Skip to content
2000
image of PDMD: A Comprehensive Repository of Plants Reported for Skeletal Muscle-related Ailments

Abstract

Introduction

Medicinal plants and phytocompounds targeting skeletal muscle wasting in humans are under-represented in the majority of databases reporting plant/herb-diseases association. However, a large body of literature exists wherein plant extracts or active pharmaceutical ingredients thereof demonstrate potential benefit in skeletal muscle wasting diseases across model organisms. Underscoring the relevance of a repertoire documenting such medicinal plants, we introduce PDMD (Plants Database for Muscle Wasting Diseases), a manually curated plants database reported for muscle wasting diseases such as cachexia, sarcopenia, muscle atrophy, muscle frailty, impaired muscle regeneration, and muscle fatigue.

Methods

PDMD was developed through systematic manual collection and curation of published studies from PubMed, Science Direct, , retrieving literature on plants conferring pharmacological efficacy against muscle wasting across experimental model organisms. Phytochemical and taxonomic information were extracted tools like ClassyFire, PubChem. To handle the storage of an annotated listing of plants, MS-Excel and MySQL were used. Frontend was designed in Visual Studio Code and HTML/CSS. An Apache/PHP server was used to integrate MS-Excel data and charts.

Results

PDMD encompasses 206 medicinal plants and 230 APIs reported across 18 model organisms, offering taxonomical information, phytochemical classes, SMILES structures, geographical distribution, and other bioactivity indications. PDMD is cross-referenced with standard databases, such as PubChem and PubMed, to enhance functionality.

Discussion

PDMD catalogs plant-skeletal muscle links in a user-friendly, cross-referenced, free database. PDMD bridges the gaps between ethnopharmacology and botany and aids hypothesis generation for the discovery or screening of phyto-pharmaceuticals.

Conclusion

PDMD highlights overlooked plant-muscle links, bridging ethnopharmacology and botany gaps, and can aid hypothesis generation. PDMD is freely available at https://www.jiit.ac.in/biotechhighlightes/Research-Databases/PDMD/index.html, and was last updated in September 2025.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501435270251129220150
2026-01-06
2026-02-12
Loading full text...

Full text loading...

