Skip to content
2000
image of Molecular Dynamics Simulations and Current Trends in Designing New Antivirals Targeting Proteases: A Review from 2018 to 2025

Abstract

In recent years, Molecular Dynamics (MD) simulations have emerged as a cornerstone in molecular biology and antiviral drug discovery, driven by the growing demand for high-resolution insights into biomolecular behaviour. This surge in relevance stems from the need to understand complex molecular mechanisms at an atomic scale, an area where traditional experimental techniques often face limitations. MD simulations offer a powerful computational framework capable of capturing the dynamic behaviour of proteases and other biomolecules with unparalleled spatial and temporal resolution. As a result, they have become instrumental in elucidating protein inhibition mechanisms, unveiling the molecular basis of various diseases, and guiding the rational design and optimization of therapeutic agents. In this review, we synthesize recent advances in the application of MD simulations to the study of protease inhibitors, highlighting their transformative impact on drug discovery and structural biology.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501432873251208204515
2026-01-13
2026-02-16
Loading full text...

Full text loading...

References

  1. Massaro E. Kondor D. Ratti C. Assessing the interplay between human mobility and mosquito borne diseases in urban environments. Sci. Rep. 2019 9 1 16911 10.1038/s41598‑019‑53127‑z31729435
    [Google Scholar]
  2. McCall C. Wu H. Miyani B. Xagoraraki I. Identification of multiple potential viral diseases in a large urban center using wastewater surveillance. Water Res. 2020 184 116160 10.1016/j.watres.2020.11616032738707
    [Google Scholar]
  3. Tompa D.R. Immanuel A. Srikanth S. Kadhirvel S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int. J. Biol. Macromol. 2021 172 524 541 10.1016/j.ijbiomac.2021.01.07633454328
    [Google Scholar]
  4. Choy K.T. Wong A.Y.L. Kaewpreedee P. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020 178 104786 10.1016/j.antiviral.2020.10478632251767
    [Google Scholar]
  5. Ma Y. Frutos-Beltrán E. Kang D. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem. Soc. Rev. 2021 50 7 4514 4540 10.1039/D0CS01084G33595031
    [Google Scholar]
  6. Maslow J.N. The cost and challenge of vaccine development for emerging and emergent infectious diseases. Lancet Glob. Health 2018 6 12 e1266 e1267 10.1016/S2214‑109X(18)30418‑230342926
    [Google Scholar]
  7. Kaufmann S.H.E. Juliana McElrath M. Lewis D.J.M. Del Giudice G. Challenges and responses in human vaccine development. Curr. Opin. Immunol. 2014 28 18 26 10.1016/j.coi.2014.01.00924561742
    [Google Scholar]
  8. Kausar S. Said Khan F. Ishaq Mujeeb Ur Rehman M. A review: Mechanism of action of antiviral drugs. Int. J. Immunopathol. Pharmacol. 2021 35 20587384211002621 10.1177/2058738421100262133726557
    [Google Scholar]
  9. Megantara S. Rusdin A. Budiman A. Shamsuddin S. Mohtar N. Muchtaridi M. Revolutionizing antiviral therapeutics: Unveiling innovative approaches for enhanced drug efficacy. Int. J. Nanomedicine 2024 19 2889 2915 10.2147/IJN.S44772138525012
    [Google Scholar]
  10. Lehninger A.L. Nelson D.L. Cox M.M. Lehninger Principles of Biochemistry. 6th ed WH Freeman 2009
    [Google Scholar]
  11. Barrett A.J. McDonald J.K. Nomenclature: Protease, proteinase and peptidase. Biochem. J. 1986 237 3 935 10.1042/bj23709353541905
    [Google Scholar]
  12. Rawlings N.D. Salvesen G. Handbook of Proteolytic Enzymes. Academic Press 2013
    [Google Scholar]
