Skip to content
2000
image of Role of BMP-7 in Cardiovascular Diseases: From Molecular Mechanisms to Therapeutic Horizons

Abstract

Cardiovascular diseases (CVDs) are the most prominent leading cause of morbidity and mortality in developed and developing countries. Bone Morphogenetic Protein-7 (BMP-7), a member of the transforming growth factor-β (TGF-β) superfamily, has served as a crucial mediator in the progression of pathogenesis of numerous CVDs. A narrative literature review was conducted using PubMed, Scopus, and Web of Science databases. Studies addressing BMP-7 and cardiovascular implications were included for this review. BMP-7 is considered significant for its cardioprotective properties, providing anti-fibrotic, anti-inflammatory, and pro-regenerative effects. Additionally, BMP-7 interacts with other signaling molecules, including TGF-β/Smad2/3 signaling, PI3K/Akt pathway, PTEN-Akt pathway, and NF-kB signaling, positioning BMP-7 as a potential therapeutic target for mitigating CVDs. Current research into BMP-7 analogs and gene therapy identifies its potential in personalized medicine for CVDs. Conclusively, BMP-7 serves as a multi-targeting regulator in the pathogenesis of CVDs by influencing the progression of a spectrum of complex molecular interactions of CVDs. Therefore, the present review provides a detailed description of the mechanisms by which it interacts with other molecular targets in the pathogenesis of CVDs, aiming to generate new avenues for targeted intervention and biomarker development in cardiovascular medicine.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501421956251014101956
2025-10-30
2025-12-15
Loading full text...

Full text loading...

References

  1. Frąk W. Wojtasińska A. Lisińska W. Młynarska E. Franczyk B. Rysz J. Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines 2022 10 8 1938 10.3390/biomedicines10081938 36009488
    [Google Scholar]
  2. Gadó K. Szabo A. Markovics D. Virág A. Most common cardiovascular diseases of the elderly – A review article. Develop. Health Sci. 2022 4 2 27 32 10.1556/2066.2021.00048
    [Google Scholar]
  3. Alnamy A.M.M. Alqahtani M.A. Al Rabie A.K.A. Alayyafi Z.A.A. Alshehri B.A.A. Asiri A.M.J.A. Albarqi A.M.M. Barqi H.A.H. Al-Ameedi A.B. Alfaris I.A. Alshehri S.A. Alribi M.H.A. Cardiovascular diseases: An overview for treatment strategies and diagnostic tools. Journal of Ecohumanism 2024 3 8 13795 13809 10.62754/joe.v3i8.6491
    [Google Scholar]
  4. Al-Jawaldeh A. Abbass M.M.S. Unhealthy dietary habits and obesity: The major risk factors beyond non-communicable diseases in the eastern mediterranean region. Front. Nutr. 2022 9 817808 10.3389/fnut.2022.817808 35369054
    [Google Scholar]
  5. Donia T. Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: Mechanisms and challenges. Environ. Sci. Pollut. Res. Int. 2021 28 26 34121 34153 10.1007/s11356‑021‑14109‑9 33963999
    [Google Scholar]
  6. Song B. Bie Y. Feng H. Xie B. Liu M. Zhao F. Inflammatory factors driving atherosclerotic plaque progression new insights. J. Transl. Int. Med. 2022 10 1 36 47 10.2478/jtim‑2022‑0012 35702179
    [Google Scholar]
