Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4080
  • E-ISSN: 1875-6662

Abstract

Aim

The present study aimed to explore the hepatorenal efficacy of ethanolic and hydroalcoholic extract against Gentamicin and Cisplatin-induced toxicity in experimental rats.

Background

The current research focuses on the characterization and evaluation of the hepatorenal efficacy of extracts on cellular and tissue models, particularly in terms of its restorative actions following cytotoxic damage induced by Gentamicin and Cisplatin. This work builds upon several key areas of contemporary scientific research.

Objective

The objective of the current investigation was to establish an association of oxidative stress in hepatorenal insufficiency caused by Gentamicin and Cisplatin xenobiotics and its amelioration with the antioxidant activity of ethanolic extract of (EEPG) and hydroalcoholic extract of (HAEPG).

Methods

Using ascorbic acid as a standard, the antioxidant activity of EEPG and HAEPG was assessed using the DPPH method. The hepatorenal efficiency of the EEPG and HAEPG were studied in Gentamicin and Cisplatin-induced models. The hepatorenal toxicity was induced by 100 mg/kg/day i.p. of Gentamicin for 12 days and 1.5 mg/kg/day i.p. cisplatin for 3 weeks in Wistar albino rats. Lipid profile, serum hepatorenal markers, and hepatorenal tissue oxidative markers such as, CAT, MDA, GSH, and SOD were estimated to assess the extent of hepatorenal efficiency. Using Masson trichrome (MT) stained tissue sections, renal and hepatic tissue damage was assessed. The degree of renal tissue damage was evaluated using tubular necrosis, perivascular edema, intratubular proteinaceous cast, and vascular congestion.

Results

studies have shown that the HAEPG containing higher total phenolic and flavonoid content, exhibits greater antioxidant activity compared to the EEPG. The severity of hepatotoxicity and renal toxicity was found to be more severe in cisplatin than Gentamicin. The Cisplatin treatment more severely affects the level of CAT, GSH, and SOD, respectively compared to Gentamicin induction. Cisplatin also significantly decreased SOD and increased MDA levels. Treatment with EEPG and HAEPG demonstrated beneficial effects by reducing the levels of oxidative enzymes, which contributes to the restoration of hepatorenal damage due to their antioxidant properties. The MT panels of the treated groups revealed and supported hepatorenal regenerative changes.