  13. Rawlings N.D. Waller M. Barrett A.J. Bateman A. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014 42 D1 D503 D509 10.1093/nar/gkt95324157837
    [Google Scholar]
  14. Turk B. Targeting proteases: Successes, failures and future prospects. Nat. Rev. Drug Discov. 2006 5 9 785 799 10.1038/nrd209216955069
    [Google Scholar]
  15. Morazzani E.M. Compton J.R. Leary D.H. Proteolytic cleavage of host proteins by the Group IV viral proteases of Venezuelan equine encephalitis virus and Zika virus. Antiviral Res. 2019 164 106 122 10.1016/j.antiviral.2019.02.00130742841
    [Google Scholar]
  16. Voss S. Nitsche C. Targeting the protease of West Nile virus. RSC Med. Chem. 2021 12 8 1262 1272 10.1039/D1MD00080B34458734
    [Google Scholar]
  17. Heckenberg E. Steppe J.T. Coyne C.B. Enteroviruses: The role of receptors in viral pathogenesis. Advances in Virus Research. Cambridge, MA Academic Press 2022 113 10.1016/bs.aivir.2022.09.002
    [Google Scholar]
  18. V’kovski P. Gerber M. Kelly J. Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling. eLife 2019 8 e42037 10.7554/eLife.4203730632963
    [Google Scholar]
  19. Marois I. Cloutier A. Meunier I. Weingartl H.M. Cantin A.M. Richter M.V. Inhibition of influenza virus replication by targeting broad host cell pathways. PLoS One 2014 9 10 e110631 10.1371/journal.pone.011063125333287
    [Google Scholar]
  20. Keretsu S. Bhujbal S.P. Cho S.J. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci. Rep. 2020 10 1 17716 10.1038/s41598‑020‑74468‑033077821
    [Google Scholar]
  21. Meuwly M. Reactive molecular dynamics: From small molecules to proteins. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2019 9 1 e1386 10.1002/wcms.1386
    [Google Scholar]
  22. Hollingsworth S.A. Dror R.O. Molecular dynamics simulation for all. Neuron 2018 99 6 1129 1143 10.1016/j.neuron.2018.08.01130236283
    [Google Scholar]
  23. Huang C. Sun Y. Chen M. Zhang L. Liu W. A bibliometric mapping study of the literature on the quality of life of people living with HIV. AIDS Res. Ther. 2025 22 1 69 10.1186/s12981‑025‑00772‑240682052
    [Google Scholar]
  24. Kagan D. Moran-Gilad J. Fire M. Scientometric trends for coronaviruses and other emerging viral infections. Gigascience 2020 9 8 giaa085 10.1093/gigascience/giaa08532803225
    [Google Scholar]
  25. Radisky E.S. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J. Biol. Chem. 2024 300 6 107347 107348 10.1016/j.jbc.2024.10734738718867
    [Google Scholar]
  26. Barchielli G. Capperucci A. Tanini D. Therapeutic cysteine protease inhibitors: A patent review (2018-present). Expert Opin. Ther. Pat. 2024 34 1-2 17 49 10.1080/13543776.2024.232729938445468
    [Google Scholar]
  27. Kline S.N. Orlando N.A. Lee A.J. Staphylococcus aureus proteases trigger eosinophil-mediated skin inflammation. Proc. Natl. Acad. Sci. USA 2024 121 6 e2309243121 10.1073/pnas.230924312138289950
    [Google Scholar]
  28. Peach C.J. Edgington-Mitchell L.E. Bunnett N.W. Schmidt B.L. Protease-activated receptors in health and disease. Physiol. Rev. 2023 103 1 717 785 10.1152/physrev.00044.202135901239
    [Google Scholar]
  29. Renna S.A. McKenzie S.E. Michael J.V. Species differences in platelet protease-activated receptors. Int. J. Mol. Sci. 2023 24 9 8298 10.3390/ijms2409829837176005
    [Google Scholar]
  30. Adams M.N. Ramachandran R. Yau M.K. Structure, function and pathophysiology of protease activated receptors. Pharmacol. Ther. 2011 130 3 248 282 10.1016/j.pharmthera.2011.01.00321277892
    [Google Scholar]
  31. van den Boogaard F.E. Brands X. Duitman J. Protease-activated receptor 2 facilitates bacterial dissemination in pneumococcal pneumonia. J. Infect. Dis. 2018 217 9 1462 1471 10.1093/infdis/jiy010
