Skip to content
2000
image of Possible Applications of Azurin, a Copper-Containing Protein, in Cancer Treatment: Prospects and Challenges

Abstract

Introduction

Conventional cancer therapies are limited by systemic toxicity, poor selectivity, and drug resistance. Bacterial proteins, such as azurin, represent a promising alternative due to their tumor selectivity, low immunogenicity, and multifunctional mechanisms. This review highlights recent progress in azurin-based anticancer strategies, including mechanisms of action, structural modifications, and integration with peptide systems, nanotechnology, and gene therapy.

Methods

A search for articles using the keywords “azurin, cancer” was conducted on the Google Scholar and PubMed databases, with an emphasis on the years 2023-2024.

Results

Azurin and its peptide derivative p28 selectively target cancer cells by stabilizing p53, inducing apoptosis, and arresting the cell cycle, while also modulating key signaling pathways. Structural features of azurin enable interactions with multiple molecular targets, and p28 enhances cellular uptake and sensitizes tumors to chemotherapeutics. Advanced delivery platforms, including engineered bacteria (E. coli Nissle 1917, S. typhimurium VNP-20009), chimeric peptides, and nanocarriers, improve tumor targeting and therapeutic outcomes. Preclinical models and clinical trials demonstrate low toxicity and efficacy against various solid tumors and gliomas.

Discussion

Evidence supports azurin as a versatile anticancer agent with unique advantages over conventional therapies. Its compatibility with delivery innovations enhances precision and minimizes systemic toxicity. However, further optimization, large-scale clinical validation, and long-term safety studies are required.

