Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4080
  • E-ISSN: 1875-6662

Abstract

Background

Diabetes prevalence is progressively rising everywhere, particularly in developing countries. Lichens have evolved into a rich source of innovative bioactive chemicals with their anti-oxidant capabilities, widening the scope of well-documented and effective diabetes treatment.

Objective

The main objectives of this study were to perform alpha-amylase, alpha-glucosidase inhibition analysis, and anti-oxidant of lichen

Methods

Folin Ciocalteu’s reagent was used to determine the total phenolic content for biological activities. The Aluminum trichloride method was used to determine total flavonoid content, and the free radical assay method was used to determine the antioxidant activity of using 2,2-diphenyl-1-picrylhydrazyl (DPPH). Moreover, substrate 2-Chloro-4-nitrophenyl---maltotrioside (CNPG3) and substrate-nitrophenyl---glucopyranose (-NPG) were used for the determination of alpha-amylase and alpha-glucosidase inhibition activities respectively, and molecular docking was performed by Auto Dock Vina.

Results

Total phenolic and flavonoid contents present in were 37.41 ± 2.87 mg GAE/g and 5.53 ± 0.95 mg QE/g, respectively. For anti-oxidant inhibition activity, crude extract of methanol showed an IC value of 15.324 ± 0.80 µg/mL. Furthermore, a methanolic crude extract showed significant inhibition activities against alpha-amylase (IC = 178.50 ± 1.10 µg/mL) and alpha-glucosidase (IC = 76.10 ± 0.91 µg/mL). During analysis, zeorin showed an effective binding affinity with -7.9 kcal/mol, and Atranorin showed -7.4 kcal/mol in the orthosteric site of the protein.

Conclusion

exhibits the potential to impact biological functions, demonstrating antidiabetic properties, as confirmed by molecular docking analysis .

Loading

Article metrics loading...

/content/journals/cei/10.2174/0115734080315689240925055031
2024-10-15
2025-11-05
Loading full text...

Full text loading...