    [Google Scholar]
  32. Prajapati J. Patel R. Rao P. Saraf M. Rawal R. Goswami D. Perceiving SARS-CoV-2 Mpro and PLpro dual inhibitors from pool of recognized antiviral compounds of endophytic microbes: An in silico simulation study. Struct. Chem. 2022 33 5 1619 1643 10.1007/s11224‑022‑01932‑035431517
    [Google Scholar]
  33. Chaube U Patel B D Bhatt H G A hypothesis on designing strategy of effective RdRp inhibitors for the treat-ment of SARS-CoV-2. 3 Biotech 2023 13 1 10.1007/s13205‑022‑03430‑w
    [Google Scholar]
  34. Lv Z. Cano K.E. Jia L. Drag M. Huang T.T. Olsen S.K. Targeting SARS-CoV-2 proteases for COVID-19 antiviral development. Front Chem. 2022 9 819165 10.3389/fchem.2021.81916535186898
    [Google Scholar]
  35. Yi D.R. An N. Liu Z.L. Human MxB inhibits the replication of hepatitis C virus. J. Virol. 2019 93 1 e01285 e18 10.1128/JVI.01285‑1830333168
    [Google Scholar]
  36. Zimmerman M.G. Bowen J.R. McDonald C.E. STAT5: A target of antagonism by neurotropic flaviviruses. J. Virol. 2019 93 23 e00665 e19 10.1128/JVI.00665‑1931534033
    [Google Scholar]
  37. Meewan I. Shiryaev S.A. Kattoula J. Allosteric inhibitors of zika virus NS2B-NS3 protease targeting protease in “super-open” conformation. Viruses 2023 15 5 1106 10.3390/v1505110637243192
    [Google Scholar]
  38. Akaberi D. Chinthakindi P.K. Båhlström A. Identification of a C2-symmetric diol based human immunodeficiency virus protease inhibitor targeting Zika virus NS2B-NS3 protease. J. Biomol. Struct. Dyn. 2020 38 18 5526 5536 10.1080/07391102.2019.170488231880199
    [Google Scholar]
  39. Skoreński M. Milewska A. Pyrć K. Sieńczyk M. Oleksyszyn J. Phosphonate inhibitors of West Nile virus NS2B/NS3 protease. J. Enzyme Inhib. Med. Chem. 2019 34 1 8 14 10.1080/14756366.2018.150677230362835
    [Google Scholar]
  40. Palanisamy N. Akaberi D. Lennerstrand J. Protein backbone flexibility pattern is evolutionarily conserved in the Flaviviridae family: A case of NS3 protease in Flavivirus and Hepacivirus. Mol. Phylogenet. Evol. 2018 118 58 63 10.1016/j.ympev.2017.09.01528951254
    [Google Scholar]
  41. Walsh D. Mohr I. Viral subversion of the host protein synthesis machinery. Nat. Rev. Microbiol. 2011 9 12 860 875 10.1038/nrmicro2655
    [Google Scholar]
  42. Dunn B.M. Goodenow M.M. Gustchina A. Wlodawer A. Retroviral proteases. Genome Biol. 2002 3 4 REVIEWS3006 10.1186/gb‑2002‑3‑4‑reviews3006
    [Google Scholar]
  43. Yao N. Reichert P. Taremi S.S. Prosise W.W. Weber P.C. Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease–helicase. Structure 1999 7 11 1353 1363 10.1016/S0969‑2126(00)80025‑810574797
    [Google Scholar]
  44. Kenward C. Vuckovic M. Paetzel M. Strynadka N.C.J. Kinetic comparison of all eleven viral polyprotein cleavage site processing events by SARS-CoV-2 main protease using a linked protein FRET platform. J. Biol. Chem. 2024 300 6 107367 10.1016/j.jbc.2024.10736738750796
    [Google Scholar]
  45. Farady C.J. Craik C.S. Mechanisms of macromolecular protease inhibitors. ChemBioChem 2010 11 17 2341 2346 10.1002/cbic.20100044221053238
    [Google Scholar]
  46. Tušar L. Usenik A. Turk B. Turk D. Mechanisms applied by protein inhibitors to inhibit cysteine proteases. Int. J. Mol. Sci. 2021 22 3 997 10.3390/ijms22030997
    [Google Scholar]
  47. Otlewski J. Jelen F. Zakrzewska M. Oleksy A. The many faces of protease–protein inhibitor interaction. EMBO J. 2005 24 7 1303 1310 10.1038/sj.emboj.760061115775973
    [Google Scholar]
  48. Voshavar C. Protease inhibitors for the treatment of HIV/AIDS: Recent advances and future challenges. Curr. Top. Med. Chem. 2019 19 18 1571 1598 10.2174/156802661966619061911524331237209
