Skip to content
2000
image of Biomarkers as Drivers of Innovation in Modern Diagnostics and Therapeutics

Abstract

Introduction

Biomarkers have revolutionized diagnostics and therapeutics by enabling early detection, prognosis, and treatment monitoring across a range of diseases, including cancer and neurodegenerative disorders. Their role in personalized medicine underscores their importance in modern healthcare.

Methods

This review consolidates findings from diverse sources, exploring the classes, mechanisms, and emerging technologies for biomarker discovery. Techniques such as next-generation sequencing, immunohistochemistry, and mass spectrometry were critically evaluated for their efficiency in biomarker validation.

Results

The study identifies various cancer biomarkers, including genetic, proteomic, and metabolomic markers, and highlights their clinical applications. It underscores significant breakthroughs in non-invasive diagnostic tools, such as exosomal proteins, miRNAs, and saliva-based markers. Challenges such as limited sample sizes, regulatory hurdles, and clinical translation bottlenecks were also discussed.

Discussion

Despite significant advancements, integrating biomarkers into clinical practice remains challenging due to issues of specificity, sensitivity, and cost-effectiveness. Emerging approaches such as immune checkpoint inhibitors, tumor mutational burden assessments, and chemokine profiling have shown potential in enhancing cancer immunotherapy outcomes.

Conclusion

Biomarkers are pivotal in advancing personalized medicine by refining diagnostic and therapeutic strategies. Addressing current limitations through innovative technologies and interdisciplinary collaboration can unlock their full potential, transforming disease management and patient care.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501419834251129045230
2026-01-02
2026-02-17
Loading full text...

Full text loading...