References

  1. RupeeS. RupeeK. SinghR.B. Diabetes-induced chronic heart failure is due to defects in calcium transporting and regulatory contractile proteins: Cellular and molecular evidence.Heart Fail. Rev.202228362764410.1007/s10741‑022‑10271‑5 36107271
    [Google Scholar]
  2. KhalilW.J. AkeblersaneM. KhanA.S. MoinA.S.M. ButlerA.E. Environmental pollution and the risk of developing metabolic disorders: Obesity and Diabetes.Int. J. Mol. Sci.20232410887010.3390/ijms24108870 37240215
    [Google Scholar]
  3. HassanS. GujralU.P. QuarellsR.C. Disparities in diabetes prevalence and management by race and ethnicity in the USA: Defining a path forward.Lancet Diabetes Endocrinol.202311750952410.1016/S2213‑8587(23)00129‑8 37356445
    [Google Scholar]
  4. CarboneS. Del BuonoM.G. OzemekC. LavieC.J. Obesity, risk of diabetes and role of physical activity, exercise training and cardiorespiratory fitness.Prog. Cardiovasc. Dis.201962432733310.1016/j.pcad.2019.08.004 31442513
    [Google Scholar]
  5. American Diabetes AssociationClassification and diagnosis of diabetes: Standards of medical care in diabetes-2021.Diabetes Care202144S15S3310.2337/dc21‑S002 33298413
    [Google Scholar]
  6. DiMeglioL.A. Evans-MolinaC. OramR.A. Type 1 diabetes.Lancet2018391101382449246210.1016/S0140‑6736(18)31320‑5 29916386
    [Google Scholar]
  7. ChenJ. LiW. CaoJ. LuY. WangC. LuJ. Risk factors for carotid plaque formation in type 2 diabetes mellitus.J. Transl. Med.20242211810.1186/s12967‑023‑04836‑7 38178198
    [Google Scholar]
  8. OgunyemiO.M. GyebiG.A. IbrahimI.M. Identification of promising multi-targeting inhibitors of obesity from Vernonia amygdalina through computational analysis.Mol. Divers.202327112510.1007/s11030‑022‑10397‑6 35179699
    [Google Scholar]
  9. ChettriD. VermaA.K. Biological significance of carbohydrate active enzymes and searching their inhibitors for therapeutic applications.Carbohydr. Res.202352910885310.1016/j.carres.2023.108853 37235954
    [Google Scholar]
  10. GongL. FengD. WangT. RenY. LiuY. WangJ. Inhibitors of α‐amylase and α‐glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia.Food Sci. Nutr.20208126320633710.1002/fsn3.1987 33312519
    [Google Scholar]
  11. LiX. BaiY. JinZ. SvenssonB. Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes.Lebensm. Wiss. Technol.202215311245510.1016/j.lwt.2021.112455
    [Google Scholar]
  12. YaoY. SangW. ZhouM. RenG. Antioxidant and α-glucosidase inhibitory activity of colored grains in China.J. Agric. Food Chem.201058277077410.1021/jf903234c 19904935
    [Google Scholar]
  13. DhakalK. ShresthaD. PokhrelT. Antioxidant, antibacterial, antidiabetic potential, and in silico analysis of Rhus chinensis from western Nepal.Curr. Top. Med. Chem.202222262145215110.2174/1568026622666220803153226 35927822
    [Google Scholar]
  14. ShcherbakovaA. StrömstedtA.A. GöranssonU. Antimicrobial and antioxidant activity of Evernia prunastri extracts and their isolates.World J. Microbiol. Biotechnol.202137812910.1007/s11274‑021‑03099‑y 34232401
    [Google Scholar]
  15. SargsyanR. GasparyanA. TadevosyanG. PanosyanH. Antimicrobial and antioxidant potentials of non-cytotoxic extracts of corticolous lichens sampled in Armenia.AMB Express202111111010.1186/s13568‑021‑01271‑z 34324070
    [Google Scholar]
  16. YañezO. OsorioM.I. OsorioE. Antioxidant activity and enzymatic of lichen substances: A study based on cyclic voltammetry and theoretical.Chem. Biol. Interact.202337211035710.1016/j.cbi.2023.110357 36693444
    [Google Scholar]
  17. MunteanuI.G. ApetreiC. Analytical methods used in determining antioxidant activity: A review.Int. J. Mol. Sci.2021227338010.3390/ijms22073380 33806141
    [Google Scholar]