    [Google Scholar]
  49. Imamichi T. Action of anti-HIV drugs and resistance: Reverse transcriptase inhibitors and protease inhibitors. Curr. Pharm. Des. 2004 10 32 4039 4053 10.2174/138161204338244015579086
    [Google Scholar]
  50. Jin Z. Du X. Xu Y. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020 582 7811 289 293 10.1038/s41586‑020‑2223‑y32272481
    [Google Scholar]
  51. Toh H. Ono M. Saigo K. Miyata T. Retroviral protease-like sequence in the yeast transposon Ty 1. Nature 1985 315 6021 691 1 10.1038/315691a0
    [Google Scholar]
  52. Weber I.T. Wang Y.F. Harrison R.W. HIV protease: Historical perspective and current research. Viruses 2021 13 5 839 10.3390/v1305083934066370
    [Google Scholar]
  53. Diarimalala R.O. Hu M. Wei Y. Hu K. Recent advances of enterovirus 71 3Cpro targeting Inhibitors. Virol. J. 2020 17 1 173 10.1186/s12985‑020‑01430‑x33176821
    [Google Scholar]
  54. Wen W. Qi Z. Wang J. The function and mechanism of enterovirus 71 (EV71) 3C protease. Curr. Microbiol. 2020 77 9 1968 1975 10.1007/s00284‑020‑02082‑432556480
    [Google Scholar]
  55. Coelho C. Gallo G. Campos C.B. Hardy L. Würtele M. Biochemical screening for SARS-CoV-2 main protease inhibitors. PLoS One 2020 15 10 e0240079 10.1371/journal.pone.024007933022015
    [Google Scholar]
  56. Buchacz K. Armon C. Palella F.J. The HIV outpatient study - 25 years of HIV patient care and epidemiologic research. Open Forum Infect. Dis. 2020 7 5 ofaa123 10.1093/ofid/ofaa12332455145
    [Google Scholar]
  57. Salmaso V. Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol. 2018 9 AUG 923 10.3389/fphar.2018.0092330186166
    [Google Scholar]
  58. Wu X. Xu L.Y. Li E.M. Dong G. Application of molecular dynamics simulation in biomedicine. Chem. Biol. Drug Des. 2022 99 5 789 800 10.1111/cbdd.1403835293126
    [Google Scholar]
  59. Wan S. Sinclair R.C. Coveney P.V. Uncertainty quantification in classical molecular dynamics. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 2021 379 2197 20200082 10.1098/rsta.2020.008233775140
    [Google Scholar]
  60. Alder B.J. Wainwright T.E. Phase transition for a hard sphere system. J. Chem. Phys. 1957 27 5 1208 1209 10.1063/1.1743957
    [Google Scholar]
  61. Alder B.J. Wainwright T.E. Studies in molecular dynamics. I. General method. J. Chem. Phys. 1959 31 2 459 466 10.1063/1.1730376
    [Google Scholar]
  62. Bates F. Busato M. Piletska E. Computational design of molecularly imprinted polymer for direct detection of melamine in milk. Sep. Sci. Technol. 2017 52 8 1441 1453 10.1080/01496395.2017.1287197
    [Google Scholar]
  63. Prandi I.G. Ramalho T.C. França T.C.C. Esterase 2 as a fluorescent biosensor for the detection of organophosphorus compounds: Docking and electronic insights from molecular dynamics. Mol. Simul. 2019 45 17 1432 1436 10.1080/08927022.2019.1648808
    [Google Scholar]
  64. Ramalho T.C. Taft C.A. Thermal and solvent effects on the NMR and UV parameters of some bioreductive drugs. J. Chem. Phys. 2005 123 5 054319 10.1063/1.199657716108651
    [Google Scholar]
  65. Ramalho T.C. de Castro A.A. Silva D.R. Computational enzymology and organophosphorus degrading enzymes: Promising approaches toward remediation technologies of warfare agents and pesticides. Curr. Med. Chem. 2016 23 10 1041 1061 10.2174/092986732366616022211350426898655
    [Google Scholar]
  66. Zhang K. Wang Y. Zhu H. Peng Q. Advances on quasi-classical molecular dynamics of organic reaction mechanisms. Youji Huaxue 2021 41 10 3995 10.6023/cjoc202102036
    [Google Scholar]