References

  1. Bodaghi A. Fattahi N. Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon 2023 9 2 e13323 10.1016/j.heliyon.2023.e13323 36744065
    [Google Scholar]
  2. Aronson J.K. Ferner R.E. Biomarkers-A general review. Curr. Protocols Pharmacol. 2017 76 1 9 23
    [Google Scholar]
  3. Strimbu K. Tavel J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010 5 6 463 466 10.1097/COH.0b013e32833ed177 20978388
    [Google Scholar]
  4. Roméo M. Giambérini L. Amiard-Triquet C. Amiard J. Ecological biomarkers: Indicators of ecotoxicological effects. History of biomarkers. Boca Raton CRC Press 2013
    [Google Scholar]
  5. Hora S. Pandey A.K. Jha S. Biomarker-based targeted therapeutics. Neoplasm. IntechOpen 2018 10.5772/intechopen.78377
    [Google Scholar]
  6. Mayeux R. Biomarkers: Potential uses and limitations. NeuroRx 2004 1 2 182 188 10.1602/neurorx.1.2.182 15717018
    [Google Scholar]
  7. Zeng T. Zhang W. Yu X. Liu X. Li M. Chen L. Big-data-based edge biomarkers: Study on dynamical drug sensitivity and resistance in individuals. Brief. Bioinform. 2016 17 4 576 592 10.1093/bib/bbv078 26411472
    [Google Scholar]
  8. Corella D. Ordovás J.M. Biomarkers: Background, classification and guidelines for applications in nutritional epidemiology. Nutr. Hosp. 2015 31 Suppl. 3 177 188 25719785
    [Google Scholar]
  9. Choong M.K. Tsafnat G. The implications of biomarker evidence for systematic reviews. BMC Med. Res. Methodol. 2012 12 1 176 10.1186/1471‑2288‑12‑176 23173809
    [Google Scholar]
  10. Borghini A. Gianicolo E.A. Andreassi M.G. Usefulness of biomarkers as intermediate endpoints in health risks posed by occupational lead exposure. Int. J. Occup. Med. Environ. Health 2015 29 2 167 178 10.13075/ijomeh.1896.00417 26670349
    [Google Scholar]
  11. Harris K.M. Schorpp K.M. Integrating biomarkers in social stratification and health research. Annu. Rev. Sociol. 2018 44 1 361 386 10.1146/annurev‑soc‑060116‑053339 30918418
    [Google Scholar]
  12. Henry N.L. Hayes D.F. Cancer biomarkers. Mol. Oncol. 2012 6 2 140 146 10.1016/j.molonc.2012.01.010 22356776
    [Google Scholar]
  13. Bhatt A.N. Mathur R. Farooque A. Verma A. Dwarakanath B.S. Cancer biomarkers - Current perspectives. Indian J. Med. Res. 2010 132 2 129 149 20716813
    [Google Scholar]
  14. Mareel M. Leroy A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol. Rev. 2003 83 2 337 376 10.1152/physrev.00024.2002 12663862
    [Google Scholar]
  15. Smith J.B. O’Neill R.T. Alpha-fetoprotein. Occurrence in germinal cell and liver malignancies. Am. J. Med. 1971 51 6 767 771 10.1016/0002‑9343(71)90304‑4 4108552
    [Google Scholar]
  16. Gridelli C. Peters S. Sgambato A. Casaluce F. Adjei A.A. Ciardiello F. ALK inhibitors in the treatment of advanced NSCLC. Cancer Treat. Rev. 2014 40 2 300 306 10.1016/j.ctrv.2013.07.002 23931927
    [Google Scholar]
  17. Tian Y. Li J. Liu B. Xie H. Zheng M. Yao W. ALK-positive histiocytosis with disseminated disease responded to alectinib: A case report. Ann. Palliat. Med. 2021 10 9 10095 10101 10.21037/apm‑21‑2117 34628929
    [Google Scholar]
  18. Raponi S. Stefania De Propris M. Intoppa S. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: Analysis of 552 cases. Leuk. Lymphoma 2011 52 6 1098 1107 10.3109/10428194.2011.559668 21348573
    [Google Scholar]
  19. Tarighati E. Keivan H. Mahani H. A review of prognostic and predictive biomarkers in breast cancer. Clin. Exp. Med. 2023 23 1 1 16 35031885
    [Google Scholar]
  20. Sturm N. Ettrich T.J. Perkhofer L. The impact of biomarkers in pancreatic ductal adenocarcinoma on diagnosis, surveillance and therapy. Cancers 2022 14 1 217 10.3390/cancers14010217 35008381
    [Google Scholar]
  21. Nowak M. Janas Ł. Stachowiak G. Stetkiewicz T. Wilczyński J.R. Current clinical application of serum biomarkers to detect ovarian cancer. Przegl. Menopauz. 2015 14 4 254 259 10.5114/pm.2015.55887 26848298
    [Google Scholar]