References

  1. Wilkinson D.J. Piasecki M. Atherton P.J. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res. Rev. 2018 47 123 132 10.1016/j.arr.2018.07.005 30048806
    [Google Scholar]
  2. Furrer R. Handschin C. Muscle wasting diseases: Novel targets and treatments. Annu. Rev. Pharmacol. Toxicol. 2019 59 1 315 339 10.1146/annurev‑pharmtox‑010818‑021041 30148697
    [Google Scholar]
  3. Lena A. Anker M.S. Springer J. Muscle wasting and sarcopenia in heart failure-the current state of science. Int. J. Mol. Sci. 2020 21 18 6549 10.3390/ijms21186549 32911600
    [Google Scholar]
  4. Constantin-Teodosiu D. Constantin D. Molecular mechanisms of muscle fatigue. Int. J. Mol. Sci. 2021 22 21 11587 10.3390/ijms222111587 34769017
    [Google Scholar]
  5. Chinvattanachot G. Rivas D. Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res. Rev. 2024 102 102589 10.1016/j.arr.2024.102589 39566742
    [Google Scholar]
  6. Wan M. Gray-Gaillard E.F. Elisseeff J.H. Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res. 2021 9 1 41 10.1038/s41413‑021‑00164‑y 34508069
    [Google Scholar]
  7. Wang T. Zhou D. Hong Z. Sarcopenia and cachexia: Molecular mechanisms and therapeutic interventions. MedComm 2025 6 1 e70030 10.1002/mco2.70030
    [Google Scholar]
  8. Setiawan T. Sari I.N. Wijaya Y.T. Cancer cachexia: Molecular mechanisms and treatment strategies. J. Hematol. Oncol. 2023 16 1 54 10.1186/s13045‑023‑01454‑0 37217930
    [Google Scholar]
  9. Lan X.Q. Deng C.J. Wang Q.Q. Zhao L.M. Jiao B.W. Xiang Y. The role of TGF-β signaling in muscle atrophy, sarcopenia and cancer cachexia. Gen. Comp. Endocrinol. 2024 353 114513 10.1016/j.ygcen.2024.114513 38604437
    [Google Scholar]
  10. Elsurer Afsar R. Afsar B. Ikizler T.A. Fibroblast growth factor 23 and muscle wasting: A metabolic point of view. Kidney Int. Rep. 2023 8 7 1301 1314 10.1016/j.ekir.2023.04.027 37441473
    [Google Scholar]
  11. Gawlik K.I. Holmberg J. Svensson M. Potent pro-inflammatory and pro-fibrotic molecules, osteopontin and galectin-3, are not major disease modulators of laminin α2 chain-deficient muscular dystrophy. Sci. Rep. 2017 7 1 44059 10.1038/srep44059 28281577
    [Google Scholar]
  12. Antar S.A. Ashour N.A. Marawan M.E. Al-Karmalawy A.A. Fibrosis: Types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation. Int. J. Mol. Sci. 2023 24 4 4004 10.3390/ijms24044004 36835428
    [Google Scholar]
  13. Sharma A.R. Chatterjee S. Lee Y.H. Lee S.S. Targeting crosstalk of signaling pathways among muscles-bone-adipose tissue: A promising therapeutic approach for Sarcopenia. Aging Dis. 2023 15 4 1619 1645 10.14336/AD.2023.00903 37815907
    [Google Scholar]
  14. Bowen T.S. Schuler G. Adams V. Skeletal muscle wasting in cachexia and sarcopenia: Molecular pathophysiology and impact of exercise training. J. Cachexia Sarcopenia Muscle 2015 6 3 197 207 10.1002/jcsm.12043 26401465
    [Google Scholar]
  15. Qiu C. Yang X. Yu P. Sarcopenia: Pathophysiology and treatment strategies. Endocr. Metab. Immune Disord. Drug Targets 2024 24 1 31 38 10.2174/1871530323666230518105408 37202891
    [Google Scholar]
  16. Li Y. Liu Z. Yan H. Polygonatum sibiricum polysaccharide ameliorates skeletal muscle aging and mitochondrial dysfunction via PI3K/Akt/mTOR signaling pathway. Phytomedicine 2025 136 156316 10.1016/j.phymed.2024.156316 39674120
    [Google Scholar]
  17. Grima-Terrén M. Campanario S. Ramírez-Pardo I. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol. Aspects Med. 2024 100 101319 10.1016/j.mam.2024.101319 39312874
    [Google Scholar]
