Skip to content
2000
Volume 22, Issue 14
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Huntington’s disease (HD) is a prototypical neurodegenerative disease, preferentially disrupting the neurons of the striatum and cortex. Progressive motor dysfunctions, psychiatric disturbances, behavioral impairments, and cognitive decline are the clinical symptoms of HD progression. The disease occurs due to expanded CAG repeats in exon 1 of huntingtin protein (mHtt), causing its aggregation. Multiple cellular and molecular pathways are involved in HD pathology. Mitochondria, as vital organelles have an important role in most neurodegenerative diseases like HD. Over the years, the role of mitochondria in neurons has highly diverged; they not only contribute as a cell power source, but also as dynamic organelles that fragment and then fuse to attain a maximal bioenergetics performance, regulating intracellular calcium homeostasis, reactive oxygen species (ROS) generation, antioxidant activity and involved in apoptotic pathways. Indeed, these events are observed to be affected in HD, resulting in neuronal dysfunction in pre-symptomatic stages. MHtt causes critical transcriptional abnormality by altering the expression of a master co-regulator, peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), leading to increased susceptibility to oxidative stress and neuronal degeneration. Moreover, mHtt influences multiple cellular signaling events, which end with mitochondrial biogenesis. Here, we resume recent findings that pose mitochondria as an important regulatory organelle in HD and how mHtt affects mitochondrial function, trafficking and homeostasis and makes neurons prone to degeneration. Besides, we also uncover the mitochondrial-based potential targets and therapeutic approaches with imminent or currently ongoing clinical trials.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/1389450122666210224105945
2021-10-01
2025-10-26
Loading full text...

Full text loading...

/content/journals/cdt/10.2174/1389450122666210224105945
Loading

  • Article Type:
    Review Article
Keyword(s): CAG; chaperones; Huntington disease; mitochondria; oxidative stress; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test