Conclusion

Azurin and its derivatives provide a promising platform for anticancer therapy, offering tumor specificity, low toxicity, and synergy with multiple treatment modalities. Their integration into advanced delivery and genetic systems may significantly improve cancer treatment and recurrence prevention.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501415032251108152158
2026-01-22
2026-01-28
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Sharapov M.G. Karmanova E.E. Gudkov S.V. Mechanisms of cancer cell radioresistance: Modern trends and research prospects. Biophysics 2024 69 6 1064 1088 10.1134/S0006350924701161
    [Google Scholar]
  3. Samantaray A. Dhamodharan D. Thanigaivel S. Pongen Y.L. Thirumurugan D. Byun H.S. Novel insight into cancer treatment: Recent advances and new challenges. J. Drug Deliv. Sci. Technol. 2024 93 105384 10.1016/j.jddst.2024.105384
    [Google Scholar]
  4. Debela D.T. Muzazu S.G.Y. Heraro K.D. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 20503121211034366 10.1177/20503121211034366 34408877
    [Google Scholar]
  5. Nhàn N.T.T. Yamada T. Yamada K.H. Peptide-based agents for cancer treatment: Current applications and future directions. Int. J. Mol. Sci. 2023 24 16 12931 10.3390/ijms241612931 37629112
    [Google Scholar]
  6. Hamad A. Elazzazy S. Bujassoum S. Applying value-based strategies to accelerate access to novel cancer medications: Guidance from the Oncology Health Economics Expert Panel in Qatar (Q-OHEP). BMC Health Serv. Res. 2023 23 1 15 10.1186/s12913‑022‑08981‑5 36609388
    [Google Scholar]
  7. Nauts H.C. Swift W.E. Coley B.L. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1946 6 205 216 21018724
    [Google Scholar]
  8. Choi J.K. Naffouje S.A. Goto M. Cross-talk between cancer and Pseudomonas aeruginosa mediates tumor suppression. Commun. Biol. 2023 6 1 16 10.1038/s42003‑022‑04395‑5 36609683
    [Google Scholar]
  9. Pyla M. Kankipati S. Sumithra B. Bacterial proteins and peptides as potential anticancer agents: A novel search for protein-based therapeutics. Curr. Med. Chem. 2025 32 7 1235 1263 10.2174/0109298673253414231127162817 38333973
    [Google Scholar]
  10. Sieow B.F.L. Wun K.S. Yong W.P. Hwang I.Y. Chang M.W. Tweak to treat: Reprogramming bacteria for cancer treatment. Trends Cancer 2021 7 5 447 464 10.1016/j.trecan.2020.11.004 33303401
    [Google Scholar]
  11. Wang C. Feng Q. Shi S. The rational engineered bacteria based biohybrid living system for tumor therapy. Adv. Healthc. Mater. 2024 13 28 2401538 10.1002/adhm.202401538 39051784
    [Google Scholar]
  12. Wang C. Wang B. Zhang Q. Zhang S. Tumor microenvironment-responsive cell-penetrating peptides: Design principle and precision delivery. Colloids Surf. B Biointerfaces 2024 242 114100 10.1016/j.colsurfb.2024.114100 39024717
    [Google Scholar]
  13. Karmacharya J. Shrestha P. Han S.R. Park H. Oh T.J. Complete genome sequencing of polar Arthrobacter sp. PAMC25284, copper tolerance potential unraveled with genomic analysis. Int. J. Microbiol. 2022 2022 1 12 10.1155/2022/1162938 36061879
    [Google Scholar]
  14. Horio T. Terminal oxidation system in bacteria. J. Biochem. 1958 45 4 267 279 10.1093/oxfordjournals.jbchem.a126865
    [Google Scholar]
  15. Zaborina O. Dhiman N. Ling Chen M. Kostal J. Holder I.A. Chakrabarty A.M. Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing: External-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis. Microbiology 2000 146 10 2521 2530 10.1099/00221287‑146‑10‑2521 11021927
    [Google Scholar]
  16. Chaudhari A. Fialho A.M. Ratner D. Azurin, Plasmodium falciparum malaria and HIV/AIDS: Inhibition of parasitic and viral growth by Azurin. Cell Cycle 2006 5 15 1642 1648 10.4161/cc.5.15.2992 16861897
    [Google Scholar]
  17. Chaudhari A. Mahfouz M. Fialho A.M. Cupredoxin-cancer interrelationship: Azurin binding with EphB2, interference in EphB2 tyrosine phosphorylation, and inhibition of cancer growth. Biochemistry 2007 46 7 1799 1810 10.1021/bi061661x 17249693
    [Google Scholar]