  18. Sausa M. Paladino L. Scalia F. Lactobacillus fermentum LF31 supplementation reversed atrophy fibers in a model of myopathy through the modulation of IL-6, TNF-α, and Hsp60 levels enhancing muscle regeneration. Nutrients 2025 17 9 1550 10.3390/nu17091550 40362856
    [Google Scholar]
  19. Musaro A. Rosenthal N. Attenuating muscle wasting: Cell and gene therapy approaches. Curr. Genomics 2003 4 7 575 585 10.2174/1389202033490222
    [Google Scholar]
  20. Zizzo J. Muscle atrophy classification: The need for a pathway-driven approach. Curr. Pharm. Des. 2021 27 27 3012 3019 10.2174/1381612824666210316102413 33726645
    [Google Scholar]
  21. Singh A. Phogat J. Yadav A. Dabur R. The dependency of autophagy and ubiquitin proteasome system during skeletal muscle atrophy. Biophys. Rev. 2021 13 2 203 219 10.1007/s12551‑021‑00789‑7 33927785
    [Google Scholar]
  22. Webster J.M. Kempen L.J.A.P. Hardy R.S. Langen R.C.J. Inflammation and skeletal muscle wasting during cachexia. Front. Physiol. 2020 11 597675 10.3389/fphys.2020.597675 33329046
    [Google Scholar]
  23. Baechle J.J. Chen N. Makhijani P. Winer S. Furman D. Winer D.A. Chronic inflammation and the hallmarks of aging. Mol. Metab. 2023 74 101755 10.1016/j.molmet.2023.101755 37329949
    [Google Scholar]
  24. Chakraborty S Ben-David R Shemer S. Combating muscle atrophy: Emerging therapeutic targets that are fiber‐type‐specific. FEBS J 2025 febs.70241 10.1111/febs.70241 40875495
    [Google Scholar]
  25. Bensaid S. Fabre C. Yahya Rajaei A. Claeyssen C. Daussin F.N. Cieniewski-Bernard C. Multi-therapeutic strategy targeting Akt-mTOR and FoxO1 pathway to counteract skeletal muscle atrophy consecutive to hypoxia. Am. J. Physiol. Cell Physiol. 2025 328 6 C2057 C2069 10.1152/ajpcell.00851.2024 40327324
    [Google Scholar]
  26. Zhang H. Wang F. Pang X. Decreased expression of H19/miR-675 ameliorates muscle atrophy by regulating the IGF1R/Akt/FoxO signaling pathway. Mol. Med. 2023 29 1 78 10.1186/s10020‑023‑00683‑w 37344807
    [Google Scholar]
  27. Takaoka T. Yaegashi A. Watanabe D. Prevalence of and survival with cachexia among patients with cancer: A systematic review and meta-analysis. Adv. Nutr. 2024 15 9 100282 10.1016/j.advnut.2024.100282 39127425
    [Google Scholar]
  28. Mariean C.R. Tiucă O.M. Mariean A. Cotoi O.S. Cancer cachexia: New insights and future directions. Cancers (Basel) 2023 15 23 5590 10.3390/cancers15235590 38067294
    [Google Scholar]
  29. Yuan S. Larsson S.C. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism 2023 144 155533 10.1016/j.metabol.2023.155533 36907247
    [Google Scholar]
  30. Chew S.T.H. Tey S.L. Yalawar M. Prevalence and associated factors of sarcopenia in community-dwelling older adults at risk of malnutrition. BMC Geriatr. 2022 22 1 997 10.1186/s12877‑022‑03704‑1 36564733
    [Google Scholar]
  31. Henrot P. Blervaque L. Dupin I. Cellular interplay in skeletal muscle regeneration and wasting: Insights from animal models. J. Cachexia Sarcopenia Muscle 2023 14 2 745 757 10.1002/jcsm.13103 36811134
    [Google Scholar]
  32. Powers S.K. Lynch G.S. Murphy K.T. Reid M.B. Zijdewind I. Disease-induced skeletal muscle atrophy and fatigue. Med. Sci. Sports Exerc. 2016 48 11 2307 2319 10.1249/MSS.0000000000000975 27128663
    [Google Scholar]
  33. Wan J. Qin Z. Wang P. Sun Y. Liu X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017 49 10 e384 10.1038/emm.2017.194 28983090
    [Google Scholar]
  34. Leuchtmann A.B. Handschin C. Pharmacological targeting of age-related changes in skeletal muscle tissue. Pharmacol. Res. 2020 154 104191 10.1016/j.phrs.2019.02.030 30844535
    [Google Scholar]
