Skip to content
2000
image of Possible Thrombus-clearing Mechanism and Modification Suggestion of β-sitosterol

Abstract

Introduction

Thrombin (THR) is a key therapeutic target for anticoagulant therapy, yet the mechanism of β-sitosterol, a natural compound with antithrombotic potential, remains unclear.

Methods

This study integrated AI-driven structural alignment, molecular docking, Molecular Dynamics (MD) simulations, binding free energy calculation, and Density Functional Theory (DFT) calculations to elucidate the recognition mechanism between THR and β-sitosterol.

Results

Simulations revealed that β-sitosterol binding is stabilized primarily by hydrophobic and van der Waals interactions, leading to the closure of the active site and conformational changes in the EF_loop (., γ-loop). The large conformational changes within EF_Loop may be dominated by weak interactions between W168/ P184/ Q183/ S185 and the ligand β-sitosterol. Based on these insights, a series of novel sterol derivatives was designed with improved binding affinity and predicted antithrombotic activity, as indicated by the lowest binding free energy.

Discussion

This study not only reveals molecular recognition and inhibitory mechanism of β-sitosterol at the atomic level, but also provides suggestions for structural optimization of novel inhibitors against human thrombin. Future work should include binding assays and functional studies to confirm the inhibitory activity.

Conclusion

The conformational change of EF_loop with the recognition of β-sitosterol effectively occludes the catalytic site, thereby impairing thrombin’s proteolytic activity. Among 13 designed sterol derivatives, the compound d3 was identified as a promising inhibitor with excellent ADMET properties. This work provides an anticoagulant mechanism for the dynamic identification of β-sitosterol and supports the rational design of allosteric THR inhibitors.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501418618251202082813
2026-01-07
2026-02-21
Loading full text...

Full text loading...

References

  1. Cheng S. Wang Y. Chen H. Anticoagulant dodecapeptide suppresses thrombosis in vivo by inhibiting the thrombin exosite-I binding site. J. Agric. Food Chem. 2021 69 37 10920 10931 10.1021/acs.jafc.1c03414 34491753
    [Google Scholar]
  2. Huang S. Ren Y. Peng X. Qian P. Meng L. Computer-aid drug design, synthesis, and anticoagulant activity evaluation of novel dabigatran derivatives as thrombin inhibitors. Eur. J. Pharm. Sci. 2019 137 104965 10.1016/j.ejps.2019.104965 31247296
    [Google Scholar]
  3. Alkarithi G. Duval C. Shi Y. Macrae F.L. Ariëns R.A.S. Thrombus structural composition in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2021 41 9 2370 2383 10.1161/ATVBAHA.120.315754 34261330
    [Google Scholar]
  4. Zhou S. Zhao W. Hu J. Mao C. Zhou M. Application of nanotechnology in thrombus therapy. Adv. Healthc. Mater. 2023 12 7 2202578 10.1002/adhm.202202578 36507827
    [Google Scholar]
  5. Leary M.C. Saver J.L. Gobin Y.P. Beyond tissue plasminogen activator: Mechanical intervention in acute stroke. Ann. Emerg. Med. 2003 41 6 838 846 10.1067/mem.2003.194 12764340
    [Google Scholar]
  6. Hsu C. Brahmandam A. Brownson K.E. Statin therapy associated with improved thrombus resolution in patients with deep vein thrombosis. J. Vasc. Surg. Venous Lymphat. Disord. 2019 7 2 169 175.e4 10.1016/j.jvsv.2018.10.020
    [Google Scholar]