  18. Goto M. Ryoo I. Naffouje S. Image-guided surgery with a new tumour-targeting probe improves the identification of positive margins. EBioMedicine 2022 76 103850 10.1016/j.ebiom.2022.103850 35108666
    [Google Scholar]
  19. Mander S. Naffouje S.A. Gao J. Tumor-targeting cell-penetrating peptide, p28, for glioblastoma imaging and therapy. Front. Oncol. 2022 12 940001 10.3389/fonc.2022.940001 35936749
    [Google Scholar]
  20. Taylor B.N. Mehta R.R. Yamada T. Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Res. 2009 69 2 537 546 10.1158/0008‑5472.CAN‑08‑2932 19147567
    [Google Scholar]
  21. Yamada T. Christov K. Shilkaitis A. p28, A first in class peptide inhibitor of cop1 binding to p53. Br. J. Cancer 2013 108 12 2495 2504 10.1038/bjc.2013.266 23736031
    [Google Scholar]
  22. Yamada T. Das Gupta T.K. Beattie C.W. p28-mediated activation of p53 in G2–M phase of the cell cycle enhances the efficacy of DNA damaging and antimitotic chemotherapy. Cancer Res. 2016 76 8 2354 2365 10.1158/0008‑5472.CAN‑15‑2355 26921335
    [Google Scholar]
  23. Bernardes N. Abreu S. Carvalho F.A. Fernandes F. Santos N.C. Fialho A.M. Modulation of membrane properties of lung cancer cells by azurin enhances the sensitivity to EGFR-targeted therapy and decreased β1 integrin-mediated adhesion. Cell Cycle 2016 15 11 1415 1424 10.1080/15384101.2016.1172147 27096894
    [Google Scholar]
  24. Bernardes N. Garizo A.R. Pinto S.N. Azurin interaction with the lipid raft components ganglioside GM-1 and caveolin-1 increases membrane fluidity and sensitivity to anti-cancer drugs. Cell Cycle 2018 17 13 1649 1666 10.1080/15384101.2018.1489178 29963969
    [Google Scholar]
  25. Bernardes N. Ribeiro A.S. Abreu S. The bacterial protein azurin impairs invasion and FAK/Src signaling in P-cadherin-overexpressing breast cancer cell models. PLoS One 2013 8 7 69023 10.1371/journal.pone.0069023 23894398
    [Google Scholar]
  26. Bernardes N. Ribeiro A.S. Abreu S. High-throughput molecular profiling of a P-cadherin overexpressing breast cancer model reveals new targets for the anti-cancer bacterial protein azurin. Int. J. Biochem. Cell Biol. 2014 50 1 9 10.1016/j.biocel.2014.01.023 24509127
    [Google Scholar]
  27. Fialho A.M. Salunkhe P. Manna S. Mahali S. Chakrabarty A.M. Glioblastoma multiforme: Novel therapeutic approaches. ISRN Neurol. 2012 2012 1 10 10.5402/2012/642345 22462021
    [Google Scholar]
  28. Chakrabarty A.M. Bacterial azurin in potential cancer therapy. Cell Cycle 2016 15 13 1665 1666 10.1080/15384101.2016.1179034 27104624
    [Google Scholar]
  29. Fialho A. Bernardes N. Chakrabarty A.M. Exploring the anticancer potential of the bacterial protein azurin. AIMS Microbiol. 2016 2 3 292 303 10.3934/microbiol.2016.3.292
    [Google Scholar]
  30. Garizo A.R. Bernardes N. Chakrabarty A.M. Fialho A.M. The anticancer potential of the bacterial protein azurin and its derived peptide p28. Microb Infect Cancer Ther 2019 319 319 338 10.1201/9781351041904‑9
    [Google Scholar]
  31. Dharmawickreme R.B.L. Witharana C. Bacterial protein azurin and tumour suppressor p53 in cancer regression. Adv Hum Biol 2021 11 2 147 151 10.4103/AIHB.AIHB_69_20
    [Google Scholar]
  32. Gao M. Zhou J. Su Z. Huang Y. Bacterial cupredoxin azurin hijacks cellular signaling networks: Protein–protein interactions and cancer therapy. Protein Sci. 2017 26 12 2334 2341 10.1002/pro.3310 28960574
    [Google Scholar]
  33. Huang F. Shu Q. Qin Z. Anticancer actions of azurin and its derived peptide p28. Protein J. 2020 39 2 182 189 10.1007/s10930‑020‑09891‑3 32180097
    [Google Scholar]
  34. Yaghoubi A. Khazaei M. Avan A. Hasanian S.M. Soleimanpour S. The bacterial instrument as a promising therapy for colon cancer. Int. J. Colorectal Dis. 2020 35 4 595 606 10.1007/s00384‑020‑03535‑9 32130489
    [Google Scholar]
  35. Cruz-Gallardo I. Díaz-Moreno I. Díaz-Quintana A. Antimalarial activity of cupredoxins: The interaction of Plasmodium merozoite surface protein 119 (MSP119) and rusticyanin. J. Biol. Chem. 2013 288 29 20896 20907 10.1074/jbc.M113.460162 23749994
    [Google Scholar]