  18. Rodríguez-BonillaP. Gandía-HerreroF. MatencioA. García-CarmonaF. López-NicolásJ.M. Comparative study of the antioxidant capacity of four stilbenes using ORAC, ABTS+, and FRAP techniques.Food Anal. Methods20171092994300010.1007/s12161‑017‑0871‑9
    [Google Scholar]
  19. Gulcinİ. Antioxidants and antioxidant methods: An updated overview.Arch. Toxicol.202094365171510.1007/s00204‑020‑02689‑3 32180036
    [Google Scholar]
  20. CipollettiM. Solar FernandezV. MontalesiE. MarinoM. FiocchettiM. Beyond the antioxidant activity of dietary polyphenols in cancer: The Modulation of Estrogen Receptors (ERs) Signaling.Int. J. Mol. Sci.2018199262410.3390/ijms19092624 30189583
    [Google Scholar]
  21. ElečkoJ. VilkováM. FrenákR. A comparative study of isolated secondary metabolites from lichens and their antioxidative properties.Plants2022118107710.3390/plants11081077 35448805
    [Google Scholar]
  22. Ureña-VacasI. González-BurgosE. DivakarP.K. Gómez-SerranillosM.P. Lichen depsidones with biological interest.Planta Med.2022881185588010.1055/a‑1482‑6381 34034351
    [Google Scholar]
  23. SpribilleT. TagirdzhanovaG. GoyetteS. TuovinenV. CaseR. ZandbergW.F. 3D biofilms: In search of the polysaccharides holding together lichen symbioses.FEMS Microbiol. Lett.20203675fnaa02310.1093/femsle/fnaa023 32037451
    [Google Scholar]
  24. AoussarN. LaasriF.E. BourhiaM. Phytochemical analysis, cytotoxic, antioxidant, and antibacterial activities of lichens.Evid. Based Complement. Alternat. Med.202020201810453810.1155/2020/8104538 33343680
    [Google Scholar]
  25. AzmanA.A. NadiahN. RosandyA.R. Antimicrobial activity and LC-MS data comparison from lichen Parmotrema praesorediosum in Bangi, Selangor, Malaysia.Sains Malays.202150238339310.17576/jsm‑2021‑5002‑10
    [Google Scholar]
  26. NorouziH. AziziA. GholamiM. SohrabiM. BoustieJ. Chemotype variations among lichen ecotypes of Umbilicaria aprina as revealed by LC-ESI-MS/MS: A survey of antioxidant phenolics.Environ. Sci. Pollut. Res. Int.20202732402964030810.1007/s11356‑020‑10053‑2 32661964
    [Google Scholar]
  27. MaulidiyahM DarmawanA HasanA WibowoD SalimLOA AnsharullahA Isolation, structure elucidation, and antidiabetic test of vicanicin compound from lichen Teloschistes flavicans.J Appl Pharm Sci202010111910.7324/JAPS.2020.10111
    [Google Scholar]
  28. AravindS.R. SreelekhaT.T. Dileep KumarB.S. KumarS.N. MohandasC. Characterization of three depside compounds from a Western Ghat lichen Parmelia erumpens Kurok with special reference to antimicrobial and anticancer activity.RSC Advances2014465346323464310.1039/C4RA04137B
    [Google Scholar]
  29. GandhiA.D. UmamaheshK. SathiyarajS. Isolation of bioactive compounds from lichen Parmelia sulcata and evaluation of antimicrobial property.J. Infect. Public Health202215449149710.1016/j.jiph.2021.10.014 34688575
    [Google Scholar]
  30. RamosD de BM. GomesF.S. NapoleãoT.H. PaivaP.M.G. da SilvaM.D.C. Antimicrobial activity of Cladonia verticillaris lichen preparations on bacteria and fungi of medical importance.Zhongguo Shengwuzhipinxue Zazhi20142014219392
    [Google Scholar]
  31. SrivastavaP. UpretiD.K. DholeT.N. SrivastavaA.K. NayakM.T. Antimicrobial property of extracts of Indian lichen against human pathogenic bacteria.Interdiscip. Perspect. Infect. Dis.201320131610.1155/2013/709348 24062769
    [Google Scholar]
  32. KosanicM. RankovicB. Antineurodegenerative and antidiabetic activity of lichens. RankovićB. Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential.ChamSpringer International Publishing201921523610.1007/978‑3‑030‑16814‑8_8
    [Google Scholar]
  33. ThadhaniV.M. KarunaratneV. Potential of lichen compounds as antidiabetic agents with antioxidative properties: A Review.Oxid. Med. Cell. Longev.201720171207969710.1155/2017/2079697 28491237