  7. Lip G. Peter K. Ahrens I. New oral anticoagulant drugs in cardiovascular disease. Thromb. Haemost. 2010 104 7 49 60 10.1160/TH09‑05‑0327 20539909
    [Google Scholar]
  8. Stump D.C. Mann K.G. Mechanisms of thrombus formation and lysis. Ann. Emerg. Med. 1988 17 11 1138 1147 10.1016/S0196‑0644(88)80059‑3 3142314
    [Google Scholar]
  9. Silvain J. Collet J.P. Nagaswami C. Composition of coronary thrombus in acute myocardial infarction. J. Am. Coll. Cardiol. 2011 57 12 1359 1367 10.1016/j.jacc.2010.09.077 21414532
    [Google Scholar]
  10. Barreto A.D. Albright K.C. Hallevi H. Thrombus burden is associated with clinical outcome after intra-arterial therapy for acute ischemic stroke. Stroke 2008 39 12 3231 3235 10.1161/STROKEAHA.108.521054 18772444
    [Google Scholar]
  11. Tapson V.F. Acute pulmonary embolism. N. Engl. J. Med. 2008 358 10 1037 1052 10.1056/NEJMra072753 18322285
    [Google Scholar]
  12. Jin N.Z. Gopinath S.C.B. Potential blood clotting factors and anticoagulants. Biomed. Pharmacother. 2016 84 356 365 10.1016/j.biopha.2016.09.057 27668535
    [Google Scholar]
  13. Hoffman M. Remodeling the blood coagulation cascade. J. Thromb. Thrombolysis 2003 16 1-2 17 20 10.1023/B:THRO.0000014588.95061.28 14760207
    [Google Scholar]
  14. Uden D.L. Seay R.E. Kriesmer P.J. Cipolle R.J. Payne N.R. The effect of heparin on three whole blood activated clotting tests and thrombin time. ASAIO Trans. 1991 37 2 88 91 1854557
    [Google Scholar]
  15. Di Nisio M. Middeldorp S. Büller H.R. Direct thrombin inhibitors. N. Engl. J. Med. 2005 353 10 1028 1040 10.1056/NEJMra044440 16148288
    [Google Scholar]
  16. Smith S.A. Travers R.J. Morrissey J.H. How it all starts: Initiation of the clotting cascade. Crit. Rev. Biochem. Mol. Biol. 2015 50 4 326 336 10.3109/10409238.2015.1050550 26018600
    [Google Scholar]
  17. Crawley J.T.B. Zanardelli S. Chion C.K.N.K. Lane D.A. The central role of thrombin in hemostasis. J. Thromb. Haemost. 2007 5 Suppl. 1 95 101 10.1111/j.1538‑7836.2007.02500.x 17635715
    [Google Scholar]
  18. Cattaneo M. Canciani M.T. Lecchi A. Released adenosine diphosphate stabilizes thrombin-induced human platelet aggregates. Blood 1990 75 5 1081 1086 10.1182/blood.V75.5.1081.1081 2137716
    [Google Scholar]
  19. Huntington J.A. Baglin T.P. Targeting thrombin – rational drug design from natural mechanisms. Trends Pharmacol. Sci. 2003 24 11 589 595 10.1016/j.tips.2003.09.002 14607082
    [Google Scholar]
  20. Bode W. Structure and interaction modes of thrombin. Blood Cells Mol. Dis. 2006 36 2 122 130 10.1016/j.bcmd.2005.12.027 16480903
    [Google Scholar]
  21. Riccardi C. Napolitano E. Platella C. Musumeci D. Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol. Ther. 2021 217 107649 10.1016/j.pharmthera.2020.107649 32777331
    [Google Scholar]
  22. Castro H.C. Dutra D.L.S. Oliveira-Carvalho A.L. Zingali R.B. Bothroalternin, a thrombin inhibitor from the venom of Bothrops alternatus. Toxicon 1998 36 12 1903 1912 10.1016/S0041‑0101(98)00111‑1 9839674
    [Google Scholar]
  23. Wu D. Xiao J. Salsbury F.R. Light chain mutation effects on the dynamics of thrombin. J. Chem. Inf. Model. 2021 61 2 950 965 10.1021/acs.jcim.0c01303 33450154
    [Google Scholar]
  24. Lane D.A. Philippou H. Huntington J.A. Directing thrombin. Blood 2005 106 8 2605 2612 10.1182/blood‑2005‑04‑1710 15994286
    [Google Scholar]
  25. Johnson J.A. Cavallari L.H. Warfarin pharmacogenetics. Trends Cardiovasc. Med. 2015 25 1 33 41 10.1016/j.tcm.2014.09.001 25282448
