Skip to content
2000
  • ISSN: 1568-0053
  • E-ISSN: 1875-5852

Abstract

Wide variations in the antibacterial potency and spectrum of quinolones are presumably attributable, in part, to their variable potency against the molecular targets, DNA gyrase and topoisomerase IV. In addition, susceptibility of quinolones to resistance development via known point mutations in the target genes gyrA and parC / grlA varies depending on the effective affinities of the compounds toward the mutated targets. Using a medicinal chemistry approach, a series of 8-methoxy, Non-Fluorinated Quinolones (NFQs), with fluorine in the R6 position of the traditional fluoroquinolones replaced with hydrogen, were designed to retain potency against DNA gyrase and / or topoisomerase IV with point mutations in the serine-aspartate / glutamate hotspots. This resulted in compounds with antibacterial activity against a broad-spectrum of bacterial species, including multidrug-resistant gram-positive pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant Streptococcus pneumoniae (PRSP). The efficacy of the NFQs was also demonstrated in a murine septicemia model. Furthermore, the design of the NFQs resulted in lower acute intravenous (IV) toxicity and clastogenicity relative to their 6-fluorinated counterparts. Use of the non-fluorinated quinolone nucleus allowed exploration of new structure-activity space and generation of a series of NFQs with unique combinations of affinities toward the wild type and mutated forms of the molecular targets.

Loading

Article metrics loading...

/content/journals/cdtid/10.2174/1568005024605891
2002-03-01
2025-09-29
Loading full text...

Full text loading...

/content/journals/cdtid/10.2174/1568005024605891
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test