Conclusion

The antioxidant properties of EEPG and HAEPG showed beneficial effects and ameliorated the levels of tissue hepatorenal oxidative enzymes and were found to possess restoration of hepatorenal damage in a dose-dependent manner.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080326545241004041018
2024-12-02
2025-11-05
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. TorreL.A. SiegelR.L. WardE.M. JemalA. Global cancer incidence and mortality rates and trends—an update.Cancer Epidemiol. Biomarkers Prev.2016251162710.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  3. BahnassyA.A. AbdellateifM.S. ZekriA.R.N. Cancer in Africa: Is it a genetic or environmental health problem?Front. Oncol.20201060421410.3389/fonc.2020.604214 33409154
    [Google Scholar]
  4. LiuN. ZhouS. OlatunjiO.J. WuY. Nucleosides rich extract from Cordyceps cicadae alleviated cisplatin-induced neurotoxicity in rats: A behavioral, biochemical and histopathological study.Arab. J. Chem.202215110347610.1016/j.arabjc.2021.103476
    [Google Scholar]
  5. WangL. HeY. LiY. Protective effects of nucleosides-rich extract from Cordyceps cicadae against cisplatin induced testicular damage.Chem. Biodivers.20201711e200067110.1002/cbdv.202000671 33007148
    [Google Scholar]
  6. QuintanilhaJ.C.F. SaavedraK.F. VisacriM.B. MorielP. SalazarL.A. Role of epigenetic mechanisms in cisplatin-induced toxicity.Crit. Rev. Oncol. Hematol.201913713114210.1016/j.critrevonc.2019.03.004 31014509
    [Google Scholar]
  7. HakiminiaB. GoudarziA. MoghaddasA. Has vitamin E any shreds of evidence in cisplatin‐induced toxicity.J. Biochem. Mol. Toxicol.2019338e2234910.1002/jbt.22349 31115123
    [Google Scholar]
  8. RahimiA. AsadiF. RezghiM. KazemiS. SooraniF. MemarianiZ. Natural products against cisplatin‐induced male reproductive toxicity: A comprehensive review.J. Biochem. Mol. Toxicol.2022363e2297010.1002/jbt.22970 34820939
    [Google Scholar]
  9. HabibS.A. SuddekG.M. Abdel RahimM. AbdelrahmanR.S. The protective effect of protocatechuic acid on hepatotoxicity induced by cisplatin in mice.Life Sci.202127711948510.1016/j.lfs.2021.119485 33864821
    [Google Scholar]
  10. OzkokA. EdelsteinC.L. Pathophysiology of cisplatin-induced acute kidney injury.BioMed Res. Int.2014201411710.1155/2014/967826 25165721
    [Google Scholar]
  11. LiaoW. WangZ. FuZ. p62/SQSTM1 protects against cisplatin-induced oxidative stress in kidneys by mediating the cross talk between autophagy and the Keap1-Nrf2 signalling pathway.Free Radic. Res.201953780081410.1080/10715762.2019.1635251 31223046
    [Google Scholar]
  12. ZhangJ. WangJ. XuX. Red ginseng protects against cisplatin-induced intestinal toxicity by inhibiting apoptosis and autophagy via the PI3K/AKT and MAPK signaling pathways.Food Funct.20201154236424810.1039/D0FO00469C 32355945
    [Google Scholar]
  13. HamdyS. ElshopakeyG.E. RishaE.F. RezkS. AteyaA.I. AbdelhamidF.M. Curcumin mitigates gentamicin induced-renal and cardiac toxicity via modulation of Keap1/Nrf2, NF-κB/iNOS and Bcl-2/BAX pathways.Food Chem. Toxicol.202418311432310.1016/j.fct.2023.114323 38056816
    [Google Scholar]
  14. Mohamadi YarijaniZ. NajafiH. ShackebaeiD. MadaniS.H. ModarresiM. JassemiS.V. Amelioration of renal and hepatic function, oxidative stress, inflammation and histopathologic damages by Malva sylvestris extract in gentamicin induced renal toxicity.Biomed. Pharmacother.201911210863510.1016/j.biopha.2019.108635 30798126
    [Google Scholar]
  15. Rodriguez-BarberoA. BosqueE. Rivas-CabaeroL. ArévaloM. López-NovoaJ.M. Effect of platelet activating factor antagonist treatment on gentamicin nephrotoxicity.Mediators Inflamm.199211232610.1155/S096293519200005X 18475436
