Skip to content
2000
Volume 7, Issue 1
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Viral infections depend on an intimate relationship between the infectious agent and the host cells. Viruses need the host cells for replication, while the innate- and adaptive- immunesystem of the host is fighting to kill the infected cell in order to clear out the pathogen and survive the infection. However, since both virus and host exist, the organisms struggle must reach an ecological equilibrium. Among the best-studied interactions between viruses and the host immune system are those between herpesviruses and their hosts. Herpesviruses are known to devote a significant part of their large genomes on immuno-modulatory genes, some encoding chemokines or chemokine receptors. These genes, which may be dispensable for viral replication in vitro, are highly important for viral growth in vivo, for viral dissemination and disease progression. Indeed, all β- and γ-herpesviruses have acquired homologs of both chemokines and chemokine receptors belonging to the 7 transmembrane (7TM) spanning, G protein-coupled receptor family. 7TM receptors are very efficient drug targets and are currently the most popular class of investigational drug targets. A notable trait for the virus encoded chemokine receptors seems to be their constitutive activity. The biological function of the constitutive activity is still unclear, but it has become clear that the receptors are involved in important parts of the viral lifecycle in vivo, and that the receptor signaling is involved in γ-herpesvirus mediated cell transformation. Therefore, blocking the signaling of these receptors will provide an efficient and highly specific way to inhibit viral replication in vivo and disease progression in the hosts.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/138945006775270259
2006-01-01
2025-09-07
Loading full text...

Full text loading...

/content/journals/cdt/10.2174/138945006775270259
Loading

  • Article Type:
    Research Article
Keyword(s): AIDS; CXC-chemokine; Drug targets; Mammalian herpesviruses; replication cycle; Scavenger
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test