Skip to content
2000
  • ISSN: 1568-0088
  • E-ISSN: 1875-5917

Abstract

Our appreciation of the molecular pathogenesis of primary hyperparathyroidism (HPT) has seen great advances over the past decade. This improved understanding may well lead to the development of new treatment options that are specifically targeted to defective pathways. This review summarizes recent advances in the molecular basis of HPT and associated endocrinopathies, and discusses the potential for these and future findings to provide targets for alternative approaches to therapy. The only proven contributors to common sporadic HPT, by virtue of clonal genetic abnormalities, are the cyclin D1 and MEN1 genes. Cyclin D1 is an oncogene that encodes a key regulator of the cell cycle, while MEN1 is a tumor suppressor gene that has also been implicated in familial multiple endocrine neoplasia type 1 (MEN1), in which primary HPT is common. In addition, other key parathyroid regulatory pathways may play a role in HPT pathogenesis. 1,25 (OH)2-vitamin D, Ca2+ and phosphate are regarded as principal regulators of parathyroid cell proliferation and PTH secretion. Therefore, prime candidate targets include the Ca2+ sensing receptor (CASR) gene, the vitamin D receptor (VDR) gene, a putative phosphate receptor gene, their cognate gene products, and other genes or proteins involved in their respective biochemical pathways. Attempts to identify new therapies based specifically on the defective pathways in HPT could complement or eventually supplant traditional approaches.

Loading

Article metrics loading...

/content/journals/cdtiemd/10.2174/1568008023340686
2002-07-01
2025-08-13
Loading full text...

Full text loading...

/content/journals/cdtiemd/10.2174/1568008023340686
Loading

  • Article Type:
    Review Article
Keyword(s): casr; cyclin d1; endocrinopathies; hyperparathyroidism; men1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test