Skip to content
2000
image of Development of a Robust QSAR Model to Predict the Affinity of N-Bridged Bicyclic Sulfonamide, Pyrazole/Sulfonamide Based Dihydroquinoline and Sulfonamide –Pyrazolopiperidine γ-secretase Inhibitors

Abstract

Introduction

γ-secretase has been a primary target for the creation of therapies that alter the course of Alzheimer's disease. Compounds inhibiting γ-secretase, targeting PS-1, are potential therapeutic agents for Alzheimer’s disease.

Methods

The model was generated with the help of linear and non-linear regression analysis methods. The analysis helped to ascertain the role of log P (whole molecule), no. of H-bond (whole molecule), Kier ChiV3(cluster indices), and Kier Chi6 (ring index) in determining the activity of γ secretase inhibitors. In addition to QSAR modelling, Lipinski’s rule of five was also employed to check the pharmacokinetic profile of γ-secretase inhibitors.

Results

Significant statistical values of the designed models were obtained with the help of MLR, PLS, and FFNN analysis and the relevant descriptors.

Discussion

QSAR (Quantitative Structure-Activity Relationship) models generated (both MLR and PLS) were robust with statistically significant s, F, r, r2 and r2CV values. This study conducts QSAR analysis using linear regression analysis and non-linear regression analysis on a data set of 53 compounds acting as γ-secretase inhibitors.

Conclusion

None of the compounds violated Lipinski’s rule of five, indicating that the γ-secretase inhibitors reported here have sound pharmacokinetic profiles and can be considered as potential drug candidates for Alzheimer’s disease.

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080323195250331113024
2025-04-30
2025-09-26
Loading full text...

Full text loading...

