Skip to content
2000
  • ISSN: 1568-007X
  • E-ISSN: 1568-007X

Abstract

Regardless of the voltage-gated ion channel that is targeted in a drug discovery effort for the treatment of epilepsy, two routes have been followed historically: 1) a compound initially, and often surreptitiously, discovered due to activity in animal seizure models is further optimized by medicinal chemistry, or 2) a molecular target is identified based on the phenotype of transgenic animals, or linkage studies from humans with the disease, and compounds are then investigated within a mechanistic framework. Antagonists of voltage-gated sodium channels have been pursued utilizing primarily the first approach many of these compounds also have significant activity at other ion channels. Both approaches have been utilized to discover voltage-gated calcium channel antagonists, although most efforts to date have used the first approach. Several spontaneous mutant mice and transgenic animals have been utilized to probe the role of the numerous voltage-gated calcium channel subunits and their isoforms as potential molecular targets. Compounds that open or prolong the opening of voltage-gated potassium channels have been discovered using the first approach, with a detailed understanding of the molecular target and mechanism of action coming to light several years later. Genetic evidence from humans is limited to relatively rare forms of epilepsy, and transgenic animals with interesting phenotypes do not always translate into good molecular targets in humans. No clinically-useful antiepileptic drug (AED) has been developed to date that specifically interacts with one, or even one class, of ion channels to produce a therapeutic effect. The tools now exist to search for potent, selective, and safe ion channel modulators for the treatment of epilepsy. This review seeks to summarize the most recent pre-clinical and clinical efforts focused on voltage-gated ion-channels for the development of AEDs.

Loading

Article metrics loading...

/content/journals/cdtcnsnd/10.2174/1568007023339463
2002-02-01
2025-09-17
Loading full text...

Full text loading...

/content/journals/cdtcnsnd/10.2174/1568007023339463
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test