  22. Bae Y.J. Schaab M. Kratzsch J. Calcitonin as biomarker for the medullary thyroid carcinoma. Recent Results Cancer Res. 2015 204 117 137 10.1007/978‑3‑319‑22542‑5_5 26494386
    [Google Scholar]
  23. Tomassetti P. Migliori M. Simoni P. Diagnostic value of plasma chromogranin A in neuroendocrine tumours. Eur. J. Gastroenterol. Hepatol. 2001 13 1 55 58 10.1097/00042737‑200101000‑00010 11204811
    [Google Scholar]
  24. El Makarem M.A. An overview of biomarkers for the diagnosis of hepatocellular carcinoma. Hepat Mon 2012. Hepat. Mon. 2012 12 10 6122 10.5812/hepatmon.6122 23162601
    [Google Scholar]
  25. Stein M.K. Oluoha O. Patel K. VanderWalde A. Precision medicine in oncology: A review of multi-tumor actionable molecular targets with an emphasis on non-small cell lung cancer. J. Pers. Med. 2021 11 6 518 10.3390/jpm11060518 34198738
    [Google Scholar]
  26. Tomiyama E. Fujita K. Hashimoto M. Uemura H. Nonomura N. Urinary markers for bladder cancer diagnosis: A review of current status and future challenges. Int. J. Urol. 2024 31 3 208 219 10.1111/iju.15338 37968825
    [Google Scholar]
  27. Burkitt M.D. Varro A. Pritchard D.M. Importance of gastrin in the pathogenesis and treatment of gastric tumors. World J. Gastroenterol. 2009 15 1 1 16 10.3748/wjg.15.1 19115463
    [Google Scholar]
  28. Stephan C. Ralla B. Jung K. Prostate-specific antigen and other serum and urine markers in prostate cancer. Biochim. Biophys. Acta 2014 1846 1 99 112 24727384
    [Google Scholar]
  29. Black E.G. Gimlette T.M.D. Maisey M.N. Serum thyroglobulin in thyroid cancer. Lancet 1981 318 8244 443 445 10.1016/S0140‑6736(81)90776‑5 6115202
    [Google Scholar]
  30. Marino S. Puglisi F. Magro G. Neuroblastoma: Diagnostic and clinical aspects. J. Pediatr. Biochem. 2016 5 4 131 138 10.1055/s‑0036‑1572525
    [Google Scholar]
  31. Ogunwobi O.O. Mahmood F. Akingboye A. Biomarkers in colorectal cancer: Current research and future prospects. Int. J. Mol. Sci. 2020 21 15 5311 10.3390/ijms21155311 32726923
    [Google Scholar]
  32. Mathew M. Zade M. Mezghani N. Patel R. Wang Y. Momen-Heravi F. Extracellular vesicles as biomarkers in cancer immunotherapy. Cancers 2020 12 10 2825 10.3390/cancers12102825 33007968
    [Google Scholar]
  33. Katsuda T. Kosaka N. Ochiya T. The roles of extracellular vesicles in cancer biology: Toward the development of novel cancer biomarkers. Proteomics 2014 14 4-5 412 425 10.1002/pmic.201300389 24339442
    [Google Scholar]
  34. Li W. Li C. Zhou T. Role of exosomal proteins in cancer diagnosis. Mol. Cancer 2017 16 1 145 10.1186/s12943‑017‑0706‑8 28851367
    [Google Scholar]
  35. Mathivanan S. Ji H. Simpson R.J. Exosomes: Extracellular organelles important in intercellular communication. J. Proteomics 2010 73 10 1907 1920 10.1016/j.jprot.2010.06.006 20601276
    [Google Scholar]
  36. Li A. Zhang T. Zheng M. Liu Y. Chen Z. Exosomal proteins as potential markers of tumor diagnosis. J. Hematol. Oncol. 2017 10 1 175 10.1186/s13045‑017‑0542‑8 29282096
    [Google Scholar]
  37. Théry C. Zitvogel L. Amigorena S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002 2 8 569 579 10.1038/nri855 12154376
    [Google Scholar]
  38. Lin J. Li J. Huang B. Exosomes: Novel biomarkers for clinical diagnosis. Sci. World J 2015 2015 657086 10.1155/2015/657086 25695100
    [Google Scholar]
  39. Properzi F. Logozzi M. Fais S. Exosomes: The future of biomarkers in medicine. Biomarkers Med. 2013 7 5 769 778 10.2217/bmm.13.63 24044569
    [Google Scholar]
  40. Valadi H. Ekström K. Bossios A. Sjöstrand M. Lee J.J. Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007 9 6 654 659 10.1038/ncb1596 17486113
    [Google Scholar]
  41. Thind A. Wilson C. Exosomal miRNAs as cancer biomarkers and therapeutic targets. J. Extracell. Vesicles 2016 5 1 31292 10.3402/jev.v5.31292 27440105
    [Google Scholar]