  7. Pisoschi A.M. Pop A. Iordache F. Stanca L. Predoi G. Serban A.I. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2021 209 112891 10.1016/j.ejmech.2020.112891 33032084
    [Google Scholar]
  8. Kulovic-Sissawo A. Tocantins C. Diniz M.S. Weiss E. Steiner A. Tokic S. Madreiter-Sokolowski C.T. Pereira S.P. Hiden U. Mitochondrial dysfunction in endothelial progenitor cells: Unraveling insights from vascular endothelial cells. Biology 2024 13 2 70 10.3390/biology13020070 38392289
    [Google Scholar]
  9. Gunawardena T. Merinopoulos I. Wickramarachchi U. Vassiliou V. Eccleshall S. Endothelial dysfunction and coronary vasoreactivity-A review of the history, physiology, diagnostic techniques, and clinical relevance. Curr. Cardiol. Rev. 2021 17 1 85 100 10.2174/1573403X16666200618161942 32552654
    [Google Scholar]
  10. Poredos P. Poredos A.V. Gregoric I. Endothelial dysfunction and its clinical implications. Angiology 2021 72 7 604 615 10.1177/0003319720987752 33504167
    [Google Scholar]
  11. Mukhametov UF Lyulin SV Borzunov DY Sufianov RA Gareev IF The risk of tumor with the use of recombinant human bone morphogenetic proteins. Genij Ortopedii 2022 28 4 592 598 10.18019/1028‑4427‑2022‑28‑4‑592‑598
    [Google Scholar]
  12. Narasimhulu C.A. Singla D.K. BMP-7 attenuates sarcopenia and adverse muscle remodeling in diabetic mice via alleviation of lipids, inflammation, HMGB1, and pyroptosis. Antioxidants 2023 12 2 331 10.3390/antiox12020331 36829889
    [Google Scholar]
  13. Da Silva J. Figueiredo A. Tseng Y.H. Carvalho E. Leal E.C. Bone morphogenetic protein 7 improves wound healing in diabetes by decreasing inflammation and promoting m2 macrophage polarization. Int. J. Mol. Sci. 2025 26 5 2036 10.3390/ijms26052036 40076659
    [Google Scholar]
  14. Ray A. BMP signaling in vascular calcification: A study on the probable pathways of inhibition. Int. J. Appl. Chem. Biol. Sci. 2021 2 1 1 12
    [Google Scholar]
  15. Ouyang C. Huang L. Ye X. Ren M. Han Z. HDAC1 promotes myocardial fibrosis in diabetic cardiomyopathy by inhibiting BMP-7 transcription through histone deacetylation. Exp. Clin. Endocrinol. Diabetes 2022 130 10 660 670 10.1055/a‑1780‑8768 35760306
    [Google Scholar]
  16. Elmadbouh I. Singla D.K. BMP-7 attenuates inflammation-induced pyroptosis and improves cardiac repair in diabetic cardiomyopathy. Cells 2021 10 10 2640 10.3390/cells10102640 34685620
    [Google Scholar]
  17. Cheers G.M. Weimer L.P. Neuerburg C. Arnholdt J. Gilbert F. Thorwächter C. Holzapfel B.M. Mayer-Wagner S. Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater. Sci. 2024 12 19 4875 4902 10.1039/D4BM00848K 39190323
    [Google Scholar]
  18. Carlson W.D. Keck P.C. Bosukonda D. Carlson F.R. Jr A process for the design and development of novel bone morphogenetic protein-7 (BMP-7) mimetics with an example: THR-184. Front. Pharmacol. 2022 13 864509 10.3389/fphar.2022.864509 35873578
    [Google Scholar]
  19. Aluganti Narasimhulu C. Singla D.K. The role of bone morphogenetic protein 7 (BMP-7) in inflammation in heart diseases. Cells 2020 9 2 280 10.3390/cells9020280 31979268
    [Google Scholar]