  35. Dennison E.M. Sayer A.A. Cooper C. Epidemiology of sarcopenia and insight into possible therapeutic targets. Nat. Rev. Rheumatol. 2017 13 6 340 347 10.1038/nrrheum.2017.60 28469267
    [Google Scholar]
  36. Neshan M. Tsilimigras D.I. Han X. Zhu H. Pawlik T.M. Molecular mechanisms of cachexia: A review. Cells 2024 13 3 252 10.3390/cells13030252 38334644
    [Google Scholar]
  37. Baig M.H. Ahmad K. Moon J.S. Myostatin and its regulation: A comprehensive review of myostatin inhibiting strategies. Front. Physiol. 2022 13 876078 10.3389/fphys.2022.876078 35812316
    [Google Scholar]
  38. Rolland Y. Dray C. Vellas B. Barreto P.D.S. Current and investigational medications for the treatment of sarcopenia. Metabolism 2023 149 155597 10.1016/j.metabol.2023.155597 37348598
    [Google Scholar]
  39. Seifi S. Karimi A. Marjani A. Herbal medicine and skeletal muscle atrophy: From basic science to translational medicine. Curr. Tradit. Med. 2025 11 5 e230124225957 10.2174/0122150838268183231121075627
    [Google Scholar]
  40. Pirintsos S. Panagiotopoulos A. Bariotakis M. From traditional ethnopharmacology to modern natural drug discovery: A methodology discussion and specific examples. Molecules 2022 27 13 4060 10.3390/molecules27134060 35807306
    [Google Scholar]
  41. Mohanraj K. Karthikeyan B.S. Vivek-Ananth R.P. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep. 2018 8 1 4329 10.1038/s41598‑018‑22631‑z 29531263
    [Google Scholar]
  42. Ashraf M.A. Khatun A. Sharmin T. MPDB 1.0: A medicinal plant database of Bangladesh. Bioinformation 2014 10 6 384 386 10.6026/97320630010384 25097384
    [Google Scholar]
  43. Karati D. Varghese R. Mahadik K.R. Sharma R. Kumar D. Plant bioactives in the treatment of inflammation of skeletal muscles: A molecular perspective. Evid. Based Complement. Alternat. Med. 2022 2022 1 18 10.1155/2022/4295802 35911155
    [Google Scholar]
  44. Mohd Salleh N.S. Vanoh D. Murugaiyah V. Harith S. Wan Ishak W.R. Efficacy of herbal supplementation on muscle health among adults: A scoping review of randomized controlled trials. Malays J Med Health Sci 2025 21 1 307 323 10.47836/mjmhs.21.1.37
    [Google Scholar]
  45. Zhang L.X. Dong J. Wei H. TCMSID: A simplified integrated database for drug discovery from traditional chinese medicine. J. Cheminform. 2022 14 1 89 10.1186/s13321‑022‑00670‑z 36587232
    [Google Scholar]
  46. Hussain N. Chanda R. Abir R.A. Mou M.A. Hasan M.K. Ashraf M.A. MPDB 2.0: A large scale and integrated medicinal plant database of Bangladesh. BMC Res. Notes 2021 14 1 301 10.1186/s13104‑021‑05721‑6 34362451
    [Google Scholar]
  47. Kiewhuo K. Gogoi D. Mahanta H.J. OSADHI – An online structural and analytics based database for herbs of India. Comput. Biol. Chem. 2023 102 107799 10.1016/j.compbiolchem.2022.107799 36512929
    [Google Scholar]
  48. Wei W.L. Zeng R. Gu C.M. Qu Y. Huang L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J. Ethnopharmacol. 2016 190 116 141 10.1016/j.jep.2016.05.023 27211015
    [Google Scholar]
  49. Singh K. Maurya H. Singh P. DISPEL: Database for ascertaining the best medicinal plants to cure human diseases. Database (Oxford) 2023 2023 baad073 10.1093/database/baad073 37847815
    [Google Scholar]
  50. Lapatas V. Stefanidakis M. Jimenez R.C. Via A. Schneider M.V. Data integration in biological research: An overview. J. Biol. Res. 2015 22 1 9 10.1186/s40709‑015‑0032‑5 26336651
    [Google Scholar]
  51. Gliklich R.E. Dreyer N.A. Leavy M.B. Registries for evaluating patient outcomes: A user’s guide. Linking registry data with other data sources to support new studies. 3rd ed Rockville (MD) Agency for Healthcare Research and Quality (US) 2014