    [Google Scholar]
  34. Aydın KaratasE. TurkezH. Antioxidant and genotoxicity screening of aqueous extracts of four lichens collected from North East Anatolia.Fresenius Environ. Bull.20112029922998
    [Google Scholar]
  35. El-GarawaniI. EmamM. ElkhateebW. In vitro antigenotoxic, antihelminthic and antioxidant potentials based on the extracted metabolites from lichen Candelariella vitellina.Pharmaceutics202012547710.3390/pharmaceutics12050477 32456266
    [Google Scholar]
  36. Fernández-MorianoC. González-BurgosE. DivakarP.K. CrespoA. Gómez-SerranillosM.P. Evaluation of the antioxidant capacities and cytotoxic effects of ten Parmeliaceae lichen species.Evid. Based Complement. Alternat. Med.201620161316975110.1155/2016/3169751 28074101
    [Google Scholar]
  37. NazerS. Synergistic antibacterial efficacy of biogenic synthesized silver nanoparticles using Ajuga bractosa with standard antibiotics: A study against bacterial pathogens.Curr. Pharm. Biotechnol.2020213206218 31573882
    [Google Scholar]
  38. RehmanS. AndleebS. NiaziA.R. AliS. Short Communication- Estimation of trace elements and in vitro biological activities of lichens extracts.Pak. J. Pharm. Sci.201831414071416 30033427
    [Google Scholar]
  39. SisodiaR. GeolM. VermaS. RaniA. DurejaP. Antibacterial and antioxidant activity of lichen species Ramalina roesleri.Nat. Prod. Res.201327232235223910.1080/14786419.2013.811410 23822758
    [Google Scholar]
  40. KumarP. NayakaS. VermaT. NiranjanA. UpretiD.K. Comparative analysis of antimicrobial, antioxidant activities and phytochemicals of Himalayan lichens.Biomass Conv. Biorefi.2025155361538110.1007/s13399‑024‑05315‑9
    [Google Scholar]
  41. JoshiT. SharmaP. JoshiT. ChandraS. In silico screening of anti-inflammatory compounds from Lichen by targeting cyclooxygenase-2.J. Biomol. Struct. Dyn.202038123544356210.1080/07391102.2019.1664328 31524074
    [Google Scholar]
  42. MendiliM. KhadhriA. Mediouni-Ben JemâaJ. Anti-Inflammatory potential of compounds isolated from Tunisian lichens species.Chem. Biodivers.2022198e20220013410.1002/cbdv.202200134 35789537
    [Google Scholar]
  43. VangaN.R. KotaA. SistlaR. UppuluriM. Synthesis and anti-inflammatory activity of novel triazole hybrids of (+)-usnic acid, the major dibenzofuran metabolite of the lichen Usnea longissima.Mol. Divers.201721227328210.1007/s11030‑016‑9716‑5 28130662
    [Google Scholar]
  44. EstellaO.U. WilliamA.C. PatrickO. Evaluation of the analgesic and antipyretic activity of methanol extract of Combretum bauchiense Hutch & Dalziel (Combretaceae) leaves.Phytomedicine Plus20222110016610.1016/j.phyplu.2021.100166
    [Google Scholar]
  45. KhaderS.Z.A. AhmedS.S.Z. ArunachalamT. Radical scavenging potential, antiinflammatory and antiarthritic activity of isolated isomer Methyl-γ-Orsellinate and roccellatol from Roccella montagnei Bel.Bull. Fac. Pharm. Cairo Univ.2018561394510.1016/j.bfopcu.2018.02.001
    [Google Scholar]
  46. FirdousQ. SouzaM. AptrootA. KhalidA.N. Some Physciaceae lichens from Pakistan.Lindbergia20232023110.25227/linbg.01171
    [Google Scholar]
  47. TaylorJ.A. FourieT. PowellM. ChianellaI. Evidence for some antimicrobial properties of English churchyard lichens.Access Microbiol.20235610.1099/acmi.0.000536.v4
    [Google Scholar]
  48. RashmiS. ParizadehH. RajkumarH. Screening of Lichen extracts for in vitro antidiabetic activity using alpha amylase inhibitory assay.Int J Bio Pharm Res201565
    [Google Scholar]
  49. LuX. RossC.F. PowersJ.R. AstonD.E. RascoB.A. Determination of total phenolic content and antioxidant activity of garlic (Allium sativum) and elephant garlic (Allium ampeloprasum) by attenuated total reflectance-Fourier transformed infrared spectroscopy.J. Agric. Food Chem.201159105215522110.1021/jf201254f 21506613