    [Google Scholar]
  26. Walenga J.M. Bick R.L. Heparin-induced thrombocytopenia, paradoxical thromboembolism, and other side effects of heparin therapy. Med. Clin. North Am. 1998 82 3 635 658 10.1016/S0025‑7125(05)70015‑8 9646784
    [Google Scholar]
  27. Arepally G.M. Heparin-induced thrombocytopenia. Blood 2017 129 21 2864 2872 10.1182/blood‑2016‑11‑709873 28416511
    [Google Scholar]
  28. Babu S. Jayaraman S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother. 2020 131 110702 10.1016/j.biopha.2020.110702 32882583
    [Google Scholar]
  29. Sen A. Dhavan P. Shukla K.K. Singh S. Tejovathi G. Analysis of IR, NMR and antimicrobial activity of β-sitosterol isolated from Momordica charantia. Sci Secure J Biotechnol 2012 1 1 9 13
    [Google Scholar]
  30. Ponnulakshmi R. Shyamaladevi B. Vijayalakshmi P. Selvaraj J. In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. Toxicol. Mech. Methods 2019 29 4 276 290 10.1080/15376516.2018.1545815 30461321
    [Google Scholar]
  31. Sharmila R. Sindhu G. Evaluate the antigenotoxicity and anticancer role of β-sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen-activated protein kinases’, C-fos, C-jun, and endothelial growth factor receptor. Pharmacogn. Mag. 2017 13 49 95 101 10.4103/0973‑1296.197634 28216890
    [Google Scholar]
  32. Ling W.H. Jones P.J. Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci. 1995 57 3 195 206 10.1016/0024‑3205(95)00263‑6
    [Google Scholar]
  33. Koo H.J. Park H.J. Byeon H.E. Chinese yam extracts containing β-sitosterol and ethyl linoleate protect against atherosclerosis in apolipoprotein E-deficient mice and inhibit muscular expression of VCAM-1 in vitro. J. Food Sci. 2014 79 4 H719 H729 10.1111/1750‑3841.12401 24689699
    [Google Scholar]
  34. Gogoi D. Pal A. Chattopadhyay P. Paul S. Deka R.C. Mukherjee A.K. First report of plant-derived β-sitosterol with antithrombotic, in vivo anticoagulant, and thrombus-preventing activities in a mouse model. J. Nat. Prod. 2018 81 11 2521 2530 10.1021/acs.jnatprod.8b00574 30406661
    [Google Scholar]
  35. Figueiredo A.C. Clement C.C. Zakia S. Gingold J. Philipp M. Pereira P.J.B. Rational design and characterization of D-Phe-Pro-D-Arg-derived direct thrombin inhibitors. PLoS One 2012 7 3 34354 10.1371/journal.pone.0034354 22457833
    [Google Scholar]
  36. Fuhrmann J. Rurainski A. Lenhof H.P. Neumann D. A new Lamarckian genetic algorithm for flexible ligand‐receptor docking. J. Comput. Chem. 2010 31 9 1911 1918 10.1002/jcc.21478 20082382
    [Google Scholar]
  37. Sun X. Yan X. Zhuo W. PD-L1 nanobody competitively inhibits the formation of the PD-1/PD-L1 complex: comparative molecular dynamics simulations. Int. J. Mol. Sci. 2018 19 7 1984 10.3390/ijms19071984 29986511
    [Google Scholar]
  38. Hu J.P. Wu Z.X. Xie T. Applications of molecular simulation in the discovery of antituberculosis drugs: a review. Protein Pept. Lett. 2019 26 9 648 663 10.2174/0929866526666190620145919 31218945
    [Google Scholar]
  39. Wu Z. Xie T. Luo Y. Theoretical insight into the photodeactivation pathway of the tetradentate Pt (II) complex with different inductive substituents. Appl. Organomet. Chem. 2019 33 7 4879 10.1002/aoc.4879
    [Google Scholar]
  40. Wang J. Cieplak P. Kollman P.A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000 21 12 1049 1074 10.1002/1096‑987X(200009)21:12<1049:AID‑JCC3>3.0.CO;2‑F
    [Google Scholar]