  42. Schwarzenbach H. The clinical relevance of circulating, exosomal miRNAs as biomarkers for cancer. Expert Rev. Mol. Diagn. 2015 15 9 1159 1169 10.1586/14737159.2015.1069183 26202667
    [Google Scholar]
  43. Salter H. Holland R. Biomarkers: Refining diagnosis and expediting drug development–reality, aspiration and the role of open innovation. J. Intern. Med. 2014 276 3 215 228
    [Google Scholar]
  44. Porzycki P. Ciszkowicz E. Semik M. Tyrka M. Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition. Int. Urol. Nephrol. 2018 50 9 1619 1626 10.1007/s11255‑018‑1938‑2 30014459
    [Google Scholar]
  45. Hu C. Meiners S. Lukas C. Stathopoulos G.T. Chen J. Role of exosomal microRNAs in lung cancer biology and clinical applications. Cell Prolif. 2020 53 6 e12828 10.1111/cpr.12828 32391938
    [Google Scholar]
  46. Liu J. Sun H. Wang X. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int. J. Mol. Sci. 2014 15 1 758 773 10.3390/ijms15010758 24406730
    [Google Scholar]
  47. Mathe A. Scott R. Avery-Kiejda K. MiRNAs and other epigenetic changes as biomarkers in triple negative breast cancer. Int. J. Mol. Sci. 2015 16 12 28347 28376 10.3390/ijms161226090 26633365
    [Google Scholar]
  48. Jafri M.A. Zaidi S.K. Ansari S.A. Al-Qahtani M.H. Shay J.W. MicroRNAs as potential drug targets for therapeutic intervention in colorectal cancer. Expert Opin. Ther. Targets 2015 19 12 1705 1723 10.1517/14728222.2015.1069816 26189482
    [Google Scholar]
  49. Manterola L. Guruceaga E. Pérez-Larraya J.G. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-oncol. 2014 16 4 520 527 10.1093/neuonc/not218 24435880
    [Google Scholar]
  50. Kappelmann M. Kuphal S. Meister G. Vardimon L. Bosserhoff A-K. MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene 2013 32 24 2984 2991 10.1038/onc.2012.307 22797068
    [Google Scholar]
  51. Ye H. Wang H. Wang P. Systematic review: Exosomal microRNAs associated with pancreatic cancer for early detection and prognosis. Eur. Rev. Med. Pharmacol. Sci. 2019 23 21 9351 9361 31773694
    [Google Scholar]
  52. Yu X. Wu Y. Liu Y. miR-21, miR-106b and miR-375 as novel potential biomarkers for laryngeal squamous cell carcinoma. Curr. Pharm. Biotechnol. 2014 15 5 503 508 10.2174/1389201015666140519110616 24846066
    [Google Scholar]
  53. Wen S.W. Zhang Y.F. Li Y. Characterization and effects of miR-21 expression in esophageal cancer. Genet. Mol. Res. 2015 14 3 8810 8818 10.4238/2015.August.3.4 26345812
    [Google Scholar]
  54. Sartorius K. Sartorius B. Winkler C. Chuturgoon A. Makarova J. The biological and diagnostic role of miRNA rsquo s in hepatocellular carcinoma. Front. Biosci. 2018 23 9 1701 1720 10.2741/4668 29293458
    [Google Scholar]
  55. Salehi M. Sharifi M. Exosomal miRNAs as novel cancer biomarkers: Challenges and opportunities. J. Cell. Physiol. 2018 233 9 6370 6380 10.1002/jcp.26481 29323722
    [Google Scholar]
  56. Boldin M.P. Taganov K.D. Rao D.S. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 2011 208 6 1189 1201 10.1084/jem.20101823 21555486
    [Google Scholar]
  57. Propper D.J. Balkwill F.R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 2022 19 4 237 253 10.1038/s41571‑021‑00588‑9 34997230
    [Google Scholar]
  58. Kartikasari A.E.R. Huertas C.S. Mitchell A. Plebanski M. Tumor-induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front. Oncol. 2021 11 692142 10.3389/fonc.2021.692142 34307156
    [Google Scholar]
  59. Galdiero M.R. Marone G. Mantovani A. Cancer inflammation and cytokines. Cold Spring Harb. Perspect. Biol. 2018 10 8 a028662 10.1101/cshperspect.a028662 28778871
    [Google Scholar]
  60. Turner M.D. Nedjai B. Hurst T. Pennington D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta Mol. Cell Res. 2014 1843 11 2563 2582 10.1016/j.bbamcr.2014.05.014 24892271
    [Google Scholar]
  61. Johnson R.W. Inhibition of growth by pro-inflammatory cytokines: An integrated view. J. Anim. Sci. 1997 75 5 1244 1255 10.2527/1997.7551244x 9159271
    [Google Scholar]