    [Google Scholar]
  50. ChangC.C. YangM.H. WenH.M. ChernJ.C. Estimation of total flavonoid content in propolis by two complementary colometric methods.Yao Wu Shi Pin Fen Xi202010310.38212/2224‑6614.2748
    [Google Scholar]
  51. MensorL.L. MenezesF.S. LeitãoG.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method.Phytother. Res.200115212713010.1002/ptr.687 11268111
    [Google Scholar]
  52. HullattiK. TelagariM. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions.Indian J. Pharmacol.201547442542910.4103/0253‑7613.161270 26288477
    [Google Scholar]
  53. SengerM.R. GomesL.C.A. FerreiraS.B. KaiserC.R. FerreiraV.F. SilvaF.P.Jr Kinetics studies on the inhibition mechanism of pancreatic α-amylase by glycoconjugated 1H-1,2,3-triazoles: A new class of inhibitors with hypoglycemiant activity.ChemBioChem201213111584159310.1002/cbic.201200272 22753086
    [Google Scholar]
  54. KimS. ChenJ. ChengT. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac956 36305812
    [Google Scholar]
  55. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  56. YamamotoK. MiyakeH. KusunokiM. OsakiS. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose.FEBS J.2010277204205421410.1111/j.1742‑4658.2010.07810.x 20812985
    [Google Scholar]
  57. GillesC. AstierJ.P. Marchis-MourenG. CambillauC. PayanF. Crystal structure of pig pancreatic alpha-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose.Eur. J. Biochem.1996238256156910.1111/j.1432‑1033.1996.0561z.x 8681972
    [Google Scholar]
  58. BermanH. HenrickK. NakamuraH. Announcing the worldwide protein data bank.Nat. Struct. Mol. Biol.2003101298010.1038/nsb1203‑980 14634627
    [Google Scholar]
  59. S R. Preliminary phytochemical screening of different solvent extracts of lichens from Kodagu district, Karnataka.J. Pharmacogn. Phytochem.20143209212
    [Google Scholar]
  60. SwargiaryA. MahmudS. SalehM.A. Screening of phytochemicals as potent inhibitor of 3-chymotrypsin and papain-like proteases of SARS-CoV2: An in silico approach to combat COVID-19.J. Biomol. Struct. Dyn.20224052067208110.1080/07391102.2020.1835729 33089730
    [Google Scholar]
  61. NawazM. TahaM. QureshiF. Structural elucidation, molecular docking, α-amylase and α-glucosidase inhibition studies of 5-amino-nicotinic acid derivatives.BMC Chem.20201414310.1186/s13065‑020‑00695‑1 32685927
    [Google Scholar]
  62. TianW. ChenC. LeiX. ZhaoJ. LiangJ. CASTp 3.0: Computed atlas of surface topography of proteins.Nucleic Acids Res.201846W1W363-710.1093/nar/gky473 29860391
    [Google Scholar]
  63. Torres-BenítezA. Ortega-ValenciaJ.E. Jara-PinuerN. Antioxidant and antidiabetic activity and phytoconstituents of lichen extracts with temperate and polar distribution.Front. Pharmacol.202314125185610.3389/fphar.2023.1251856 38026927
    [Google Scholar]
  64. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  65. Discovery Studio VisualizerAvailable from: https://www.3ds.com/products/biovia/discovery-studio/visualization
  66. LinL. WongH. Predicting oral drug absorption: Mini review on physiologically-based pharmacokinetic models.Pharmaceutics2017944110.3390/pharmaceutics9040041 28954416
    [Google Scholar]
  67. XiongG. WuZ. YiJ. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab255 33893803
    [Google Scholar]
  68. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257-6310.1093/nar/gky318 29718510
    [Google Scholar]
  69. BrodoI.M. FreeburyC. AlfonsoN. Notes on the Lichens Physcia aipolia and P. alnophila in North America.Evansia201330411011910.1639/079.030.0406
    [Google Scholar]