    [Google Scholar]
  52. Caliskan A. Dangwal S. Dandekar T. Metadata integrity in bioinformatics: Bridging the gap between data and knowledge. Comput. Struct. Biotechnol. J. 2023 21 4895 4913 10.1016/j.csbj.2023.10.006 37860229
    [Google Scholar]
  53. Pop M. Attwood T.K. Blake J.A. Biological databases in the age of generative artificial intelligence. Bioinform. Adv. 2024 5 1 vbaf044 10.1093/bioadv/vbaf044 40177265
    [Google Scholar]
  54. Pabla P. Jones E.J. Piasecki M. Phillips B.E. Skeletal muscle dysfunction with advancing age. Clin. Sci. 2024 138 14 863 882 10.1042/CS20231197 38994723
    [Google Scholar]
  55. Mao X. Lv K. Qi W. Research progress on sarcopenia in the musculoskeletal system. Bone Res. 2025 13 1 78 10.1038/s41413‑025‑00455‑8 40987776
    [Google Scholar]
  56. Tseng T.H. Fu S.H. Sie N.H. Lu Y.C. Wang C.Y. Wu C.H. Epidemiology of sarcopenia: A narrative review. Osteoporos. Sarcopenia 2025 11 2 11 21 (Suppl.) 10.1016/j.afos.2025.06.003 40718350
    [Google Scholar]
  57. Bagherniya M. Mahdavi A. Shokri-Mashhadi N. The beneficial therapeutic effects of plant‐derived natural products for the treatment of sarcopenia. J. Cachexia Sarcopenia Muscle 2022 13 6 2772 2790 10.1002/jcsm.13057 35961944
    [Google Scholar]
  58. Zarifi S.H. Bagherniya M. Banach M. Johnston T.P. Sahebkar A. Phytochemicals: A potential therapeutic intervention for the prevention and treatment of cachexia. Clin. Nutr. 2022 41 12 2843 2857 10.1016/j.clnu.2022.11.009 36403384
    [Google Scholar]
  59. Rajalekshmi R. Agrawal D.K. Therapeutic efficacy of medicinal plants with allopathic medicine in musculoskeletal diseases. Int J Plant Anim Environ Sci 2024 14 4 104 129 10.26502/ijpaes.4490170 39866300
    [Google Scholar]
  60. Davis A.P. Wiegers T.C. Johnson R.J. Sciaky D. Wiegers J. Mattingly C.J. Comparative toxicogenomics database (CTD): Update 2023. Nucleic Acids Res. 2023 51 D1 D1257 D1262 10.1093/nar/gkac833 36169237
    [Google Scholar]
  61. Huang Y. Chen K. Ren Q. Dihydromyricetin attenuates dexamethasone-induced muscle atrophy by improving mitochondrial function via the PGC-1α pathway. Cell. Physiol. Biochem. 2018 49 2 758 779 10.1159/000493040 30165349
    [Google Scholar]
  62. Nath R. Baishya S. Nath D. Identifying druggable targets from active constituents of Azadirachta indica A. Juss. for non‐small cell lung cancer using network pharmacology and validation through molecular docking. Phytochem. Anal. 2023 34 7 855 868 10.1002/pca.3254 37337376
    [Google Scholar]
  63. Nair D.G. Weiskirchen R. Advanced in vitro models for preclinical drug safety: Recent progress and prospects. Curr. Issues Mol. Biol. 2024 47 1 7 10.3390/cimb47010007 39852122
    [Google Scholar]
  64. van Rijt A. Stefanek E. Valente K. Preclinical testing techniques: Paving the way for new oncology screening approaches. Cancers 2023 15 18 4466 10.3390/cancers15184466 37760435
    [Google Scholar]
  65. Neves B.J. Braga R.C. Melo-Filho C.C. Moreira-Filho J.T. Muratov E.N. Andrade C.H. QSAR-based virtual screening: Advances and applications in drug discovery. Front. Pharmacol. 2018 9 1275 10.3389/fphar.2018.01275 30524275
    [Google Scholar]
  66. Zhuang Y. Sun Y.G. Wang C.G. Zhang Q. Che C. Shao F. Molecular targets and mechanisms of hedyotis diffusa willd. for esophageal adenocarcinoma treatment based on network pharmacology and weighted gene co-expression network analysis. Curr. Drug Targets 2024 25 6 431 443 10.2174/0113894501265851240102101122 38213161
    [Google Scholar]
  67. Temml V. Kutil Z. Structure-based molecular modeling in SAR analysis and lead optimization. Comput. Struct. Biotechnol. J. 2021 19 1431 1444 10.1016/j.csbj.2021.02.018 33777339