  41. Jorgensen W.L. Chandrasekhar J. Madura J.D. Impey R.W. Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983 79 2 926 935 10.1063/1.445869
    [Google Scholar]
  42. Roe D.R. Cheatham T.E. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013 9 7 3084 3095 10.1021/ct400341p 26583988
    [Google Scholar]
  43. Hogues H. Sulea T. Purisima E.O. Exhaustive docking and solvated interaction energy scoring: lessons learned from the SAMPL4 challenge. J. Comput. Aided Mol. Des. 2014 28 4 417 427 10.1007/s10822‑014‑9715‑5 24474162
    [Google Scholar]
  44. Genheden S. Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015 10 5 449 461 10.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  45. Wang E. Sun H. Wang J. End-point binding free energy calculation with mm/pbsa and mm/gbsa: strategies and applications in drug design. Chem. Rev. 2019 119 16 9478 9508 10.1021/acs.chemrev.9b00055 31244000
    [Google Scholar]
  46. Hou T. Wang J. Li Y. Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 2011 51 1 69 82 10.1021/ci100275a 21117705
    [Google Scholar]
  47. Cavani M. Riofrío W.A. Arciniega M. Molecular dynamics and MM-PBSA Analysis of the SARS-CoV-2 gamma variant in complex with the hACE-2 receptor. Molecules 2022 27 7 2370 10.3390/molecules27072370 35408761
    [Google Scholar]
  48. Kollman P.A. Massova I. Reyes C. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 2000 33 12 889 897 10.1021/ar000033j 11123888
    [Google Scholar]
  49. Simonson T. Macromolecular electrostatics: continuum models and their growing pains. Curr. Opin. Struct. Biol. 2001 11 2 243 252 10.1016/S0959‑440X(00)00197‑4 11297935
    [Google Scholar]
  50. Gilchrist C.L.M. Mirdita M. Steinegger M. Multiple protein structure alignment at scale with FoldMason. bioRxiv 2024 10.1101/2024.08.01.606130
    [Google Scholar]
  51. Muta T. Hashimoto R. Miyata T. Nishimura H. Toh Y. Iwanaga S. Proclotting enzyme from horseshoe crab hemocytes. cDNA cloning, disulfide locations, and subcellular localization. J. Biol. Chem. 1990 265 36 22426 22433 10.1016/S0021‑9258(18)45722‑5 2266134
    [Google Scholar]
  52. Zeng F. Shen B. Zhu Z. Crystal structure and activating effect on RyRs of AhV_TL-I, a glycosylated thrombin-like enzyme from Agkistrodon halys snake venom. Arch. Toxicol. 2013 87 3 535 545 10.1007/s00204‑012‑0957‑5 23052203
    [Google Scholar]
  53. Pozzi N. Chen R. Chen Z. Bah A. Di Cera E. Rigidification of the autolysis loop enhances Na+ binding to thrombin. Biophys. Chem. 2011 159 1 6 13 10.1016/j.bpc.2011.04.003 21536369
    [Google Scholar]
  54. Bode W. Mayr I. Baumann U. Huber R. Stone S.R. Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 8 11 3467 3475 10.1002/j.1460‑2075.1989.tb08511.x 2583108
    [Google Scholar]
  55. Lange U.E.W. Baucke D. Hornberger W. Mack H. Seitz W. Höffken H.W. Orally active thrombin inhibitors. Part 2: Optimization of the P2-moiety. Bioorg. Med. Chem. Lett. 2006 16 10 2648 2653 10.1016/j.bmcl.2006.01.046 16460939
    [Google Scholar]
  56. Marino F. Chen Z.W. Ergenekan C.E. Bush-Pelc L.A. Mathews F.S. Di Cera E. Structural basis of Na+ activation mimicry in murine thrombin. J. Biol. Chem. 2007 282 22 16355 16361 10.1074/jbc.M701323200 17428793
    [Google Scholar]
  57. Niu W. Chen Z. Bush-Pelc L.A. Bah A. Gandhi P.S. Di Cera E. Mutant N143P reveals how Na+ activates thrombin. J. Biol. Chem. 2009 284 52 36175 36185 10.1074/jbc.M109.069500 19846563
    [Google Scholar]