  67. Morris C.J. Della Corte D. Using molecular docking and molecular dynamics to investigate protein-ligand interactions. Mod. Phys. Lett. B 2021 35 8 2130002 10.1142/S0217984921300027
    [Google Scholar]
  68. Morgon N.H. Coutinho K.R. Methods of Theoretical Chemistry and Molecular Modelin. São Paulo Editora Livraria da Física 2007
    [Google Scholar]
  69. Malde A.K. Zuo L. Breeze M. An Automated force field Topology Builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput. 2011 7 12 4026 4037 10.1021/ct200196m26598349
    [Google Scholar]
  70. Duan Y. Wu C. Chowdhury S. A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations. J. Comput. Chem. 2003 24 16 1999 2012 10.1002/jcc.1034914531054
    [Google Scholar]
  71. Jorgensen W.L. Maxwell D.S. Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996 118 45 11225 11236 10.1021/ja9621760
    [Google Scholar]
  72. Christen M. Hünenberger P.H. Bakowies D. The GROMOS software for biomolecular simulation: GROMOS05. J. Comput. Chem. 2005 26 16 1719 1751 10.1002/jcc.2030316211540
    [Google Scholar]
  73. MacKerell A.D. Bashford D. Bellott M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998 102 18 3586 3616 10.1021/jp973084f24889800
    [Google Scholar]
  74. Wu X. Hao P. He F. Yao Z. Zhang X. Molecular dynamics simulations of BSA absorptions on pure and formate-contaminated rutile (1 1 0) surface. Appl. Surf. Sci. 2020 533 147574 10.1016/j.apsusc.2020.147574
    [Google Scholar]
  75. Hassanali A.A. Verdolino V. Parrinello M. Aqueous solutions: State of the art in ab initio molecular dynamics. Philos Trans R Soc A Math Phys. Eng. Sci. 2014 372 2011 10.1098/rsta.2012.0482
    [Google Scholar]
  76. Adcock S.A. McCammon J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev. 2006 106 5 1589 1615 10.1021/cr040426m16683746
    [Google Scholar]
  77. Palmer N. Maasch J.R.M.A. Torres M.D.T. de la Fuente-Nunez C. Molecular dynamics for antimicrobial peptide discovery. Infect. Immun. 2021 89 4 e00703 e00720 10.1128/IAI.00703‑2033558318
    [Google Scholar]
  78. Liu W. Zhu Y. Wu Y. Molecular dynamics and machine learning in catalysts. Catal 2021 11 9 1129 10.3390/catal11091129
    [Google Scholar]
  79. Tuckerman M.E. Martyna G.J. Understanding modern molecular dynamics: Techniques and applications. J. Phys. Chem. B 2000 104 2 159 178 10.1021/jp992433y
    [Google Scholar]
  80. Snoberger A. Brettrager E.J. Smith D.M. Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing. Nat. Commun. 2018 9 1 2374 10.1038/s41467‑018‑04731‑629915197
    [Google Scholar]
  81. Eisele M.R. Reed R.G. Rudack T. Expanded coverage of the 26S proteasome conformational landscape reveals mechanisms of peptidase gating. Cell Rep. 2018 24 5 1301 1315.e5 10.1016/j.celrep.2018.07.00430067984
    [Google Scholar]
  82. Bard J A M. Goodall E.A. Greene E.R. Jonsson E. Dong K.C. Martin A. Structure and Function of the 26S Proteasome. Annu. Rev. Biochem. 2018 87 1 697 724 10.1146/annurev‑biochem‑062917‑01193129652515
    [Google Scholar]
  83. Worden E.J. Dong K.C. Martin A. An AAA motor-driven mechanical switch in Rpn11 controls deubiquitination at the 26S proteasome. Mol. Cell 2017 67 5 799 811.e8 10.1016/j.molcel.2017.07.02328844860
    [Google Scholar]
  84. Wang Y. Lupala C.S. Liu H. Lin X. Identification of drug binding sites and action mechanisms with molecular dynamics simulations. Curr. Top. Med. Chem. 2019 18 27 2268 2277 10.2174/156802661966618121210285630539700
    [Google Scholar]
  85. Sharma G. Kumar N. Sharma C.S. Identification of promising SARS-CoV-2 main protease inhibitor through molecular docking, dynamics simulation, and ADMET analysis. Sci. Rep. 2025 15 1 2830 10.1038/s41598‑025‑86016‑939843610