  36. Naguleswaran A. Fialho A.M. Chaudhari A. Hong C.S. Chakrabarty A.M. Sullivan W.J. Azurin-like protein blocks invasion of Toxoplasma gondii through potential interactions with parasite surface antigen SAG1. Antimicrob. Agents Chemother. 2008 52 2 402 408 10.1128/AAC.01005‑07 18070964
    [Google Scholar]
  37. Sasidharan S. Selvaraj C. Singh S.K. Bacterial protein azurin and derived peptides as potential anti-SARS-CoV-2 agents: Insights from molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2021 39 15 5706 5721 10.1080/07391102.2020.1787864 32619162
    [Google Scholar]
  38. Aslam S. Rehman H.M. Sarwar M.Z. Computational modeling, high-level soluble expression and in vitro cytotoxicity assessment of recombinant Pseudomonas aeruginosa azurin: A promising anti-cancer therapeutic candidate. Pharmaceutics 2023 15 7 1825 10.3390/pharmaceutics15071825 37514012
    [Google Scholar]
  39. Riegerová P. Horváth M. Šebesta F. Sýkora J. Šulc M. Vlček A. Single-step purification and characterization of Pseudomonas aeruginosa azurin. Protein Expr. Purif. 2024 224 106566 10.1016/j.pep.2024.106566 39128594
    [Google Scholar]
  40. Bradley V.C. Manard B.T. Hendriks L. Quantifying platinum binding on protein-functionalized magnetic microparticles using single particle-ICP-TOF-MS. Anal. Methods 2024 16 20 3192 3201 10.1039/D4AY00268G 38639200
    [Google Scholar]
  41. Gibbs C.A. Ghazi N. Tao J. Warren J.J. An investigation of the influence of tyrosine local interactions on electron hopping in a model protein. Molecules 2024 29 2 350 10.3390/molecules29020350 38257263
    [Google Scholar]
  42. Li P. Bera S. Kumar-Saxena S. Electron transport through two interacting channels in Azurin-based solid-state junctions. Proc. Natl. Acad. Sci. USA 2024 121 33 2405156121 10.1073/pnas.2405156121 39110736
    [Google Scholar]
  43. Tuzhilkin R. Ondruška V. Šulc M. Azurin: A Model to Study a Metal Coordination Sphere or Electron Transfer in Metalloproteins. Int. J. Mol. Sci. 2025 26 9 4125 10.3390/ijms26094125 40362365
    [Google Scholar]
  44. Joy A. Biswas R. Significance of the disulfide bridge in the structure and stability of metalloprotein azurin. J. Phys. Chem. B 2024 128 4 973 984 10.1021/acs.jpcb.3c07089 38236012
    [Google Scholar]
  45. Wei Y. Li P. Theoretical insights into the reduction of Azurin metal site with unnatural amino acid substitutions. J. Inorg. Biochem. 2024 259 112651 10.1016/j.jinorgbio.2024.112651 38968926
    [Google Scholar]
  46. Matsuura Y. Coherent spin transport in a copper protein. J. Mol. Model. 2024 30 7 218 10.1007/s00894‑024‑06025‑9 38890154
    [Google Scholar]
  47. Virieux-Petit M. Hammer-Dedet F. Aujoulat F. Jumas-Bilak E. Romano-Bertrand S. From Copper Tolerance to Resistance in Pseudomonas aeruginosa towards Patho-Adaptation and Hospital Success. Genes 2022 13 2 301 10.3390/genes13020301 35205346
    [Google Scholar]
  48. Silva M. Monteiro G.A. Fialho A.M. Bernardes N. da Silva C.L. Conditioned medium from azurin-expressing human mesenchymal stromal cells demonstrates antitumor activity against breast and lung cancer cell lines. Front. Cell Dev. Biol. 2020 8 471 10.3389/fcell.2020.00471 32733876
    [Google Scholar]
  49. Mehta N. Lyon J.G. Patil K. Mokarram N. Kim C. Bellamkonda R.V. Bacterial carriers for glioblastoma therapy. Mol. Ther. Oncolytics 2017 4 1 17 10.1016/j.omto.2016.12.003 28345020
    [Google Scholar]
  50. Bienert S. Waterhouse A. de Beer T.A.P. The SWISS MODEL repository – new features and functionality. Nucleic Acids Res. 2017 45 D1 D313 D319 10.1093/nar/gkw1132
    [Google Scholar]
  51. Hu J. Jiang W. Zuo J. Structural basis of bacterial effector protein azurin targeting tumor suppressor p53 and inhibiting its ubiquitination. Commun. Biol. 2023 6 1 59 10.1038/s42003‑023‑04458‑1 36650277
    [Google Scholar]
  52. Saha G. Ghosh M.K. The key vulnerabilities and therapeutic opportunities in the USP7-p53/MDM2 axis in cancer. Biochim. Biophys. Acta Mol. Cell Res. 2025 1872 3 119908 10.1016/j.bbamcr.2025.119908 39880128
    [Google Scholar]