  58. Gandhi P.S. Page M.J. Chen Z. Bush-Pelc L. Di Cera E. Mechanism of the anticoagulant activity of thrombin mutant W215A/E217A. J. Biol. Chem. 2009 284 36 24098 24105 10.1074/jbc.M109.025403 19586901
    [Google Scholar]
  59. Stojanovski B.M. Chen Z. Koester S.K. Pelc L.A. Di Cera E. Role of the I16-D194 ionic interaction in the trypsin fold. Sci. Rep. 2019 9 1 18035 10.1038/s41598‑019‑54564‑6 31792294
    [Google Scholar]
  60. Ruben E.A. Gandhi P.S. Chen Z. 19F NMR reveals the conformational properties of free thrombin and its zymogen precursor prethrombin-2. J. Biol. Chem. 2020 295 24 8227 8235 10.1074/jbc.RA120.013419 32358061
    [Google Scholar]
  61. St Charles R. Matthews J.H. Zhang E. Tulinsky A. Bound structures of novel P3-P1′ β-strand mimetic inhibitors of thrombin. J. Med. Chem. 1999 42 8 1376 1383 10.1021/jm980052n 10212123
    [Google Scholar]
  62. Johnson D.J.D. Adams T.E. Li W. Huntington J.A. Crystal structure of wild-type human thrombin in the Na+-free state. Biochem. J. 2005 392 1 21 28 10.1042/BJ20051217 16201969
    [Google Scholar]
  63. Banner D.W. Hadváry P. Crystallographic analysis at 3.0-A resolution of the binding to human thrombin of four active site-directed inhibitors. J. Biol. Chem. 1991 266 30 20085 20093 10.1016/S0021‑9258(18)54894‑8 1939071
    [Google Scholar]
  64. Zhang E. Tulinsky A. The molecular environment of the Na+ binding site of thrombin. Biophys. Chem. 1997 63 2-3 185 200 10.1016/S0301‑4622(96)02227‑2 9108691
    [Google Scholar]
  65. Dullweber F. Stubbs M.T. Musil Đ. Stürzebecher J. Klebe G. Factorising ligand affinity: a combined thermodynamic and crystallographic study of trypsin and thrombin inhibition. J. Mol. Biol. 2001 313 3 593 614 10.1006/jmbi.2001.5062 11676542
    [Google Scholar]
  66. Olsen J.A. Banner D.W. Seiler P. A fluorine scan of thrombin inhibitors to map the fluorophilicity/fluorophobicity of an enzyme active site: evidence for C-F...C=O interactions. Angew. Chem. Int. Ed. 2003 42 22 2507 2511 10.1002/anie.200351268 12800172
    [Google Scholar]
  67. Steinmetzer T. Renatus M. Künzel S. Design and evaluation of novel bivalent thrombin inhibitors based on amidinophenylalanines. Eur. J. Biochem. 1999 265 2 598 605 10.1046/j.1432‑1327.1999.00742.x 10504391
    [Google Scholar]
  68. Matthews J.H. Krishnan R. Costanzo M.J. Maryanoff B.E. Tulinsky A. Crystal structures of thrombin with thiazole-containing inhibitors: probes of the S1′ binding site. Biophys. J. 1996 71 5 2830 2839 10.1016/S0006‑3495(96)79479‑1 8913620
    [Google Scholar]
  69. Salvagnini C. Michaux C. Remiche J. Wouters J. Charlier P. Marchand-Brynaert J. Design, synthesis and evaluation of graftable thrombin inhibitors for the preparation of blood-compatible polymer materials. Org. Biomol. Chem. 2005 3 23 4209 4220 10.1039/b510239a 16294249
    [Google Scholar]
  70. Radau G. Fokkens J. Design and X-ray crystal structures of human thrombin with synthetic cyanopeptide-analogues. Pharmazie 2007 62 2 83 88 10.1691/ph.2007.2.6619 17341023
    [Google Scholar]
  71. Neumann T. Junker H.D. Keil O. Discovery of thrombin inhibitor fragments from chemical microarray screening. Lett. Drug Des. Discov. 2005 2 8 590 594 10.2174/157018005774717343
    [Google Scholar]
  72. Schweizer E. Hoffmann-Röder A. Olsen J.A. Multipolar interactions in the D pocket of thrombin: large differences between tricyclic imide and lactam inhibitors. Org. Biomol. Chem. 2006 4 12 2364 2375 10.1039/B602585D 16763681
    [Google Scholar]