    [Google Scholar]
  86. Xue X. Wang X. Ye C. In silico exploration of inhibition mechanism of Lianhua Qingwen Formula (LQF) interaction on SARS-CoV-2 Mpro. Chem. Res. Chin. Univ. 2024 40 6 1298 1310 10.1007/s40242‑024‑4150‑1
    [Google Scholar]
  87. D’Souza S. Balaji S. K v P. QSAR, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective benzotriazole-based SARS-CoV 3CL protease inhibitors. J. Biomol. Struct. Dyn. 2022 40 24 14247 14261 10.1080/07391102.2021.200271834877897
    [Google Scholar]
  88. Gupta S. Singh A.K. Kushwaha P.P. Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. J. Biomol. Struct. Dyn. 2021 39 12 4334 4345 10.1080/07391102.2020.177615732476576
    [Google Scholar]
  89. Yu Y.X. Liu W.T. Li H.Y. Decoding molecular mechanism underlying binding of drugs to HIV-1 protease with molecular dynamics simulations and MM-GBSA calculations. SAR QSAR Environ. Res. 2021 32 11 889 915 10.1080/1062936X.2021.197964734551634
    [Google Scholar]
  90. Drugs@FDA: FDA-approved drugs Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=079074
  91. Horby P.W. Mafham M. Bell J.L. Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2020 396 10259 1345 1352 10.1016/S0140‑6736(20)32013‑433031764
    [Google Scholar]
  92. Nag A. Dasgupta A. Sengupta S. Lai T.K. Acharya K. An in silico pharmacophore-based molecular docking study to evaluate the inhibitory potentials of novel fungal triterpenoid Astrakurkurone analogues against a hypothetical mutated main protease of SARS-CoV-2 virus. Comput. Biol. Med. 2023 152 106433 10.1016/j.compbiomed.2022.10643336565483
    [Google Scholar]
  93. El Khoury L. Jing Z. Cuzzolin A. Computationally driven discovery of SARS-CoV-2 M pro inhibitors: From design to experimental validation. Chem. Sci. 2022 13 13 3674 3687 10.1039/D1SC05892D35432906
    [Google Scholar]
  94. Banerjee T. Akram M.B. Choudhury U. Balasubramanian G. Predicting binding strength and dissociation kinetics of HIV-1 protease inhibitors Ritonavir, XK-263, and AHA-001 by molecular simulations. J. Mol. Graph. Model. 2025 140 109110 10.1016/j.jmgm.2025.10911040517744
    [Google Scholar]
  95. Yu W. Wu X. Zhao Y. Computational Simulation of HIV Protease Inhibitors to the Main Protease (Mpro) of SARS-CoV-2: Implications for COVID-19 Drugs Design. Molecules 2021 26 23 7385 10.3390/molecules2623738534885967
    [Google Scholar]
  96. Luttens A. Gullberg H. Abdurakhmanov E. Ultralarge virtual screening identifies SARS-CoV-2 main protease inhibitors with broad-spectrum activity against coronaviruses. J. Am. Chem. Soc. 2022 144 7 2905 2920 10.1021/jacs.1c0840235142215
    [Google Scholar]
  97. Federico L.B. Silva G.M. Da Silva Hage-Melim L.I. Identification of known drugs as potential SARS-CoV-2 Mpro inhibitors using ligand- and structure-based virtual screening. Future Med. Chem. 2021 13 16 10.4155/fmc‑2021‑0025
    [Google Scholar]
  98. Rizzuti B. Grande F. Conforti F. Rutin is a low micromolar inhibitor of sars-cov-2 main protease 3clpro: Implications for drug design of quercetin analogs. Biomedicines 2021 9 4 375 10.3390/biomedicines904037533918402
    [Google Scholar]
  99. Mahmoud A. Mostafa A. Al-Karmalawy A.A. Telaprevir is a potential drug for repurposing against SARS-CoV-2: Computational and in vitro studies. Heliyon 2021 7 9 e07962 10.1016/j.heliyon.2021.e0796234518806
    [Google Scholar]
  100. Ur Rehman M.A. Chuntakaruk H. Amphan S. Design, synthesis, and biological evaluation of darunavir analogs as HIV-1 protease inhibitors. ACS Bio Med Chem Au 2024 4 5 242 256 10.1021/acsbiomedchemau.4c0004039431267
    [Google Scholar]