  20. Marquetti I. Understanding multiscale release behavior of biomolecules for tissue engineering applications. Doctoral dissertation, North Carolina Agricultural and Technical State University) 2019
    [Google Scholar]
  21. Zhao X. Han D. Zhao C. Yang F. Wang Z. Gao Y. Jin M. Tao R. New insights into the role of Klotho in inflammation and fibrosis: Molecular and cellular mechanisms. Front. Immunol. 2024 15 1454142 10.3389/fimmu.2024.1454142
    [Google Scholar]
  22. Chiu Y.S. Wu K.J. Yu S.J. Wu K.L. Hsieh C.Y. Chou Y.S. Chen K.Y. Wang Y.S. Bae E.K. Hung T.W. Lin S.H. Lin C.H. Hsu S.C. Wang Y. Chen Y.H. Transplantation of exosomes derived from human wharton’s jelly mesenchymal stromal cells enhances functional improvement in stroke rats. Cell Transplant. 2024 33 09636897241296366 10.1177/09636897241296366 39624898
    [Google Scholar]
  23. Gascon S. Jann J. Langlois-Blais C. Plourde M. Lavoie C. Faucheux N. Peptides derived from growth factors to treat alzheimer’s disease. Int. J. Mol. Sci. 2021 22 11 6071 10.3390/ijms22116071
    [Google Scholar]
  24. Sun W. Qu S. Ji M. Sun Y. Hu B. BMP-7 modified exosomes derived from synovial mesenchymal stem cells attenuate osteoarthritis by M2 polarization of macrophages. Heliyon 2023 9 9 10.1016/j.heliyon.2023.e18513
    [Google Scholar]
  25. Oštrić M. Kukuljan M. Markić D. Gršković A. Ivančić A. Bobinac D. Španjol J. Maroević J. Šoša I. Ćelić T. Expression of bone-related proteins in vascular calcification and its serum correlations with coronary artery calcification score. J. Biol. Regul. Homeost. Agents 2019 33 1 29 38 30734547
    [Google Scholar]
  26. Yang J. Wang J. Ding B. Jiang Z. Yu F. Li D. Sun W. Wang L. Xu H. Hu S. Feedback delivery of BMP 7 on the pathological oxidative stress via smart hyaluronic acid hydrogel potentiated the repairing of the gut epithelial integrity. Int. J. Biol. Macromol. 2024 282 Pt 1 136794 10.1016/j.ijbiomac.2024.136794 39447783
    [Google Scholar]
  27. Gomez-Puerto M.C. Iyengar P.V. García de Vinuesa A. Ten Dijke P. Sanchez-Duffhues G. Bone morphogenetic protein receptor signal transduction in human disease. J. Pathol. 2019 247 1 9 20 10.1002/path.5170
    [Google Scholar]
  28. Arabpour M. Saghazadeh A. Rezaei N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int. Immunopharmacol. 2021 97 107823 10.1016/j.intimp.2021.107823 34102486
    [Google Scholar]
  29. Cutolo M. Campitiello R. Gotelli E. Soldano S. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis. Front. Immunol. 2022 13 867260 10.3389/fimmu.2022.867260 35663975
    [Google Scholar]
  30. Buoncervello M. Maccari S. Ascione B. Gambardella L. Marconi M. Spada M. Macchia D. Stati T. Patrizio M. Malorni W. Matarrese P. Marano G. Gabriele L. Inflammatory cytokines associated with cancer growth induce mitochondria and cytoskeleton alterations in cardiomyocytes. J. Cell. Physiol. 2019 234 11 20453 20468 10.1002/jcp.28647 30982981
    [Google Scholar]
  31. Smoljan I. Detel D. Buljevic S. Erjavec I. Marić I. Therapeutic potential of BMP7 in the treatment of osteoporosis caused by the interaction between inflammation and corticosteroids in inflammatory bowel disease. Biomedicines 2023 11 8 2161 10.3390/biomedicines11082161 37626658
    [Google Scholar]