    [Google Scholar]
  16. GalalyS.R. AhmedO.M. MahmoudA.M. Thymoquinone and curcumin prevent gentamicin-induced liver injury by attenuating oxidative stress, inflammation and apoptosis.J. Physiol. Pharmacol.2014656823832 25554986
    [Google Scholar]
  17. HeL. PengX. ZhuJ. Protective effects of curcumin on acute gentamicin-induced nephrotoxicity in rats.Can. J. Physiol. Pharmacol.201593427528210.1139/cjpp‑2014‑0459 25730179
    [Google Scholar]
  18. BandayA.A. FarooqN. PriyamvadaS. YusufiA.N.K. KhanF. Time dependent effects of gentamicin on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in rat kidney tissues.Life Sci.2008829-1045045910.1016/j.lfs.2007.11.014 18201728
    [Google Scholar]
  19. Sanchez-GonzalezP.D. Lopez-HernandezF.J. Perez-BarriocanalF. MoralesA.I. Lopez-NovoaJ.M. Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumour activity.Nephrol. Dial. Transplant.201126113484349510.1093/ndt/gfr195 21602180
    [Google Scholar]
  20. TugcuV. OzbekE. TasciA. Selective nuclear factor κ‐B inhibitors, pyrolidium dithiocarbamate and sulfasalazine, prevent the nephrotoxicity induced by gentamicin.BJU Int.200698368068610.1111/j.1464‑410X.2006.06321.x 16925772
    [Google Scholar]
  21. VolpiniR.A. BalbiA.P.C. CostaR.S. CoimbraT.M. Increased expression of p38 mitogen- activated protein kinase is related to the acute renal lesions induced by gentamicin.Braz. J. Med. Biol. Res.200639681782310.1590/S0100‑879X2006000600016 16751989
    [Google Scholar]
  22. FloraS.J.S. Nutritional components modify metal absorption, toxic response and chelation therapy.J. Nutr. Environ. Med.2002121536710.1080/13590840220123361
    [Google Scholar]
  23. Zheleva-DimitrovaD. NedialkovP. GirreserU. KitanovG. Benzophenones and flavonoids from Hypericum maculatum and their antioxidant activities.Nat. Prod. Res.201226171576158310.1080/14786419.2011.582468 22077203
    [Google Scholar]
  24. SinghA. Medicinal plants: A review.J. Plant Sci.20153505510.11648/j.jps.s.2015030101.18
    [Google Scholar]
  25. El-NemrS.E. IsmailI.A. RagabM. Chemical composition of juice and seeds of pomegranate fruit.Nahrung199034760160610.1002/food.19900340706
    [Google Scholar]
  26. DerakhshanZ. FerranteM. TadiM. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds.Food Chem. Toxicol.201811410811110.1016/j.fct.2018.02.023 29448088
    [Google Scholar]
  27. Chalfoun-MounayarA. NemrR. YaredP. KhairallahS. ChahineR. Antioxidant and weight loss effects of pomegranate molasses.J. Appl. Pharm. Sci.201224550
    [Google Scholar]
  28. HusainH. LatiefU. AhmadR. Pomegranate action in curbing the incidence of liver injury triggered by Diethylnitrosamine by declining oxidative stress via Nrf2 and NFκB regulation.Sci. Rep.201881860610.1038/s41598‑018‑26611‑1 29872102
    [Google Scholar]
  29. RahmaniA. AlsahliM. AlmatroodiS. Potential antitumor effects of pomegranates and its ingredients.Pharmacogn. Rev.2017112213614010.4103/phrev.phrev_25_17 28989248
    [Google Scholar]
  30. LavoroA. FalzoneL. GattusoG. SalemiR. CultreraG. LeoneG. Pomegranate: A promising avenue against the most common chronic diseases and their associated risk factors (Review).In: Int J Funct Nutr.20212
    [Google Scholar]
  31. GornallA.G. BardawillC.J. DavidM.M. Determination of serum proteins by means of the biuret reaction.J. Biol. Chem.1949177275176610.1016/S0021‑9258(18)57021‑6 18110453
    [Google Scholar]
  32. AdebisiO.A. AgbajeW.B. AdewaleO.O. Modulatory efficacy of Punica granatum L. powder ethanol extract (PLEE) on lead acetate-induced hepatic and renal toxicity.Clinical Phytoscience202281610.1186/s40816‑021‑00337‑6