    [Google Scholar]
  68. Sharma R. Saghapour E. Chen J.Y. An NLP-based technique to extract meaningful features from drug SMILES. iScience 2024 27 3 109127 10.1016/j.isci.2024.109127 38455979
    [Google Scholar]
  69. Arús-Pous J. Patronov A. Bjerrum E.J. SMILES-based deep generative scaffold decorator for de-novo drug design. J. Cheminform. 2020 12 1 38 10.1186/s13321‑020‑00441‑8 33431013
    [Google Scholar]
  70. Xue L. Bajorath J. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb. Chem. High Throughput Screen. 2000 3 5 363 372 10.2174/1386207003331454 11032954
    [Google Scholar]
  71. Xu J. Hagler A. Chemoinformatics and drug discovery. Molecules 2002 7 8 566 600 10.3390/70800566
    [Google Scholar]
  72. Niero R. Faloni de Andrade S. Cechinel Filho V. A review of the ethnopharmacology, phytochemistry and pharmacology of plants of the Maytenus genus. Curr. Pharm. Des. 2011 17 18 1851 1871 10.2174/138161211796391029 21554223
    [Google Scholar]
  73. Atanasov A.G. Waltenberger B. Pferschy-Wenzig E.M. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015 33 8 1582 1614 10.1016/j.biotechadv.2015.08.001 26281720
    [Google Scholar]
  74. Paul J.K. Azmal M. Haque A.N.M.S.N.B. Talukder O.F. Meem M. Ghosh A. Phytochemical-mediated modulation of signaling pathways: A promising avenue for drug discovery. Adv. Redox Res. 2024 13 100113 10.1016/j.arres.2024.100113
    [Google Scholar]
  75. Nallamuthu I. Tamatam A. Khanum F. Effect of hydroalcoholic extract of Aegle marmelos fruit on radical scavenging activity and exercise-endurance capacity in mice. Pharm. Biol. 2014 52 5 551 559 10.3109/13880209.2013.850518 24707972
    [Google Scholar]
  76. Mohd Sahardi N.F.N. Jaafar F. Tan J.K. Mad Nordin M.F. Makpol S. Elucidating the pharmacological properties of Zingiber officinale Roscoe (Ginger) on muscle ageing by untargeted metabolomic profiling of human myoblasts. Nutrients 2023 15 21 4520 10.3390/nu15214520 37960173
    [Google Scholar]
  77. Hong M. Han I.H. Choi I. Magnoliae cortex alleviates muscle wasting by modulating M2 macrophages in a cisplatin-induced sarcopenia mouse model. Int. J. Mol. Sci. 2021 22 6 3188 10.3390/ijms22063188 33804803
    [Google Scholar]
  78. Lee J. Kim C. Lee H. Hwang J.K. Inhibitory effects of standardized Leonurus japonicus extract and its bioactive leonurine on TNF-α-induced muscle atrophy in L6 myotubes. J. Microbiol. Biotechnol. 2020 30 12 1896 1904 10.4014/jmb.2005.05023 32627754
    [Google Scholar]
  79. Wang X. Wu X. Meng G. Consumption of chilies and sweet peppers is associated with lower risk of sarcopenia in older adults. Aging 2021 13 6 9135 9142 10.18632/aging.104168 33770761
    [Google Scholar]
  80. Oh S. Yang J. Park C. Son K. Byun K. Dieckol attenuated glucocorticoid-induced muscle atrophy by decreasing NLRP3 inflammasome and pyroptosis. Int. J. Mol. Sci. 2021 22 15 8057 10.3390/ijms22158057 34360821
    [Google Scholar]
  81. Lu L. Wang D.T. Shi Y. Astragalus polysaccharide improves muscle atrophy from dexamethasone- and peroxide-induced injury in vitro. Int. J. Biol. Macromol. 2013 61 7 16 10.1016/j.ijbiomac.2013.06.027 23817095
    [Google Scholar]
  82. Ryall J.G. Plant D.R. Gregorevic P. Sillence M.N. Lynch G.S. β2‐Agonist administration reverses muscle wasting and improves muscle function in aged rats. J. Physiol. 2004 555 1 175 188 10.1113/jphysiol.2003.056770 14617677
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501435270251129220150
Loading
/content/journals/cdt/10.2174/0113894501435270251129220150
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test