  32. Tate M. Perera N. Prakoso D. Willis A.M. Deo M. Oseghale O. Qian H. Donner D.G. Kiriazis H. De Blasio M.J. Gregorevic P. Ritchie R.H. Bone morphogenetic protein 7 gene delivery improves cardiac structure and function in a murine model of diabetic cardiomyopathy. Front. Pharmacol. 2021 12 719290 10.3389/fphar.2021.719290
    [Google Scholar]
  33. Hmadeh S. Role of microparticles in aortic valve thrombogenecity. Doctoral dissertation, Université de Strasbourg 2022
    [Google Scholar]
  34. Neels J.G. Leftheriotis G. Chinetti G. Atherosclerosis calcification: Focus on lipoproteins. Metabolites 2023 13 3 457 10.3390/metabo13030457 36984897
    [Google Scholar]
  35. Lan Y. Peng Q. Shen J. Liu H. Elucidating common biomarkers and pathways of osteoporosis and aortic valve calcification: Insights into new therapeutic targets. Sci. Rep. 2024 14 1 27827 10.1038/s41598‑024‑78707‑6 39537712
    [Google Scholar]
  36. Shu L. Yuan Z. Li F. Cai Z. Oxidative stress and valvular endothelial cells in aortic valve calcification. Biomed. Pharmacother. 2023 163 114775 10.1016/j.biopha.2023.114775 37116353
    [Google Scholar]
  37. Lee C.T. Kuo W.H. Tain Y.L. Wang Y. Lee W.C. Exogenous BMP7 administration attenuated vascular calcification and improved bone disorders in chronic uremic rats. Biochem. Biophys. Res. Commun. 2022 621 8 13 10.1016/j.bbrc.2022.06.101 35809346
    [Google Scholar]
  38. Ye D. Liu Y. Pan H. Feng Y. Lu X. Gan L. Wan J. Ye J. Insights into bone morphogenetic proteins in cardiovascular diseases. Front. Pharmacol. 2023 14 1125642 10.3389/fphar.2023.1125642 36909186
    [Google Scholar]
  39. Hinderer S. Schenke-Layland K. Cardiac fibrosis – A short review of causes and therapeutic strategies. Adv. Drug Deliv. Rev. 2019 146 77 82 10.1016/j.addr.2019.05.011 31158407
    [Google Scholar]
  40. Chen K. Chen W. Liu S.L. Wu T.S. Yu K.F. Qi J. Wang Y. Yao H. Huang X.Y. Han Y. Hou P. Epigallocatechingallate attenuates myocardial injury in a mouse model of heart failure through TGF-β1/Smad3 signaling pathway. Mol. Med. Rep. 2018 17 6 7652 7660 10.3892/mmr.2018.8825 29620209
    [Google Scholar]
  41. Flevaris P Vaughan D The role of plasminogen activator inhibitor type-1 in fibrosis. Semin Thromb Hemost 2017 43 2 169 177 10.1055/s‑0036‑1586228 27556351
    [Google Scholar]
  42. Saadat S. Noureddini M. Mahjoubin-Tehran M. Nazemi S. Shojaie L. Aschner M. Maleki B. Abbasi-kolli M. Rajabi Moghadam H. Alani B. Mirzaei H. Pivotal role of TGF-β/Smad signaling in cardiac fibrosis: Non-coding RNAs as effectual players. Front. Cardiovasc. Med. 2021 7 588347 10.3389/fcvm.2020.588347 33569393
    [Google Scholar]
  43. Aykaç M. Balkan E. Gedi̇ Kli S. Öztürk N. Resveratrol treatment ameliorates hepatic damage via the TGF-β/SMAD signaling pathway in a phenobarbital/CCl4-induced hepatic fibrosis model. Iran. J. Basic Med. Sci. 2024 27 9 1124 1133 39055873
    [Google Scholar]
  44. Zou M.L. Chen Z.H. Teng Y.Y. Liu S.Y. Jia Y. Zhang K.W. Sun Z.L. Wu J.J. Yuan Z.D. Feng Y. Li X. Xu R.S. Yuan F.L. The Smad dependent TGF-β and BMP signaling pathway in bone remodeling and therapies. Front. Mol. Biosci. 2021 8 593310 10.3389/fmolb.2021.593310 34026818
