Skip to content
2000
  • ISSN: 1568-010X
  • E-ISSN: 1568-010X

Abstract

The innate immune system recognizes “non-self” by employing a set of germline-encoded receptors called Toll-like receptors (TLRs), originally characterized in Drosophila. TLRs are involved in the recognition of various microbial-derived molecules, including lipopolysaccharide (LPS), lipoteichoic acid (LTA), and peptidoglycan (PGN), as well as unmethylated bacterial DNA. The TLR-mediated intracellular signaling pathways converge to activate nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinases (JNKs), which induce the transcription of a series of cytokine / chemokine genes that are involved in the initiation or regulation of the inflammatory response. It is now known that, like other peripheral organs, the central nervous system (CNS) is also under constitutive immune surveillance by CNS-resident glial cells (microglia and astrocytes) and CNSinfiltrating immune cells. The recent progress in our understanding of TLR functions in the innate immune response sheds new light on how inflammatory immune responses are initiated within the CNS. In this review, we discuss recent studies on TLRs and their ligands, signal transduction pathways activated by TLRs, and the mechanisms through which these various activation events occur. Finally, we discuss how TLRs might play similar important roles in CNS inflammation.

Loading

Article metrics loading...

/content/journals/cdtia/10.2174/1568010023344698
2002-06-01
2025-08-16
Loading full text...

Full text loading...

/content/journals/cdtia/10.2174/1568010023344698
Loading

  • Article Type:
    Review Article
Keyword(s): cns inflammation; glial cells; jnks; tlr
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test