  73. Hoffmann-Röder A. Schweizer E. Egger J. Mapping the fluorophilicity of a hydrophobic pocket: synthesis and biological evaluation of tricyclic thrombin inhibitors directing fluorinated alkyl groups into the p pocket. ChemMedChem 2006 1 11 1205 1215 10.1002/cmdc.200600124 17001711
    [Google Scholar]
  74. Senger S. Chan C. Convery M.A. Sulfonamide-related conformational effects and their importance in structure-based design. Bioorg. Med. Chem. Lett. 2007 17 10 2931 2934 10.1016/j.bmcl.2007.02.034 17336062
    [Google Scholar]
  75. Gerlach C. Smolinski M. Steuber H. Thermodynamic inhibition profile of a cyclopentyl and a cyclohexyl derivative towards thrombin: the same but for different reasons. Angew. Chem. Int. Ed. 2007 46 44 8511 8514 10.1002/anie.200701169 17902081
    [Google Scholar]
  76. Long S.B. Long M.B. White R.R. Sullenger B.A. Crystal structure of an RNA aptamer bound to thrombin. RNA 2008 14 12 2504 2512 10.1261/rna.1239308 18971322
    [Google Scholar]
  77. Biela A. Sielaff F. Terwesten F. Heine A. Steinmetzer T. Klebe G. Ligand binding stepwise disrupts water network in thrombin: enthalpic and entropic changes reveal classical hydrophobic effect. J. Med. Chem. 2012 55 13 6094 6110 10.1021/jm300337q 22612268
    [Google Scholar]
  78. Biela A. Khayat M. Tan H. Impact of ligand and protein desolvation on ligand binding to the S1 pocket of thrombin. J. Mol. Biol. 2012 418 5 350 366 10.1016/j.jmb.2012.01.054 22366545
    [Google Scholar]
  79. Steinmetzer T. Baum B. Biela A. Klebe G. Nowak G. Bucha E. Beyond heparinization: design of highly potent thrombin inhibitors suitable for surface coupling. ChemMedChem 2012 7 11 1965 1973 10.1002/cmdc.201200292 22907907
    [Google Scholar]
  80. Hilpert K. Ackermann J. Banner D.W. Design and synthesis of potent and highly selective thrombin inhibitors. J. Med. Chem. 1994 37 23 3889 3901 10.1021/jm00049a008 7966150
    [Google Scholar]
  81. Pica A. Russo Krauss I. Merlino A. Nagatoishi S. Sugimoto N. Sica F. Dissecting the contribution of thrombin exosite I in the recognition of thrombin binding aptamer. FEBS J. 2013 280 24 6581 6588 10.1111/febs.12561 24128303
    [Google Scholar]
  82. Dolot R. Lam C.H. Sierant M. Crystal structures of thrombin in complex with chemically modified thrombin DNA aptamers reveal the origins of enhanced affinity. Nucleic Acids Res. 2018 46 9 4819 4830 10.1093/nar/gky268 29684204
    [Google Scholar]
  83. Calisto B.M. Ripoll-Rozada J. Dowman L.J. Sulfotyrosine-mediated recognition of human thrombin by a tsetse fly anticoagulant mimics physiological substrates. Cell Chem. Biol. 2021 28 1 26 33.e8 10.1016/j.chembiol.2020.10.002
    [Google Scholar]
  84. Friedrich R. Steinmetzer T. Huber R. Stürzebecher J. Bode W. The methyl group of N(α)(Me)Arg-containing peptides disturbs the active-site geometry of thrombin, impairing efficient cleavage. J. Mol. Biol. 2002 316 4 869 874 10.1006/jmbi.2001.5394 11884127
    [Google Scholar]
  85. Krishnan R. Sadler J.E. Tulinsky A. Structure of the Ser195Ala mutant of human α-thrombin complexed with fibrinopeptide A(7–16): evidence for residual catalytic activity. Acta Crystallogr. D Biol. Crystallogr. 2000 56 4 406 410 10.1107/S0907444900001487 10739913
    [Google Scholar]
  86. Pica A. Russo Krauss I. Parente V. Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers. Nucleic Acids Res. 2017 45 1 461 469 10.1093/nar/gkw1113 27899589
    [Google Scholar]