References

  1. Fazio S. Pace D. Maslow K. Zimmerman S. Kallmyer B. Alzheimer’s Association dementia care practice recommendations. Gerontologist 2018 58 Suppl. 1 S1 S9 10.1093/geront/gnx182 29361074
    [Google Scholar]
  2. Cass S.P. Alzheimer’s disease and exercise: A literature review. Curr. Sports Med. Rep. 2017 16 1 19 22 10.1249/JSR.0000000000000332 28067736
    [Google Scholar]
  3. Berchtold N.C. Cotman C.W. Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol. Aging 1998 19 3 173 189 10.1016/S0197‑4580(98)00052‑9 9661992
    [Google Scholar]
  4. Gupta S. Nair A. Jhawat V. Unwinding complexities of diabetic Alzheimer by potent novel molecules. Am. J. Alzheimers Dis. Other Demen. 2020 35 1533317520937542 10.1177/1533317520937542
    [Google Scholar]
  5. Fish P.V. Steadman D. Bayle E.D. Whiting P. New approaches for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2019 29 2 125 133 10.1016/j.bmcl.2018.11.034 30501965
    [Google Scholar]
  6. Saunders A.M. Strittmatter W.J. Schmechel D. Association of apolipoprotein E allele ϵ 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993 43 8 1467 1472 10.1212/WNL.43.8.1467 8350998
    [Google Scholar]
  7. Bertram L. Lill C.M. Tanzi R.E. The genetics of Alzheimer disease: Back to the future. Neuron 2010 68 2 270 281 10.1016/j.neuron.2010.10.013 20955934
    [Google Scholar]
  8. Cuyvers E. Sleegers K. Genetic variations underlying Alzheimer’s disease: Evidence from genome-wide association studies and beyond. Lancet Neurol. 2016 15 8 857 868 10.1016/S1474‑4422(16)00127‑7 27302364
    [Google Scholar]
  9. Hardy J.A. Higgins G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992 256 5054 184 185 10.1126/science.1566067 1566067
    [Google Scholar]
  10. Hardy J. Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002 297 5580 353 356 10.1126/science.1072994 12130773
    [Google Scholar]
  11. O’Brien R.J. Wong P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011 34 1 185 204 10.1146/annurev‑neuro‑061010‑113613 21456963
    [Google Scholar]
  12. Crump C.J. Johnson D.S. Li Y.M. Development and mechanism of γ-secretase modulators for Alzheimer’s disease. Biochemistry 2013 52 19 3197 3216 10.1021/bi400377p 23614767
    [Google Scholar]
  13. Brown M.S. Ye J. Rawson R.B. Goldstein J.L. Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans. Cell 2000 100 4 391 398 10.1016/S0092‑8674(00)80675‑3 10693756
    [Google Scholar]
  14. De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 2003 38 1 9 12 10.1016/S0896‑6273(03)00205‑8 12691659
    [Google Scholar]
  15. Wolfe M.S. Xia W. Ostaszewski B.L. Diehl T.S. Kimberly W.T. Selkoe D.J. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 1999 398 6727 513 517 10.1038/19077 10206644
    [Google Scholar]
  16. Li Y.M. Xu M. Lai M.T. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 2000 405 6787 689 694 10.1038/35015085 10864326
    [Google Scholar]
  17. Esler W.P. Kimberly W.T. Ostaszewski B.L. Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nat. Cell Biol. 2000 2 7 428 434 10.1038/35017062 10878808
    [Google Scholar]
  18. Ahn K. Shelton C.C. Tian Y. Activation and intrinsic γ-secretase activity of presenilin 1. Proc. Natl. Acad. Sci. USA 2010 107 50 21435 21440 10.1073/pnas.1013246107 21115843
    [Google Scholar]
  19. Takasugi N. Tomita T. Hayashi I. The role of presenilin cofactors in the γ-secretase complex. Nature 2003 422 6930 438 441 10.1038/nature01506 12660785
    [Google Scholar]
  20. Edbauer D. Winkler E. Regula J.T. Pesold B. Steiner H. Haass C. Reconstitution of γ-secretase activity. Nat. Cell Biol. 2003 5 5 486 488 10.1038/ncb960 12679784
    [Google Scholar]
  21. Kimberly W.T. LaVoie M.J. Ostaszewski B.L. Ye W. Wolfe M.S. Selkoe D.J. γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proc. Natl. Acad. Sci. USA 2003 100 11 6382 6387 10.1073/pnas.1037392100 12740439
    [Google Scholar]
  22. Kopan R. Ilagan M.X.G. γ-Secretase: Proteasome of the membrane? Nat. Rev. Mol. Cell Biol. 2004 5 6 499 504 10.1038/nrm1406 15173829
    [Google Scholar]
  23. Chávez-Gutiérrez L. Bammens L. Benilova I. The mechanism of γ-Secretase dysfunction in familial Alzheimer disease. EMBO J. 2012 31 10 2261 2274 10.1038/emboj.2012.79 22505025
    [Google Scholar]
  24. Doody R.S. Raman R. Farlow M. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med. 2013 369 4 341 350 10.1056/NEJMoa1210951 23883379
    [Google Scholar]
  25. Coric V. van Dyck C.H. Salloway S. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch. Neurol. 2012 69 11 1430 1440 10.1001/archneurol.2012.2194 22892585
    [Google Scholar]
  26. May P.C. Yang Z. Li W.Y. Hyslop P.A. Siemers E. Boggs L.N. O3-06-07 Multi-compartmental pharmacodynamic assessment of the functional gamma-secretase inhibitor LY450139 in PDAPP transgenic mice and non-transgenic mice. Neurobiol. Aging 2004 25 S65 10.1016/S0197‑4580(04)80220‑3
    [Google Scholar]
  27. Mayer S.C. Kreft A.F. Harrison B. Discovery of begacestat, a Notch-1-sparing gamma-secretase inhibitor for the treatment of Alzheimer’s disease. J. Med. Chem. 2008 51 23 7348 7351 10.1021/jm801252w 19012391
    [Google Scholar]
  28. Bowers S. Probst G.D. Truong A.P. N-Bridged bicyclic sulfonamides as inhibitors of γ-secretase. Bioorg. Med. Chem. Lett. 2009 19 24 6952 6956 10.1016/j.bmcl.2009.10.060 19879755
    [Google Scholar]
  29. Truong A.P. Aubele D.L. Probst G.D. Design, synthesis, and structure–activity relationship of novel orally efficacious pyrazole/sulfonamide based dihydroquinoline γ-secretase inhibitors. Bioorg. Med. Chem. Lett. 2009 19 17 4920 4923 10.1016/j.bmcl.2009.07.092 19660943
    [Google Scholar]
  30. Sharma P. Paliwal S. Sharma S. Chauhan N. Jain S. Quantitative structure activity relationship studies of potent Endothelin-A receptor antagonist for the treatment of pulmonary arterial hypertension. Indian J. Chem. 2024 63 190 202
    [Google Scholar]
/content/journals/cei/10.2174/0115734080323195250331113024
Loading
/content/journals/cei/10.2174/0115734080323195250331113024
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: FFNN ; Alzheimer’s disease ; γ-secretase inhibitors ; PLS ; MLR ; QSAR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test