  101. Jayaswal A. Pathak E. Mishra H. Shah K. Evaluation of binding of potential ADMET/tox screened saquinavir analogues for inhibition of HIV-protease via molecular dynamics and binding free energy calculations. J. Biomol. Struct. Dyn. 2022 40 14 6439 6449 10.1080/07391102.2021.188549633663345
    [Google Scholar]
  102. Chaves O.A. Sacramento C.Q. Ferreira A.C. Atazanavir is a competitive inhibitor of SARS-CoV-2 Mpro, impairing variants replication in vitro and in vivo. Pharmaceuticals 2021 15 1 21 10.3390/ph1501002135056078
    [Google Scholar]
  103. Srivastava R. Gupta S.K. Naaz F. Exploring antiviral potency of N-1 substituted pyrimidines against HIV-1 and other DNA/RNA viruses: Design, synthesis, characterization, ADMET analysis, docking, molecular dynamics and biological activity. Comput. Biol. Chem. 2023 106 107910 10.1016/j.compbiolchem.2023.10791037422940
    [Google Scholar]
  104. Yoosefian M. Moghani M.Z. Juan A. In silico evaluation of atazanavir as a potential HIV main protease inhibitor and its comparison with new designed analogs. Comput. Biol. Med. 2022 145 105523 10.1016/j.compbiomed.2022.10552335585735
    [Google Scholar]
  105. Shi S. Xie L. Ma S. Computational and experimental studies of salvianolic acid A targets 3C protease to inhibit enterovirus 71 infection. Front. Pharmacol. 2023 14 1118584 10.3389/fphar.2023.111858436937869
    [Google Scholar]
  106. Xu B. Liu M. Ma S. 4-iminooxazolidin-2-one as a bioisostere of cyanohydrin suppresses EV71 proliferation by targeting 3C pro. Microbiol. Spectr. 2021 9 3 e01025 e21 10.1128/Spectrum.01025‑2134787443
    [Google Scholar]
  107. Zhai Y. Zhao X. Cui Z. Cyanohydrin as an anchoring group for potent and selective inhibitors of enterovirus 71 3C protease. J. Med. Chem. 2015 58 23 9414 9420 10.1021/acs.jmedchem.5b0101326571192
    [Google Scholar]
  108. Dai W. Jochmans D. Xie H. Design, synthesis, and biological evaluation of peptidomimetic aldehydes as broad-spectrum inhibitors against enterovirus and SARS-CoV-2. J. Med. Chem. 2022 65 4 2794 2808 10.1021/acs.jmedchem.0c0225833872498
    [Google Scholar]
  109. Liang Q. Shi S. Zhang Q. Wang Y. Ye S. Xu B. Etoposide targets 2A protease to inhibit enterovirus 71 replication. Microbiol. Spectr. 2025 13 1 e02200 e02224 10.1128/spectrum.02200‑2439555929
    [Google Scholar]
  110. Liang Q. Li J. Guo M. Virus-host interactome and proteomic survey of PMBCs from COVID-19 patients reveal potential virulence factors influencing SARS-CoV-2 pathogenesis. bioRxiv 2020 10.1101/2020.03.31.019216
    [Google Scholar]
  111. Hu B. Guo H. Zhou P. Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021 19 3 141 154 10.1038/s41579‑020‑00459‑733024307
    [Google Scholar]
  112. Zhou P. Yang X.L. Wang X.G. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020 579 7798 270 273 10.1038/s41586‑020‑2012‑732015507
    [Google Scholar]
  113. Rut W. Groborz K. Zhang L. SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nat. Chem. Biol. 2021 17 2 222 228 10.1038/s41589‑020‑00689‑z33093684
    [Google Scholar]
  114. Adelusi T.I. Oyedele A.Q.K. Monday O.E. Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro) - Molecular dynamics, molecular mechanics, and density functional theory investigations. J. Mol. Struct. 2022 1250 131879 10.1016/j.molstruc.2021.13187934785822
    [Google Scholar]
  115. Cui W. Duan Y. Gao Y. Wang W. Yang H. Structural review of SARS-CoV-2 antiviral targets. Structure 2024 32 9 1301 1321 10.1016/j.str.2024.08.00539241763
    [Google Scholar]
  116. Zhan Y. Lin Z. Liang J. Leritrelvir for the treatment of mild or moderate COVID-19 without co-administered ritonavir: A multicentre randomised, double-blind, placebo-controlled phase 3 trial. EClinicalMedicine 2024 67 102359 10.1016/j.eclinm.2023.10235938188690