  87. Pozzi N. Zerbetto M. Acquasaliente L. Loop electrostatics asymmetry modulates the preexisting conformational equilibrium in thrombin. Biochemistry 2016 55 28 3984 3994 10.1021/acs.biochem.6b00385 27347732
    [Google Scholar]
  88. Gandhi P.S. Chen Z. Di Cera E. Crystal structure of thrombin bound to the uncleaved extracellular fragment of PAR1. J. Biol. Chem. 2010 285 20 15393 15398 10.1074/jbc.M110.115337 20236938
    [Google Scholar]
  89. Gandhi P.S. Chen Z. Appelbaum E. Zapata F. Di Cera E. Structural basis of thrombin–protease‐activated receptor interactions. IUBMB Life 2011 63 6 375 382 10.1002/iub.461 21698746
    [Google Scholar]
  90. Pelc L.A. Koester S.K. Chen Z. Gistover N.E. Di Cera E. Residues W215, E217 and E192 control the allosteric E*-E equilibrium of thrombin. Sci. Rep. 2019 9 1 12304 10.1038/s41598‑019‑48839‑1 31444378
    [Google Scholar]
  91. Lu S. Tirloni L. Oliveira M.B. Identification of a substrate-like cleavage-resistant thrombin inhibitor from the saliva of the flea Xenopsylla cheopis. J. Biol. Chem. 2021 297 5 101322 10.1016/j.jbc.2021.101322 34688666
    [Google Scholar]
  92. Yang Z Wan Y e J, Structural basis of different surface-modified fullerene derivatives as novel thrombin inhibitors: insight into the inhibitory mechanism through molecular modelling studies. Mol. Phys. 2021 119 14 1943028 10.1080/00268976.2021.1943028
    [Google Scholar]
  93. Cheng S. Tu M. Chen H. Identification and inhibitory activity against α-thrombin of a novel anticoagulant peptide derived from oyster (Crassostrea gigas) protein. Food Funct. 2018 9 12 6391 6400 10.1039/C8FO01635F 30457135
    [Google Scholar]
  94. Liu H. Tu M. Cheng S. Xu Z. Xu X. Du M. Anticoagulant decapeptide interacts with thrombin at the active site and exosite-I. J. Agric. Food Chem. 2020 68 1 176 184 10.1021/acs.jafc.9b06450 31850760
    [Google Scholar]
  95. Lefebvre C. Rubez G. Khartabil H. Boisson J.C. Contreras-García J. Hénon E. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys. 2017 19 27 17928 17936 10.1039/C7CP02110K 28664951
    [Google Scholar]
  96. Lu T. Chen Q. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems. J. Comput. Chem. 2022 43 8 539 555 10.1002/jcc.26812 35108407
    [Google Scholar]
  97. Lu T. Chen F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012 33 5 580 592 10.1002/jcc.22885 22162017
    [Google Scholar]
  98. Mo Z. Xiao Z. He C. Functional expression of a thrombin exosite I inhibitor triabin in Escherichia coli and elucidation of the role of key residues in its inhibitory activity. Biochimie 2023 208 13 19 10.1016/j.biochi.2022.12.013 36580989
    [Google Scholar]
  99. Ayala Y.M. Cantwell A.M. Rose T. Bush L.A. Arosio D. Di Cera E. Molecular mapping of thrombin‐receptor interactions. Proteins 2001 45 2 107 116 10.1002/prot.1130 11562940
    [Google Scholar]
  100. Bock P.E. Panizzi P. Verhamme I.M.A. Exosites in the substrate specificity of blood coagulation reactions. J. Thromb. Haemost. 2007 5 Suppl. 1 81 94 10.1111/j.1538‑7836.2007.02496.x 17635714
    [Google Scholar]
  101. Silva F.P. Antunes O.A.C. de Alencastro R.B. De Simone S.G. The Na+ binding channel of human coagulation proteases: Novel insights on the structure and allosteric modulation revealed by molecular surface analysis. Biophys. Chem. 2006 119 3 282 294 10.1016/j.bpc.2005.10.001 16288954
    [Google Scholar]
  102. Shabareesh P.R.V. Kumar A. Salunke D.M. Kaur K.J. Structural and functional studies of differentially O‐glycosylated analogs of a thrombin inhibitory peptide – variegin. J. Pept. Sci. 2017 23 12 880 888 10.1002/psc.3052 29110415
