148
    [Google Scholar]
  136. Urbin S.S. Elvers I. Hinz J.M. Helleday T. Thompson L.H. Uncoupling of RAD51 focus formation and cell survival after replication fork stalling in RAD51D null CHO cells. Environ. Mol. Mutagen. 2012 53 2 114 124 10.1002/em.21672 22302683
    [Google Scholar]
  137. Elmasry G.F. Aly E.E. Awadallah F.M. El-Moghazy S.M. Design and synthesis of novel PARP-1 inhibitors based on pyridopyridazinone scaffold. Bioorg. Chem. 2019 87 655 666 10.1016/j.bioorg.2019.03.068 30952061
    [Google Scholar]
  138. Thomas C. Ji Y. Lodhi N. Non-NAD-like poly (ADP-ribose) polymerase-1 inhibitors effectively eliminate cancer in vivo. EBioMedicine 2016 13 90 98 10.1016/j.ebiom.2016.10.001 27727003
    [Google Scholar]
  139. Li S. Li X. Zhang T. Design, synthesis and biological evaluation of homoerythrina alkaloid derivatives bearing a triazole moiety as PARP-1 inhibitors and as potential antitumor drugs. Bioorg. Chem. 2020 94 103385 10.1016/j.bioorg.2019.103385 31669094
    [Google Scholar]
  140. Li S. Li X. Zhang T. Design, synthesis and biological evaluation of erythrina derivatives bearing a 1,2,3-triazole moiety as PARP-1 inhibitors. Bioorg. Chem. 2020 96 103575 10.1016/j.bioorg.2020.103575 31962202
    [Google Scholar]
  141. Long H. Hu X. Wang B. Discovery of novel apigenin–piperazine hybrids as potent and selective poly (ADP-Ribose) polymerase-1 (PARP-1) inhibitors for the treatment of cancer. J. Med. Chem. 2021 64 16 12089 12108 10.1021/acs.jmedchem.1c00735 34404206
    [Google Scholar]
  142. Vishwanath D. Girimanchanaika S.S. Dukanya D. Design and activity of novel oxadiazole based compounds that target poly (ADP-ribose) polymerase. Molecules 2022 27 3 703 10.3390/molecules27030703 35163965
    [Google Scholar]
  143. Nilov D. Maluchenko N. Kurgina T. Molecular mechanisms of PARP-1 inhibitor 7-methylguanine. Int. J. Mol. Sci. 2020 21 6 2159 10.3390/ijms21062159 32245127
    [Google Scholar]
/content/journals/cei/10.2174/0115734080356966250626094656
Loading
/content/journals/cei/10.2174/0115734080356966250626094656
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test