  62. Opal S.M. DePalo V.A. Anti-inflammatory cytokines. Chest 2000 117 4 1162 1172 10.1378/chest.117.4.1162 10767254
    [Google Scholar]
  63. Singh R.K. Lokeshwar B.L. The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth. Cancer Res. 2011 71 9 3268 3277 10.1158/0008‑5472.CAN‑10‑2769 21398406
    [Google Scholar]
  64. Nisar S. Bhat A.A. Hashem S. Non-invasive biomarkers for monitoring the immunotherapeutic response to cancer. J. Transl. Med. 2020 18 1 471 10.1186/s12967‑020‑02656‑7 33298096
    [Google Scholar]
  65. Eftekhari A. Hasanzadeh M. Sharifi S. Dizaj S.M. Khalilov R. Ahmadian E. Bioassay of saliva proteins: The best alternative for conventional methods in non-invasive diagnosis of cancer. Int. J. Biol. Macromol. 2019 124 1246 1255 10.1016/j.ijbiomac.2018.11.277 30513307
    [Google Scholar]
  66. García-Baquero R. Puerta P. Beltran M. Methylation of a novel panel of tumor suppressor genes in urine moves forward noninvasive diagnosis and prognosis of bladder cancer: A 2-center prospective study. J. Urol. 2013 190 2 723 730 10.1016/j.juro.2013.01.105 23485510
    [Google Scholar]
  67. Kulasingam V. Diamandis E.P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol. 2008 5 10 588 599 10.1038/ncponc1187 18695711
    [Google Scholar]
  68. Sarhadi V.K. Armengol G. Molecular biomarkers in cancer. Biomolecules 2022 12 8 1021 10.3390/biom12081021 35892331
    [Google Scholar]
  69. Ludwig J.A. Weinstein J.N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 2005 5 11 845 856 10.1038/nrc1739 16239904
    [Google Scholar]
  70. Adamaki M. Zoumpourlis V. Prostate cancer biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol. Ther. 2021 228 107932 10.1016/j.pharmthera.2021.107932 34174272
    [Google Scholar]
  71. Weigel M.T. Dowsett M. Current and emerging biomarkers in breast cancer: Prognosis and prediction. Endocr. Relat. Cancer 2010 17 4 R245 R262 10.1677/ERC‑10‑0136 20647302
    [Google Scholar]
  72. Hu L. Ru K. Zhang L. Fluorescence in situ hybridization (FISH): An increasingly demanded tool for biomarker research and personalized medicine. Biomark. Res. 2014 2 1 3 10.1186/2050‑7771‑2‑3 24499728
    [Google Scholar]
  73. Bailey A.M. Mao Y. Zeng J. Implementation of biomarker-driven cancer therapy: Existing tools and remaining gaps. Discov. Med. 2014 17 92 101 114 24534473
    [Google Scholar]
  74. Weier H.U.G. Greulich-Bode K.M. Ito Y. Lersch R.A. Fung J. FISH in cancer diagnosis and prognostication: From cause to course of disease. Expert Rev. Mol. Diagn. 2002 2 2 109 119 10.1586/14737159.2.2.109 11962331
    [Google Scholar]
  75. Fox J.L. Hsu P.H. Legator M.S. Morrison L.E. Seelig S.A. Fluorescence in situ hybridization: Powerful molecular tool for cancer prognosis. Clin. Chem. 1995 41 11 1554 1559 10.1093/clinchem/41.11.1554 7586542
    [Google Scholar]
  76. Serratì S. De Summa S. Pilato B. Next-generation sequencing: Advances and applications in cancer diagnosis. OncoTargets Ther. 2016 9 7355 7365 10.2147/OTT.S99807 27980425
    [Google Scholar]
  77. Sabour L. Sabour M. Ghorbian S. Clinical applications of next-generation sequencing in cancer diagnosis. Pathol. Oncol. Res. 2017 23 2 225 234 10.1007/s12253‑016‑0124‑z 27722982
    [Google Scholar]
  78. Meldrum C. Doyle M.A. Tothill R.W. Next-generation sequencing for cancer diagnostics: A practical perspective. Clin. Biochem. Rev. 2011 32 4 177 195 22147957
    [Google Scholar]
  79. De Matos L.L. Trufelli D.C. De Matos M.G. da Silva Pinhal M.A. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark. Insights 2010 5 9 20 10.4137/bmi.s2185 20212918
    [Google Scholar]
  80. Bhargava K. Bhargava D. Paul M. Hazarey V.K. Immunohistochemistry: An overview. J Oral Health Res 2011 2 1
    [Google Scholar]
  81. Han X. Wang J. Sun Y. Circulating tumor DNA as biomarkers for cancer detection. Genomics Proteomics Bioinformatics 2017 15 2 59 72 10.1016/j.gpb.2016.12.004 28392479
    [Google Scholar]