    [Google Scholar]
  45. Jin Y. Cheng X. Lu J. Li X. Exogenous BMP-7 facilitates the recovery of cardiac function after acute myocardial infarction through counteracting TGF-β1 signaling pathway. Tohoku J. Exp. Med. 2018 244 1 1 6 10.1620/tjem.244.1 29279455
    [Google Scholar]
  46. Chen X. Xu J. Jiang B. Liu D. Bone morphogenetic protein-7 antagonizes myocardial fibrosis induced by atrial fibrillation by restraining transforming growth factor-β (TGF-β)/Smads signaling. Med. Sci. Monit. 2016 22 3457 3468 10.12659/MSM.897560 27677228
    [Google Scholar]
  47. Xie Y. Liao J. Yu Y. Chen R. Ding X. BMP7 ameliorated viral myocardial fibrosis by inhibiting endothelial-to-mesenchymal transition. J. Pathol. 2019 247 1 9 20 10.1002/path.5170
    [Google Scholar]
  48. Gusev E. Sarapultsev A. Atherosclerosis and inflammation: Insights from the theory of general pathological processes. Int. J. Mol. Sci. 2023 24 9 7910 10.3390/ijms24097910 37175617
    [Google Scholar]
  49. Libby P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc. Res. 2021 117 13 cvab303 10.1093/cvr/cvab303 34550337
    [Google Scholar]
  50. Batty M. Bennett M.R. Yu E. The role of oxidative stress in atherosclerosis. Cells 2022 11 23 3843 10.3390/cells11233843 36497101
    [Google Scholar]
  51. Asada Y. Yamashita A. Sato Y. Hatakeyama K. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathol. Int. 2020 70 6 309 322 10.1111/pin.12921 32166823
    [Google Scholar]
  52. Yu T. Zhao L. Huang X. Ma C. Wang Y. Zhang J. Xuan D. Enhanced activity of the macrophage M1/M2 phenotypes and phenotypic switch to M1 in periodontal infection. J. Periodontol. 2016 87 9 1092 1102 10.1902/jop.2016.160081 27177291
    [Google Scholar]
  53. Poznyak A.V. Nikiforov N.G. Starodubova A.V. Popkova T.V. Orekhov A.N. Macrophages and foam cells: Brief overview of their role, linkage, and targeting potential in atherosclerosis. Biomedicines 2021 9 9 1221 10.3390/biomedicines9091221 34572406
    [Google Scholar]
  54. Nakamura K. Miyoshi T. Yoshida M. Akagi S. Saito Y. Ejiri K. Matsuo N. Ichikawa K. Iwasaki K. Naito T. Namba Y. Yoshida M. Sugiyama H. Ito H. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int. J. Mol. Sci. 2022 23 7 3587 10.3390/ijms23073587 35408946
    [Google Scholar]
  55. Chen Y. Hua Y. Li X. Arslan I.M. Zhang W. Meng G. Distinct types of cell death and the implication in diabetic cardiomyopathy. Front. Pharmacol. 2020 11 42 10.3389/fphar.2020.00042 32116717
    [Google Scholar]
  56. Dominic A. Le N.T. Takahashi M. Loop between NLRP3 inflammasome and reactive oxygen species. Antioxid. Redox Signal. 2022 36 10-12 784 796 10.1089/ars.2020.8257 34538111
    [Google Scholar]
  57. Man S.M. Karki R. Kanneganti T.D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 2017 277 1 61 75 10.1111/imr.12534 28462526
    [Google Scholar]
  58. Yang F. Qin Y. Lv J. Wang Y. Che H. Chen X. Jiang Y. Li A. Sun X. Yue E. Ren L. Li Y. Bai Y. Wang L. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis. 2018 9 10 1000 10.1038/s41419‑018‑1029‑4 30250027
    [Google Scholar]
  59. Hanna A. Frangogiannis N.G. The role of the TGF-β superfamily in myocardial infarction. Front. Cardiovasc. Med. 2019 6 140 10.3389/fcvm.2019.00140 31620450