  70. KerbouaM. AhmedM.A. SambaN. Phytochemical investigation of New Algerian lichen species: Physcia Mediterranea Nimis.Molecules2021264112110.3390/molecules26041121 33672591
    [Google Scholar]
  71. FerreiraL. Dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384 26205061
    [Google Scholar]
  72. KhaldanA. BouamraneS. El-mernissiR. Design of new α-glucosidase inhibitors through a combination of 3D-QSAR, ADMET screening, molecular docking, molecular dynamics simulations and quantum studies.Arab. J. Chem.202417310565610.1016/j.arabjc.2024.105656
    [Google Scholar]
  73. AbchirO. YamariI. NourH. Structure-based virtual screening, ADMET analysis, and molecular dynamics simulation of Moroccan natural compounds as candidates α-Amylase inhibitors.ChemistrySelect2023826e20230109210.1002/slct.202301092
    [Google Scholar]
  74. OzdalT. CapanogluE. AltayF. A review on protein-phenolic interactions and associated changes.Food Res. Int.201351295497010.1016/j.foodres.2013.02.009
    [Google Scholar]
  75. HouT. WangJ. ZhangW. XuX. ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules?J. Chem. Inf. Model.200747246046310.1021/ci6003515 17381169
    [Google Scholar]
  76. BhagarathiLK MaharajG DaSilvaPNB SubramanianG BhagarathiLK MaharajG A review of the diversity of lichens and what factors affect their distribution in the neotropics.GSC Biol Pharm Sci2022203276310.30574/gscbps.2022.20.3.0348
    [Google Scholar]
  77. MamytbekovaG.M. ShevtsovV.A. KataevaO.A. SerikbayG. SuleimenY.M. Antimicrobial activity of fungal extracts identified from thirty-two lichen species.Bull Karaganda Univ Bio Med Geogr Series2024114294248
    [Google Scholar]
  78. PadhiS. MasiM. CimminoA. Funiculosone, a substituted dihydroxanthene-1,9-dione with two of its analogues produced by an endolichenic fungus Talaromyces funiculosus and their antimicrobial activity.Phytochemistry201915717518310.1016/j.phytochem.2018.10.031 30419411
    [Google Scholar]
  79. BačkorováM. BačkorM. MikešJ. JendželovskýR. FedoročkoP. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid.Toxicol. In Vitro2011251374410.1016/j.tiv.2010.09.004 20837130
    [Google Scholar]
  80. GalantyA. KoczurkiewiczP. WnukD. Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells.Toxicol. In Vitro20174016116910.1016/j.tiv.2017.01.008 28095330
    [Google Scholar]
  81. ZhouR. YangY. ParkS.Y. The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis.Sci. Rep.201771813610.1038/s41598‑017‑08225‑1 28811522
    [Google Scholar]
  82. KarunaratneV. ThadhaniV.M. KhanS.N. ChoudharyM.I. Potent α-glucosidase inhibitors from the lichen Cladonia species from Sri Lanka.J. Natl. Sci. Found. Sri Lanka20144219510.4038/jnsfsr.v42i1.6684
    [Google Scholar]
  83. PopoviciV. BucurL. PopescuA. Antioxidant and cytotoxic activities of Usnea barbata (L.) F.H. Wigg. Dry extracts in different solvents.Plants202110590910.3390/plants10050909 34062835
    [Google Scholar]
  84. RankovićB. KosanićM. StanojkovićT. VasiljevićP. ManojlovićN. Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents.Int. J. Mol. Sci.20121311147071472210.3390/ijms131114707 23203090
    [Google Scholar]
  85. MuthuS. MuruganM. RajendranK. PonnusamyP. An assessment of proximate composition, antioxidant activities and LC/MS based phytochemical profiling of some lichen species collected from western ghats of southern part of India.Jordan J. Biol. Sci.2021
    [Google Scholar]
/content/journals/cei/10.2174/0115734080315689240925055031
Loading
/content/journals/cei/10.2174/0115734080315689240925055031
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ADMET; alpha-amylase; alpha-glucosidase; anti-oxidant; molecular docking; Physica aipolia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test