  82. Schwarzenbach H. Hoon D.S.B. Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 2011 11 6 426 437 10.1038/nrc3066 21562580
    [Google Scholar]
  83. Li N. Hou X. Huang S. Biomarkers related to immune checkpoint inhibitors therapy. Biomed. Pharmacother. 2022 147 112470 10.1016/j.biopha.2021.112470 35074251
    [Google Scholar]
  84. Weide B. Martens A. Hassel J.C. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin. Cancer Res. 2016 22 22 5487 5496 10.1158/1078‑0432.CCR‑16‑0127 27185375
    [Google Scholar]
  85. Nishikawa D. Suzuki H. Beppu S. Eosinophil prognostic scores for patients with head and neck squamous cell carcinoma treated with nivolumab. Cancer Sci. 2021 112 1 339 346 10.1111/cas.14706 33078505
    [Google Scholar]
  86. Lim S.Y. Lee J.H. Gide T.N. Circulating cytokines predict immune-related toxicity in melanoma patients receiving anti-PD-1–based immunotherapy. Clin. Cancer Res. 2019 25 5 1557 1563 10.1158/1078‑0432.CCR‑18‑2795 30409824
    [Google Scholar]
  87. Presti D. Dall’Olio F.G. Besse B. Ribeiro J.M. Di Meglio A. Soldato D. Tumor infiltrating lymphocytes (TILs) as a predictive biomarker of response to checkpoint blockers in solid tumors: A systematic review. Crit. Rev. Oncol. Hematol. 2022 177 103773 10.1016/j.critrevonc.2022.103773 35917885
    [Google Scholar]
  88. Sahu A. Rathee S. Saraf S. Jain S.K. A review on the recent advancements and artificial intelligence in tablet technology. Curr. Drug Targets 2024 25 6 416 430 10.2174/0113894501281290231221053939 38213164
    [Google Scholar]
  89. House I.G. Savas P. Lai J. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin. Cancer Res. 2020 26 2 487 504 10.1158/1078‑0432.CCR‑19‑1868 31636098
    [Google Scholar]
  90. Yoo J. Groer M. Dutra S. Sarkar A. McSkimming D. Gut microbiota and immune system interactions. Microorganisms 2020 8 10 1587 10.3390/microorganisms8101587 33076307
    [Google Scholar]
  91. Manikishore M. Maurya S.K. Rathee S. Patil U.K. Genome editing approaches using Zinc Finger Nucleases (ZFNs) for the treatment of motor neuron diseases. Curr. Pharm. Biotechnol. 2025 26 10 1514 1531 10.2174/0113892010307288240526071810 38847163
    [Google Scholar]
  92. Rathee S. Sen D. Pandey V. Jain S.K. Advances in understanding and managing Alzheimer’s disease: From pathophysiology to innovative therapeutic strategies. Curr. Drug Targets 2024 25 11 752 774 10.2174/0113894501320096240627071400 39039673
    [Google Scholar]
  93. Tomiyama T. Itoh S. Iseda N. Myeloid derived suppressor cell infiltration is associated with a poor prognosis in patients with hepatocellular carcinoma. Oncol. Lett. 2022 23 3 93 10.3892/ol.2022.13213 35154424
    [Google Scholar]
  94. Heppt M.V. Heinzerling L. Kähler K.C. Prognostic factors and outcomes in metastatic uveal melanoma treated with programmed cell death-1 or combined PD-1/cytotoxic T-lymphocyte antigen-4 inhibition. Eur. J. Cancer 2017 82 56 65 10.1016/j.ejca.2017.05.038 28648699
    [Google Scholar]
  95. Fujimura T. Sato Y. Tanita K. Serum levels of soluble CD163 and CXCL5 may be predictive markers for immune-related adverse events in patients with advanced melanoma treated with nivolumab: A pilot study. Oncotarget 2018 9 21 15542 15551 10.18632/oncotarget.24509 29643991
    [Google Scholar]
  96. Geng Y. Shao Y. He W. Prognostic role of tumor-infiltrating lymphocytes in lung cancer: A meta-analysis. Cell. Physiol. Biochem. 2015 37 4 1560 1571 10.1159/000438523 26513143
    [Google Scholar]
  97. Sen D. Rathee S. Pandey V. Jain S.K. Exploring saffron’s therapeutic potential: Insights on phytochemistry, bioactivity, and clinical implications. Curr. Pharm. Des. 2024 Oct 31 10.2174/0113816128337941240928181943
    [Google Scholar]
  98. Yadav D.K. Rathee S. Sharma V. Patil U.K. A comprehensive review on insect repellent agents: Medicinal plants and synthetic compounds. Antiinflamm. Antiallergy Agents Med. Chem. 2024 24 2 84 102 10.2174/0118715230322355240903072704 39415571
