Skip to content
2000
Volume 13, Issue 1
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

D2 dopamine receptors (D2Rs) represent an important class of receptors in the pharmacological development of novel therapeutic drugs for the treatment of schizophrenia. Recent research into D2R signaling suggests that receptor properties are dependent on interaction with a cohort of dopamine receptor interacting proteins (DRIPs) within a macromolecular structure termed the signalplex. One component of this signalplex is neuronal calcium sensor 1 (NCS-1) a protein found to regulate the phosphorylation, trafficking, and signaling profile of the D2R in neurons. It has also been found that NCS-1 can contribute to the pathology of schizophrenia and may play a role in the efficacy of antipsychotic drug medication in the brain. In this review we discuss how the selective targeting of a DRIP, such as NCS-1, can be utilized as a novel strategy of drug design for the creation of new therapeutics for a disease such as schizophrenia. Using a fluorescence polarization assay we explore how the ability to detect changes in D2R/NCS-1 interaction can be exploited as an effective screening tool in the isolation and development of lead compounds for antipsychotic drug development. This line of work explores a novel direction in targeting D2Rs via their signalplex components and supports the notion that receptor interacting proteins represent an emerging new class of molecular targets for pharmacological drug development.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/138945012798868515
2012-01-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/cdt/10.2174/138945012798868515
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test