    [Google Scholar]
  60. Wang J. Wang M. Lu X. Zhang Y. Zeng S. Pan X. Zhou Y. Wang H. Chen N. Cai F. Biskup E. IL-6 inhibitors effectively reverse post-infarction cardiac injury and ischemic myocardial remodeling via the TGF-β1/Smad3 signaling pathway. Exp. Ther. Med. 2022 24 3 576 10.3892/etm.2022.11513 35949328
    [Google Scholar]
  61. Carlson W.D. Bosukonda D. Keck P.C. Bey P. Tessier S.N. Carlson F.R. Cardiac preservation using ex-vivo organ perfusion: New therapies for the treatment of heart failure by harnessing the power of growth factors using BMP mimetics like THR-184. Front. Cardiovasc. Med. 2025 12 1535778 10.3389/fcvm.2025.1535778 40171539
    [Google Scholar]
  62. Xu Y. Qu X. Zhou J. Lv G. Han D. Liu J. Liu Y. Chen Y. Qu P. Huang X. Pilose antler peptide-3.2 KD ameliorates adriamycin-induced myocardial injury through TGF-β/SMAD signaling pathway. Front. Cardiovasc. Med. 2021 8 659643 10.3389/fcvm.2021.659643 34124197
    [Google Scholar]
  63. Kim K.K. Sheppard D. Chapman H.A. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect. Biol. 2018 10 4 a022293 10.1101/cshperspect.a022293 28432134
    [Google Scholar]
  64. Ghafouri-Fard S. Askari A. Shoorei H. Seify M. Koohestanidehaghi Y. Hussen B.M. Taheri M. Samsami M. Antioxidant therapy against TGF -β/ SMAD pathway involved in organ fibrosis. J. Cell. Mol. Med. 2024 28 2 18052 10.1111/jcmm.18052 38041559
    [Google Scholar]
  65. Guo J. Lin Q. Shao Y. Rong L. Zhang D. BMP-7 suppresses excessive scar formation by activating the BMP-7/Smad1/5/8 signaling pathway. Mol. Med. Rep. 2017 16 2 1957 1963 10.3892/mmr.2017.6779 28627680
    [Google Scholar]
  66. Bongiovanni C. Bueno-Levy H. Pena D.P. Del Bono I. Miano C. Boriati S. Da Pra S. Sacchi F. Redaelli S. Bergen M. Romaniello D. Bone morphogenetic protein 7 gene delivery improves cardiac structure and function in a murine model of diabetic cardiomyopathy. Cell Rep. 2021 43 5 101013 10.1016/j.celrep.2021.101013
    [Google Scholar]
  67. Afzal R. Investigating the metabolic role of Interleukin-10 in inflammatory macrophages. Doctoral dissertation, Royal College of Surgeons in Ireland 2022
    [Google Scholar]
  68. Vergadi E. Ieronymaki E. Lyroni K. Vaporidi K. Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J. Immunol. 2017 198 3 1006 1014 10.4049/jimmunol.1601515 28115590
    [Google Scholar]
  69. Tian T. Wang Z. Chen L. Xu W. Wu B. Photobiomodulation activates undifferentiated macrophages and promotes M1/M2 macrophage polarization via PI3K/AKT/mTOR signaling pathway. Lasers Med. Sci. 2023 38 1 86 10.1007/s10103‑023‑03753‑x 36932298
    [Google Scholar]
  70. Kalal A.A. Mohapatra S. A comprehensive review exploring the role of bone morphogenetic proteins [BMP]: Biological mechanisms. Curr. Issues Mol. Biol. 2025 47 3 156 10.3390/cimb47030156 40136410
    [Google Scholar]
  71. Zhuang C. Guo Z. Zhu J. Wang W. Sun R. Qi M. Wang Q. Fan X. Ma R. Yu J. PTEN inhibitor attenuates cardiac fibrosis by regulating the M2 macrophage phenotype via the PI3K/AKT/TGF-β/Smad 2/3 signaling pathway. Int. J. Cardiol. 2022 356 88 96 10.1016/j.ijcard.2022.04.007 35395283