    [Google Scholar]
  99. Pan Y. Si H. Deng G. A Composite biomarker of derived neutrophil–lymphocyte ratio and platelet–lymphocyte ratio correlates with outcomes in advanced gastric cancer patients treated with anti-PD-1 antibodies. Front. Oncol. 2022 11 798415 10.3389/fonc.2021.798415 35251952
    [Google Scholar]
  100. Sahu A. Rathee S. Jain S.K. Patil U.K. Exploring the promising role of guggulipid in rheumatoid arthritis management: An in-depth analysis. Curr. Rheumatol. Rev. 2024 20 5 469 487 10.2174/0115733971280984240101115203 38284718
    [Google Scholar]
  101. Sha D. Jin Z. Budczies J. Kluck K. Stenzinger A. Sinicrope F.A. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 2020 10 12 1808 1825 10.1158/2159‑8290.CD‑20‑0522 33139244
    [Google Scholar]
  102. Klempner S.J. Fabrizio D. Bane S. Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: A review of current evidence. Oncologist 2020 25 1 e147 e159 10.1634/theoncologist.2019‑0244 31578273
    [Google Scholar]
  103. Yamamoto H. Watanabe Y. Maehata T. Imai K. Itoh F. Microsatellite instability in cancer: A novel landscape for diagnostic and therapeutic approach. Arch. Toxicol. 2020 94 10 3349 3357 10.1007/s00204‑020‑02833‑z 32632538
    [Google Scholar]
  104. Wu M. Huang Q. Xie Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J. Hematol. Oncol. 2022 15 1 24 10.1186/s13045‑022‑01242‑2 35279217
    [Google Scholar]
  105. Sen D. Rathee S. Pandey V. Jain S.K. Patil U.K. Comprehensive insights into pathophysiology of Alzheimer’s disease: Herbal approaches for mitigating neurodegeneration. Curr. Alzheimer Res. 2025 21 9 625 648 10.2174/0115672050309057240404075003 38623983
    [Google Scholar]
  106. Rathee S. Patil U.K. Jain S.K. Exploring the potential of dietary phytochemicals in cancer prevention: A comprehensive review. J Explor Res Pharmacol 2024 9 1 51 64 10.14218/JERP.2023.00050
    [Google Scholar]
  107. Zhu J. Zhang T. Li J. Association between tumor mutation burden (TMB) and outcomes of cancer patients treated with PD-1/PD-L1 inhibitions: A meta-analysis. Front. Pharmacol. 2019 10 673 10.3389/fphar.2019.00673 31258479
    [Google Scholar]
  108. Proulx-Rocray F. Routy B. Nassabein R. The prognostic impact of KRAS, TP53, STK11 and KEAP1 mutations and their influence on the NLR in NSCLC patients treated with immunotherapy. Cancer Treat. Res. Commun. 2023 37 100767 10.1016/j.ctarc.2023.100767 37832364
    [Google Scholar]
  109. Singhai H. Rathee S. Jain S.K. Patil U.K. The potential of natural products in the management of cardiovascular disease. Curr. Pharm. Des. 2024 30 8 624 638 10.2174/0113816128295053240207090928 38477208
    [Google Scholar]
  110. Manson G. Norwood J. Marabelle A. Kohrt H. Houot R. Biomarkers associated with checkpoint inhibitors. Ann. Oncol. 2016 27 7 1199 1206 10.1093/annonc/mdw181 27122549
    [Google Scholar]
  111. Basudan A.M. The role of immune checkpoint inhibitors in cancer therapy. Clin. Pract. 2022 13 1 22 40 10.3390/clinpract13010003 36648843
    [Google Scholar]
  112. Darvin P. Toor S.M. Sasidharan Nair V. Elkord E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp. Mol. Med. 2018 50 12 1 11 10.1038/s12276‑018‑0191‑1 30546008
    [Google Scholar]
  113. Xiao Q. Nobre A. Piñeiro P. Genetic and epigenetic biomarkers of immune checkpoint blockade response. J. Clin. Med. 2020 9 1 286 10.3390/jcm9010286 31968651
    [Google Scholar]
  114. Shiravand Y. Khodadadi F. Kashani S.M.A. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 2022 29 5 3044 3060 10.3390/curroncol29050247 35621637
    [Google Scholar]
  115. Mullard A. Second CTLA4-targeted checkpoint inhibitor secures FDA approval. Nat. Rev. Drug Discov. 2022 21 12 868 10.1038/d41573‑022‑00185‑0 36323856
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501419834251129045230
Loading
/content/journals/cdt/10.2174/0113894501419834251129045230
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test