    [Google Scholar]
  117. Kawashima S. Matsui Y. Adachi T. Ensitrelvir is effective against SARS-CoV-2 3CL protease mutants circulating globally. Biochem. Biophys. Res. Commun. 2023 645 132 136 10.1016/j.bbrc.2023.01.04036689809
    [Google Scholar]
  118. Zagórska A. Czopek A. Fryc M. Jończyk J. Inhibitors of SARS-CoV-2 main protease (Mpro) as anti-coronavirus agents. Biomolecules 2024 14 7 797 10.3390/biom1407079739062511
    [Google Scholar]
  119. Huff J.R. HIV protease: A novel chemotherapeutic target for AIDS. J. Med. Chem. 1991 34 8 2305 2314 10.1021/jm00112a0011875332
    [Google Scholar]
  120. Kräusslich H.G. Ingraham R.H. Skoog M.T. Wimmer E. Pallai P.V. Carter C.A. Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. Proc. Natl. Acad. Sci. USA 1989 86 3 807 811 10.1073/pnas.86.3.8072644644
    [Google Scholar]
  121. Agbowuro A.A. Huston W.M. Gamble A.B. Tyndall J.D.A. Proteases and protease inhibitors in infectious diseases. Med. Res. Rev. 2018 38 4 1295 1331 10.1002/med.2147529149530
    [Google Scholar]
  122. Zhang W. Huang Z. Huang M. Zeng J. Predicting severe enterovirus 71-infected hand, foot, and mouth disease: Cytokines and chemokines. Mediators Inflamm. 2020 2020 1 11 10.1155/2020/927324132089650
    [Google Scholar]
  123. Cox B. Levent F. Hand, foot, and mouth disease. JAMA 2018 320 23 2492 10.1001/jama.2018.1728830561482
    [Google Scholar]
  124. Zhu P. Ji W. Li D. Current status of hand-foot-and-mouth disease. J. Biomed. Sci. 2023 30 1 15 10.1186/s12929‑023‑00908‑436829162
    [Google Scholar]
  125. Esposito S. Principi N. Hand, foot and mouth disease: Current knowledge on clinical manifestations, epidemiology, aetiology and prevention. Eur. J. Clin. Microbiol. Infect. Dis. 2018 37 3 391 398 10.1007/s10096‑018‑3206‑x29411190
    [Google Scholar]
  126. Cao B. Wang Y. Wen D. A trial of lopinavir–ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med. 2020 382 19 1787 1799 10.1056/NEJMoa200128232187464
    [Google Scholar]
  127. Weber I.T. Kneller D.W. Wong-Sam A. Highly resistant HIV-1 proteases and strategies for their inhibition. Future Med. Chem. 2015 7 8 1023 1038 10.4155/fmc.15.4426062399
    [Google Scholar]
  128. Rabi S.A. Laird G.M. Durand C.M. Multi-step inhibition explains HIV-1 protease inhibitor pharmacodynamics and resistance. J. Clin. Invest. 2013 123 9 3848 3860 10.1172/JCI6739923979165
    [Google Scholar]
  129. Owen D.R. Allerton C.M. Anderson A.S. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021 374 6575 1586 1593 10.1126/science.abl4784
    [Google Scholar]
  130. Wlodawer A. Vondrasek J. Inhibitors of HIV-1 protease: A major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct. 1998 27 1 249 284 10.1146/annurev.biophys.27.1.2499646869
    [Google Scholar]
  131. Gonçalves M.A. Santos L.S. Prata D.M. Peixoto F.C. da Cunha E.F.F. Ramalho T.C. Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: Application to thermal and solvent effects of MRI probes. Theor. Chem. Acc. 2017 136 1 15 10.1007/s00214‑016‑2037‑z
    [Google Scholar]
  132. Ngo S.T. Pham M.Q. Umbrella sampling-based method to compute ligand-binding affinity. Computational Methods for Estimating the Kinetic Parameters of Biological Systems Methods in Molecular Biology. Vanhaelen Q. Canada Humana 2022 Vol. 2385 313 323 10.1007/978‑1‑0716‑1767‑0_14
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501432873251208204515
Loading
/content/journals/cdt/10.2174/0113894501432873251208204515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test