    [Google Scholar]
  33. EL-AguelA PennisiR SmeriglioA Punica granatum peel and leaf extracts as promising strategies for HSV-1 treatment.Viruses20221412263910.3390/v14122639 36560643
    [Google Scholar]
  34. HajifattahiF. Moravej-SalehiE. TaheriM. MahboubiA. KamalinejadM. Antibacterial effect of hydroalcoholic extract of Punica granatum Linn. Petal on common oral microorganisms.Int. J. Biomater.201620161610.1155/2016/8098943 26884763
    [Google Scholar]
  35. GulR. JanS.U. FaridullahS. SheraniS. JahanN. Preliminary phytochemical screening, quantitative analysis of alkaloids and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan.ScientificWorldJournal201720171710.1155/2017/5873648 28386582
    [Google Scholar]
  36. BanuK.S. CathrineL. General techniques involved in phytochemical analysis.Int J Adv Res Chem Sci2015242532
    [Google Scholar]
  37. DevmurariV.P. Phytochemical screening study and antibacterial evaluation of Symplocos racemosa Roxb.Arch. Appl. Sci. Res.201021354359
    [Google Scholar]
  38. JamadarM.J. ShaikhR.H. Preparation and evaluation of herbal gel formulation.J Pharm Res Educ201712201224
    [Google Scholar]
  39. DeepaC. SrivastavaR. Kumar SrivastavaA. KotiyaA. Wound healing activity of hydro-alcoholic extract of Cinnamomum nitidum Blume (Lauraceae) in wistar albino rats.Curr. Tradit. Med.20162213414510.2174/2215083802666160902154451
    [Google Scholar]
  40. SrivastavaA.K. NagarH. SrivastavaR. AhirwarV. ChandelH.S. Evaluation of antitussive and anti-asthmatic activity of *Tabernaemontana divaricata* (L.) R. Br. Ex Roem. and Schult AYU.Int Q J Res Ayurveda2016373256
    [Google Scholar]
  41. AyresG.H. Evaluation of accuracy in photometric analysis.Anal. Chem.194921665265710.1021/ac60030a002
    [Google Scholar]
  42. SloaneH.J. GallawayW.S. Spectrophotometric accuracy, linearity and adherence to Beer’s law.Appl. Spectrosc.1977311253010.1366/000370277774463210
    [Google Scholar]
  43. OtohinoyiD.A. EkpoO. IbraheemO. Effect of ambient temperature storage on 2,2-diphenyl-1-picrylhydrazyl (DPPH) as a free radical for the evaluation of antioxidant activity.Int. J. Biol. Chem. Sci.2014831262126810.4314/ijbcs.v8i3.39
    [Google Scholar]
  44. BabaeenezhadE. NouryazdanN. NasriM. AhmadvandH. Moradi SarabiM. Cinnamic acid ameliorate gentamicin-induced liver dysfunctions and nephrotoxicity in rats through induction of antioxidant activities.Heliyon202177e0746510.1016/j.heliyon.2021.e07465 34278037
    [Google Scholar]
  45. UnH. UganR.A. KoseD. A novel effect of Aprepitant: Protection for cisplatin-induced nephrotoxicity and hepatotoxicity.Eur. J. Pharmacol.202088017316810.1016/j.ejphar.2020.173168 32423870
    [Google Scholar]
  46. KalantariH. ForuozandehH. KhodayarM.J. SiahpooshA. SakiN. KheradmandP. Antioxidant and hepatoprotective effects of Capparis spinosa L. fractions and Quercetin on tert-butyl hydroperoxide- induced acute liver damage in mice.J. Tradit. Complement. Med.20188112012710.1016/j.jtcme.2017.04.010 29321999
    [Google Scholar]
  47. SalehS.M.M. MahmoudA.B. Al-SalahyM.B. Mohamed MoustafaF.A. Morphological, immunohistochemical, and biochemical study on the ameliorative effect of gallic acid against bisphenol A-induced nephrotoxicity in male albino rats.Sci. Rep.2023131173210.1038/s41598‑023‑28860‑1 36720896
    [Google Scholar]
  48. EllmanG.L. Tissue sulfhydryl groups.Arch. Biochem. Biophys.1959821707710.1016/0003‑9861(59)90090‑6
    [Google Scholar]
  49. BuegeJ.A. AustS.D. Microsomal lipid peroxidation.Methods Enzymol1978523021010.1016/S0076‑6879(78)52032‑6
