Skip to content
2000
Volume 8, Issue 6
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

The last decade has witnessed the introduction of a large number of novel, molecularly targeted agents into the therapeutic armamentarium against diverse forms of cancer, including leukemia. Such agents include signal transduction, cell cycle, histone deacetylase, Hsp90, proteasome, and Bcl-2 family member inhibitors, among others. While most of these agents have been or are currently being evaluated in adult patients with acute leukemia, experience in childhood leukemia is very limited. Although the use of such targeted agents as potentiators of conventional cytotoxic agent activity represents a logical approach, an emerging body of evidence suggests that neoplastic cells in general, and leukemic cells in particular, are highly susceptible to a therapeutic strategy in which survival signaling and cell cycle regulatory pathways are simultaneously disrupted. In in vitro studies, highly synergistic antileukemic interactions have been reported between CDK and HDAC inhibitors; HDAC and proteasome inhibitors; Bcl-2 antagonists and CDK inhibitors; MEK/ERK and Chk1 inhibitors, and proteasome and CDK inhibitors, among other combinations. Some of these strategies, including combinations of HDAC and CDK inhibitors, and CDK and proteasome inhibitors, have now entered the clinical arena in patients with leukemia and other hematologic malignancies. Based upon preclinical results to date, there is reason to suspect that such strategies might prove to be active against several types of childhood leukemia. Thus, over the next decade, the introduction of molecularly targeted agents, alone and in combination, into the therapeutic armamentarium against childhood leukemia may have significant implications for children with this disease.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/138945007780830764
2007-06-01
2025-09-03
Loading full text...

Full text loading...

/content/journals/cdt/10.2174/138945007780830764
Loading

  • Article Type:
    Research Article
Keyword(s): Apoptosis; cell cycle; leukemia; signal transduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test