    [Google Scholar]
  72. Gao S. Wang R. Dong S. Wu J. Perek B. Xia Z. Yao S. Wang T. Inactivation of TOPK caused by hyperglycemia blocks diabetic heart sensitivity to sevoflurane postconditioning by impairing the PTEN/PI3K/Akt signaling. Oxid. Med. Cell. Longev. 2021 2021 1 6657529 10.1155/2021/6657529 33986917
    [Google Scholar]
  73. Li A. Qiu M. Zhou H. Wang T. Guo W. PTEN, insulin resistance and cancer. Curr. Pharm. Des. 2017 23 25 3667 3676 28677502
    [Google Scholar]
  74. Khokhar M. Roy D. Modi A. Agarwal R. Yadav D. Purohit P. Sharma P. Perspectives on the role of PTEN in diabetic nephropathy: An update. Crit. Rev. Clin. Lab. Sci. 2020 57 7 470 483 10.1080/10408363.2020.1746735 32306805
    [Google Scholar]
  75. Haubruck P. Kammerer A. Korff S. Apitz P. Xiao K. Büchler A. Biglari B. Zimmermann G. Daniel V. Schmidmaier G. Moghaddam A. The treatment of nonunions with application of BMP-7 increases the expression pattern for angiogenic and inflammable cytokines: A matched pair analysis. J. Inflamm. Res. 2016 9 155 165 10.2147/JIR.S110621
    [Google Scholar]
  76. Papadatos S.S. Mitselou A. Lampri E. Varouktsi A. Grammeniatis V. Klaroudas A. Katsanos K. Galani V. NF-kB p65 and NF-kB p50 of the Rel Family. A Comparison between Irritable Bowel Syndrome and Inflammatory Bowel Disease Patients. Maedica (Buchar.) 2024 19 3 478 485 10.26574/maedica.2024.19.3.478 39553363
    [Google Scholar]
  77. Chrysanthakopoulos N.A. Vryzaki E. The role of cytokines, chemokines and nfkb in inflammation and cancer. J Case Rep Med Hist. 2023 3 3 1 3
    [Google Scholar]
  78. Han H. Dong P. Liu K. The role of NF-κB in myocardial ischemia/reperfusion injury. Curr. Protein Pept. Sci. 2022 23 8 535 547 10.2174/1389203723666220817085941 35980051
    [Google Scholar]
  79. Jan R. Chaudhry G.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull. 2019 9 2 205 218 10.15171/apb.2019.024 31380246
    [Google Scholar]
  80. Zhang H. Liu Y. Yan L. Du W. Zhang X. Zhang M. Chen H. Zhang Y. Zhou J. Sun H. Zhu D. Bone morphogenetic protein-7 inhibits endothelial-mesenchymal transition in pulmonary artery endothelial cell under hypoxia. J. Cell. Physiol. 2018 233 5 4077 4090 10.1002/jcp.26195 28926108
    [Google Scholar]
  81. Redaelli S. Dissecting the molecular mechanisms of Bmp signaling in zebrafish heart regeneration. Doctoral dissertation, Universität Ulm 2021
    [Google Scholar]
  82. Wang W. Hu Y.F. Pang M. Chang N. Yu C. Li Q. Xiong J.W. Peng Y. Zhang R. BMP and Notch signaling pathways differentially regulate cardiomyocyte proliferation during ventricle regeneration. Int. J. Biol. Sci. 2021 17 9 2157 2166 10.7150/ijbs.59648 34239346
    [Google Scholar]
  83. Gao H Lan K Peng F Lian X Li J Zhou L Gong H. TGFB2-AS1 binding to MED1 promotes doxorubicin-induced cardiomyocyte apoptosis via BMP7 pathway. 2024 Available from: https://www.researchgate.net/publication/382214639_TGFB2-AS1_binding_to_MED1_promotes_doxorubicin-induced_cardiomyocyte_apoptosis_via_BMP7_pathway
/content/journals/cdt/10.2174/0113894501421956251014101956
Loading
/content/journals/cdt/10.2174/0113894501421956251014101956
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test