    [Google Scholar]
  50. AebiH. Catalase in vitro. Methods Enzymol198410512112610.1016/S0076‑6879(84)05016‑3
    [Google Scholar]
  51. SinghJ. KaurH.P. VermaA. Pomegranate peel phytochemistry, pharmacological properties, methods of extraction, and its application: A comprehensive review.ACS Omega2023839354523546910.1021/acsomega.3c02586 37810640
    [Google Scholar]
  52. SaparbekovaA.A. KantureyevaG.O. KudasovaD.E. KonarbayevaZ.K. LatifA.S. Potential of phenolic compounds from pomegranate (Punica granatum L.) by-product with significant antioxidant and therapeutic effects: A narrative review.Saudi J. Biol. Sci.202330210355310.1016/j.sjbs.2022.103553 36632073
    [Google Scholar]
  53. RussoM. FanaliC. TripodoG. Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: Application to different Italian varieties.Anal. Bioanal. Chem.2018410153507352010.1007/s00216‑018‑0854‑8 29350256
    [Google Scholar]
  54. Mohamed MabroukO. El-Sayed ShaltoutO. Aly AminW. Mustafa EzzT. Mohamed ZeitounA. Evaluation of bioactive compounds in pomegranate fruit parts as an attempt for their application as an active edible film.J. Biomater.20193171710.11648/j.jb.20190301.12
    [Google Scholar]
  55. DiamantiA.C. IgoumenidisP.E. MourtzinosI. YannakopoulouK. KarathanosV.T. Green extraction of polyphenols from whole pomegranate fruit using cyclodextrins.Food Chem.2017214616610.1016/j.foodchem.2016.07.072 27507448
    [Google Scholar]
  56. TamborlinL. SumereB.R. de SouzaM.C. Characterization of pomegranate peel extracts obtained using different solvents and their effects on cell cycle and apoptosis in leukemia cells.Food Sci. Nutr.20208105483549610.1002/fsn3.1831 33133551
    [Google Scholar]
  57. SayedS. AlotaibiS.S. El-ShehawiA.M. The anti-inflammatory, anti-apoptotic, and antioxidant effects of a pomegranate-peel extract against acrylamide-induced hepatotoxicity in rats.Life202212222410.3390/life12020224 35207511
    [Google Scholar]
  58. MaganganaT.P. MakungaN.P. FawoleO.A. OparaU.L. Processing factors affecting the phytochemical and nutritional properties of pomegranate (Punica granatum L.) peel waste: A review.Molecules20202520469010.3390/molecules25204690 33066412
    [Google Scholar]
  59. HeidarianE. Jafari-DehkordiE. ValipourP. Ghatreh-SamaniK. Ashrafi-EshkaftakiL. Nephroprotective and anti-inflammatory effects of pistacia atlantica leaf hydroethanolic extract against gentamicin-induced nephrotoxicity in rats.J. Diet. Suppl.201714548950210.1080/19390211.2016.1267062 28121473
    [Google Scholar]
  60. AtamanN. HandanM.E. YildirimS. NihatM.E. The effect of fucoidan on changes of some biochemical parameters in nephrotoxicity induced by Gentamicin in rats.Ankara Univ. Vet. Fak. Derg.201865191410.1501/Vetfak_0000002821
    [Google Scholar]
  61. AhmadvandH. Ghasemi DehnooM. DehghaniA. BagheriS. CheraghiR.A. Serum paraoxonase 1 status and its association with atherogenic indexes in gentamicin-induced nephrotoxicity in rats treated with coenzyme Q10.Ren. Fail.201436341341810.3109/0886022X.2013.865154 24320085
    [Google Scholar]
  62. ValipourP. HeidarianE. KhoshdelA. Protective effects of hydroalcoholic extract of *Ferulago angulata* against gentamicin-induced nephrotoxicity in rats.Iran. J. Kidney Dis.2016104189196
    [Google Scholar]
  63. GolperT.A. FeingoldK.R. FulfordM.H. SipersteinM.D. The role of circulating mevalonate in nephrotic hypercholesterolemia in the rat.J. Lipid Res.199027101044105110.1016/S0022‑2275(20)38763‑0 3794548
    [Google Scholar]
  64. ChanM.K. PersaudJ.W. VargheseZ. MoorheadJ.F. Post-heparin hepatic and lipoprotein lipase activities in nephrotic syndrome.Aust. N. Z. J. Med.198414684184710.1111/j.1445‑5994.1984.tb03786.x 6598053
