Skip to content
2000
Volume 9, Issue 10
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Thrombospondin-1 (TSP1), expressed in many cells and tissues is abundantly present in platelet α-granules, from where it is released upon platelet activation. Murine Tsp1-/- platelet studies have revealed that TSP1 is redundant for platelet aggregation, but that it reinforces platelet aggregate stabilization, especially in a shear field. von Willebrand factor (VWF), synthesized by megakaryocytes and endothelial cells is stored both in platelet α-granules and in endothelial Weibel- Palade bodies as ultralarge multimers. When released from endothelial cells, these multimers are temporarily retained on the endothelium, to be cleaved by the plasma protease ADAMTS13 into smaller and hemostatically less reactive multimers, released in plasma. This protease shows partial sequence identity with the type 1 (TSR1) and type 2 (TSR2) repeats of TSP1 and contains 1 TSR1 and 6 TSR2 repeats. TSP1, locally released by platelets, competes with ADAMTS13 during VWF proteolysis and controls the degree of VWF multimer processing. In addition, TSP1 and VWF both interact with the platelet GPIb/V/IX membrane complex, primarily in flow. These interactions control the recruitment of platelets to (sub) endothelial VWF and TSP1, exposed to the circulation, as a consequence of vascular inflammation and endothelial injury. TSP1-VWF interactions do not strictly enhance platelet recruitment and secreted TSP1 even weakly competes with the dynamic platelet rolling and adhesion onto VWF. Hence, TSP1 and VWF show partially related hemostatic functions, the most important one being the TSP1 role in the ADAMTS13 operated VWF multimer processing, in proinflammatory and thrombogenic conditions.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/138945008785909329
2008-10-01
2025-09-10
Loading full text...

Full text loading...

/content/journals/cdt/10.2174/138945008785909329
Loading

  • Article Type:
    Research Article
Keyword(s): adhesion; endothelium; platelet; shear stress; Thrombosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test