    [Google Scholar]
  103. Pechik I. Madrazo J. Mosesson M.W. Hernandez I. Gilliland G.L. Medved L. Crystal structure of the complex between thrombin and the central “E” region of fibrin. Proc. Natl. Acad. Sci. USA 2004 101 9 2718 2723 10.1073/pnas.0303440101 14978285
    [Google Scholar]
  104. Guinto E.R. Vindigni A. Ayala Y.M. Dang Q.D. Di Cera E. Identification of residues linked to the slow-->fast transition of thrombin. Proc. Natl. Acad. Sci. USA 1995 92 24 11185 11189 10.1073/pnas.92.24.11185 7479962
    [Google Scholar]
  105. Valsangkar V. Vangaveti S. Lee G.W. Structural and binding effects of chemical modifications on thrombin binding aptamer (TBA). Molecules 2021 26 15 4620 10.3390/molecules26154620 34361773
    [Google Scholar]
  106. Fuglestad B. Gasper P.M. McCammon J.A. Markwick P.R.L. Komives E.A. Correlated motions and residual frustration in thrombin. J. Phys. Chem. B 2013 117 42 12857 12863 10.1021/jp402107u 23621631
    [Google Scholar]
  107. Handley L.D. Fuglestad B. Stearns K. NMR reveals a dynamic allosteric pathway in thrombin. Sci. Rep. 2017 7 1 39575 10.1038/srep39575 28059082
    [Google Scholar]
  108. Prohens R. Barbas R. Frontera A. Hydrophilic and hydrophobic interactions in the solid forms of the β-sitosterol cocrystal with propionic acid: A combined experimental and computational study. J. Mol. Struct. 2025 1328 141190 10.1016/j.molstruc.2024.141190
    [Google Scholar]
  109. Aswathy S.V. Joe I.H. Rameshkumar K.B. Density functional theory and spectroscopic analysis of stigmasterol from Garcinia wightii: Deciphering its inhibitory potential against drug-resistant tuberculosis via insilico molecular docking and molecular dynamics simulations. J. Mol. Struct. 2025 1319 2 139491 10.1016/j.molstruc.2024.139491
    [Google Scholar]
  110. J A J A Habila JD, Shode FO, Opoku AR, Atawodi SE, Umar IA. Inhibitory effect of betulinic acid and 3-acetoxybetulinic acid on rat platelet aggregation. Afr. J. Pharm. Pharmacol. 2013 7 44 2881 2886 10.5897/AJPP2013.3851
    [Google Scholar]
  111. Osunsanmi F.O. Zaharare G.E. Oyinloye B.E. Antithrombotic, anticoagulant and antiplatelet activity of betulinic acid and 3β-acetoxybetulinic acid from Melaleuca bracteata ‘Revolution Gold’ (Myrtaceae) Muell leaf. Trop. J. Pharm. Res. 2019 17 10 1983 1989 10.4314/tjpr.v17i10.13
    [Google Scholar]
  112. Hu Y. Ma C. Chen X. Bai G. Guo S. Hydrophilic phytosterol derivatives: A short review on structural modifications, cholesterol-lowering activity and safety. Grain & Oil Science and Technology 2022 5 3 146 155 10.1016/j.gaost.2022.02.001
    [Google Scholar]
  113. Zafrani Y. Saphier S. Gershonov E. Utilizing the CF2H moiety as a H-bond-donating group in drug discovery. Future Med. Chem. 2020 12 5 361 365 10.4155/fmc‑2019‑0309 32027173
    [Google Scholar]
  114. Fu Y. Zhang Y. Hu H. Design and straightforward synthesis of novel galloyl phytosterols with excellent antioxidant activity. Food Chem. 2014 163 171 177 10.1016/j.foodchem.2014.04.093 24912713
    [Google Scholar]
  115. Fu L. Shi S. Yi J. ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024 52 W1 W422-31 10.1093/nar/gkae236 38572755
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501418618251202082813
Loading
/content/journals/cdt/10.2174/0113894501418618251202082813
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test