    [Google Scholar]
  65. MnafguiK. HamdenK. Ben SalahH. Inhibitory activities of Zygophyllum album: A natural weight-lowering plant on key enzymes in high-fat diet-fed rats.Evid. Based Complement. Alternat. Med.201220121910.1155/2012/620384 23258993
    [Google Scholar]
  66. PaimR.T.T. RodriguesP.S.A. SilvaJ.Y.G. p-methoxycinnamic acid diesters lower dyslipidemia, liver oxidative stress and toxicity in high-fat diet fed mice and human peripheral blood lymphocytes.Nutrients202012126210.3390/nu12010262 31968556
    [Google Scholar]
  67. FilhoA.C.V.A. RodriguesP.A.S. BenjaminS.R. Hypolipidemic activity of P-methoxycinnamic diester (PCO-C) isolated from Copernicia prunífera against Triton WR-1339 and hyperlipidemic diet in mice.Environ. Toxicol. Pharmacol.20175619820310.1016/j.etap.2017.09.015 28961514
    [Google Scholar]
  68. CaoX. WuC. TianY. GuoP. The caffeic acid moiety plays an essential role in attenuating lipid accumulation by chlorogenic acid and its analogues.RSC Advances2019922122471225410.1039/C8RA09395D 35515874
    [Google Scholar]
  69. KhaksariM. EsmailiS. AbedlooR. KhastarH. Palmatine ameliorates nephrotoxicity and hepatotoxicity induced by gentamicin in rats.Arch. Physiol. Biochem.2021127327327810.1080/13813455.2019.1633354 31241354
    [Google Scholar]
  70. AlkahtaniS. AlarifiS.A. Al-DoaissA. Detection of apoptosis induced by gentamicin in rat hepatocytes.Int. J. Zool. Res.20095416117010.3923/ijzr.2009.161.170
    [Google Scholar]
  71. Al-AzzamS.I. Abdul-RazzakK.K. JaradatM.W. The nephroprotective effects of pioglitazone and glibenclamide against gentamicin-induced nephrotoxicity in rats: A comparative study.J. Chemother.2010222889110.1179/joc.2010.22.2.88 20435566
    [Google Scholar]
  72. MedićB. StojanovićM. RovčaninB. Pioglitazone attenuates kidney injury in an experimental model of gentamicin-induced nephrotoxicity in rats.Sci. Rep.2019911368910.1038/s41598‑019‑49835‑1 31548602
    [Google Scholar]
  73. CuiJ. TangL. HongQ. N-acetylcysteine ameliorates gentamicin-induced nephrotoxicity by enhancing autophagy and reducing oxidative damage in miniature pigs.Shock201952662263010.1097/SHK.0000000000001319 30676497
    [Google Scholar]
  74. KapićD. MornjakovićZ. ĆosovićE. ŠahinovićM. A histological study of the effect of exogenous melatonin on gentamicin induced structural alterations of proximal tubules in rats.Biomolecules and Biomedicine2014141303410.17305/bjbms.2014.2293 24579968
    [Google Scholar]
  75. YilmazM. MertH. IrakK. ErtenR. MertN. The effect of fucoidan on the Gentamicin induced nephrotoxicity in rats.Fresenius Environ. Bull.2018274
    [Google Scholar]
  76. LaurentG. KishoreB.K. TulkensP.M. Aminoglycoside-induced renal phospholipidosis and nephrotoxicity.Biochem. Pharmacol.199040112383239210.1016/0006‑2952(90)90078‑Y 2268362
    [Google Scholar]
  77. Abd-ElhamidT.H. ElgamalD.A. AliS.S. Reno-protective effects of ursodeoxycholic acid against gentamicin-induced nephrotoxicity through modulation of NF-κB, eNOS and caspase-3 expressions.Cell Tissue Res.2018374236738710.1007/s00441‑018‑2886‑y 30078101
    [Google Scholar]
  78. CuiS. VerroustP.J. MoestrupS.K. ChristensenE.I. Megalin/gp330 mediates uptake of albumin in renal proximal tubule.Am. J. Physiol. Renal Physiol.19962714F900F90710.1152/ajprenal.1996.271.4.F900 8898021
    [Google Scholar]
  79. WangX. WangH. SongY. Clinical efficacy and mechanism of Pralatrexate combined with Palbociclib Isethionate in treatment of bladder cancer patients.Oncol. Lett.201817120120810.3892/ol.2018.9617 30655756
    [Google Scholar]
  80. MichelH.E. MenzeE.T. Tetramethylpyrazine guards against cisplatin-induced nephrotoxicity in rats through inhibiting HMGB1/TLR4/NF-κB and activating Nrf2 and PPAR-γ signaling pathways.Eur. J. Pharmacol.201985717242210.1016/j.ejphar.2019.172422 31152701
    [Google Scholar]
  81. AlfieriA.B. CubedduL.X. Role of NK1 receptors on cisplatin-induced nephrotoxicity in the rat.Naunyn Schmiedebergs Arch. Pharmacol.2000361333433810.1007/s002109900196 10731048
    [Google Scholar]
  82. KunakC.S. UganR.A. CadirciE. Nephroprotective potential of carnitine against glycerol and contrast-induced kidney injury in rats through modulation of oxidative stress, proinflammatory cytokines, and apoptosis.Br. J. Radiol.20168910582014072410.1259/bjr.20140724 26562095
    [Google Scholar]
  83. SaritemurM. UnH. CadirciE. Tnf-α inhibition by infliximab as a new target for the prevention of glycerol-contrast-induced nephropathy.Environ. Toxicol. Pharmacol.201539257758810.1016/j.etap.2015.01.002 25682004
    [Google Scholar]
  84. YaylaM. HaliciZ. UnalB. BayirY. AkpinarE. GocerF. Protective effect of Et-1 receptor antagonist bosentan on paracetamol induced acute liver toxicity in rats.Eur. J. Pharmacol.2014726879510.1016/j.ejphar.2014.01.022 24462570
    [Google Scholar]
  85. PalipochS. PunsawadC. Biochemical and histological study of rat liver and kidney injury induced by Cisplatin.J. Toxicol. Pathol.201326329329910.1293/tox.26.293 24155562
    [Google Scholar]
  86. ShuklaK. RajP. KumarA. KumarM. KaithwasG. Effect of monotherapy and combination therapy of pantoprazole and aprepitant in gastric esophageal reflux disease in albino rats.ScientificWorldJournal201420141710.1155/2014/183147 24790551
    [Google Scholar]
  87. LuY. CederbaumA.I. Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1.Toxicol. Sci.200689251552310.1093/toxsci/kfj031 16251482
    [Google Scholar]
  88. MaZ.N. LiY.Z. LiW. Nephroprotective Effects of Saponins from Leaves of Panax quinquefolius against Cisplatin-Induced Acute Kidney Injury.Int. J. Mol. Sci.2017187140710.3390/ijms18071407 28703736
    [Google Scholar]
  89. LiuH. BaligaR. Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis.Kidney Int.20036351687169610.1046/j.1523‑1755.2003.00908.x 12675844
    [Google Scholar]
  90. MartinsN.M. SantosN.A.G. CurtiC. BianchiM.L.P. SantosA.C. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver.J. Appl. Toxicol.200828333734410.1002/jat.1284 17604343
    [Google Scholar]
  91. GoyalY. KoulA. RanawatP. Ellagic acid ameliorates cisplatin induced hepatotoxicity in colon carcinogenesis.Environ. Toxicol.201934780481310.1002/tox.22747 30953405
    [Google Scholar]
  92. OthmanM.S. KhaledA.M. Al-BagawiA.H. Hepatorenal protective efficacy of flavonoids from Ocimum basilicum extract in diabetic albino rats: A focus on hypoglycemic, antioxidant, anti-inflammatory and anti-apoptotic activities.Biomed. Pharmacother.202114411228710.1016/j.biopha.2021.112287 34649220
    [Google Scholar]
  93. AlbasherG. AlwahaibiM. Abdel-DaimM.M. AlkahtaniS. AlmeerR. Protective effects of Artemisia judaica extract compared to metformin against hepatorenal injury in high-fat diet/streptozotocine-induced diabetic rats.Environ. Sci. Pollut. Res. Int.20202732405254053610.1007/s11356‑020‑09997‑2 32666453
    [Google Scholar]
/content/journals/cei/10.2174/0115734080326545241004041018
Loading
/content/journals/cei/10.2174/0115734080326545241004041018
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Antioxidant; cisplatin; flavonoid; gentamicin; hepatorenal; phenolic; Punica granatum L; restoration
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test