  53. Garizo A.R. Coelho L.F. Pinto S. The azurin-derived peptide CT-p19LC exhibits membrane-active properties and induces cancer cell death. Biomedicines 2021 9 9 1194 10.3390/biomedicines9091194 34572379
    [Google Scholar]
  54. Domenici F. Frasconi M. Mazzei F. D’Orazi G. Bizzarri A.R. Cannistraro S. Azurin modulates the association of Mdm2 with p53: SPR evidence from interaction of the full-length proteins. J. Mol. Recognit. 2011 24 4 707 714 10.1002/jmr.1105 21584881
    [Google Scholar]
  55. Chen R. Zhou J. Qin L. A fusion protein of the p53 transactivation domain and the p53-binding domain of the oncoprotein MdmX as an efficient system for high-throughput screening of MdmX inhibitors. Biochemistry 2017 56 25 3273 3282 10.1021/acs.biochem.7b00085 28581721
    [Google Scholar]
  56. Yaghoubi A. Khazaei M. Avan A. Hasanian S.M. Cho W.C. Soleimanpour S. p28 bacterial peptide, as an anticancer agent. Front. Oncol. 2020 10 1303 10.3389/fonc.2020.01303 32850408
    [Google Scholar]
  57. Bizzarri A.R. Moscetti I. Cannistraro S. Interaction of the anticancer p28 peptide with p53-DBD as studied by fluorescence, FRET, docking and MD simulations. Biochim. Biophys. Acta, Gen. Subj. 2019 1863 2 342 350 10.1016/j.bbagen.2018.11.003 30419285
    [Google Scholar]
  58. Moscetti I. Bizzarri A.R. Cannistraro S. Imaging and kinetics of the bimolecular complex formed by the tumor suppressor p53 with ubiquitin ligase COP1 as studied by atomic force microscopy and surface plasmon resonance. Int. J. Nanomedicine 2018 13 251 259 10.2147/IJN.S152214 29379285
    [Google Scholar]
  59. Elazab I.M. El-Feky O.A. Khedr E.G. El-Ashmawy N.E. Prostate cancer and the cell cycle: Focusing on the role of microRNAs. Gene 2024 928 148785 10.1016/j.gene.2024.148785 39053658
    [Google Scholar]
  60. Chen Y. Zeng H. Hou M. Qiu Y. Azurin regulates p21 and enhances the sensitivity of osteosarcoma cells to cisplatin. Altern. Ther. Health Med. 2023 29 7 119 125 10.1080/17425247.2022.2034784 37442187
    [Google Scholar]
  61. Nasri E. Torrence D.E. Vasilopoulos T. Cell cycle checkpoints p16 and p21-strong predictors of clinicopathologic outcomes in high-grade osteosarcoma. Cancer J. 2024 30 3 133 139 10.1097/PPO.0000000000000714 38753746
    [Google Scholar]
  62. Micewicz E.D. Jung C.L. Schaue D. Luong H. McBride W.H. Ruchala P. Small azurin-derived peptide targets ephrin receptors for radiotherapy. Int. J. Pept. Res. Ther. 2011 17 3 247 257 10.1007/s10989‑011‑9265‑9
    [Google Scholar]
  63. Pasquale E.B. Eph receptors and ephrins in cancer progression. Nat. Rev. Cancer 2024 24 1 5 27 10.1038/s41568‑023‑00634‑x 37996538
    [Google Scholar]
  64. Bhardwaj R. Mishra P. Engineered recombinant EGFP-azurin theranostic nanosystem for targeted therapy of prostate cancer. Mol. Pharm. 2023 20 12 6066 6078 10.1021/acs.molpharmaceut.3c00387 37906960
    [Google Scholar]
  65. Preta G. New insights into targeting membrane lipids for cancer therapy. Front. Cell Dev. Biol. 2020 8 571237 10.3389/fcell.2020.571237 32984352
    [Google Scholar]
  66. Jackson Cullison S.R. Flemming J.P. Karagoz K. Wermuth P.J. Mahoney M.G. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. J. Extracell. Biol. 2024 3 11 70017 10.1002/jex2.70017 39483807
    [Google Scholar]
  67. Eshaq A.M. Flanagan T.W. Hassan S.Y. Non-receptor tyrosine kinases: Their structure and mechanistic role in tumor progression and resistance. Cancers 2024 16 15 2754 10.3390/cancers16152754 39123481
    [Google Scholar]
  68. Galifi C.A. Wood T.L. Insulin-like growth factor-1 receptor crosstalk with integrins, cadherins, and the tumor microenvironment: Sticking points in understanding IGF1R function in cancer. Endocr. Relat. Cancer 2023 30 10 230031 10.1530/ERC‑23‑0031 37490874
    [Google Scholar]
  69. Stevens F.J. Homology versus analogy: Possible evolutionary relationship of immunoglobulins, cupredoxins, and Cu,Zn-superoxide dismutase. J. Mol. Recognit. 2008 21 1 20 29 10.1002/jmr.861 18080994
    [Google Scholar]
  70. Sood A. Jothiswaran V.V. Singh A. Sharma A. Anticancer peptides as novel immunomodulatory therapeutic candidates for cancer treatment. Explor. Target. Antitumor Ther. 2024 5 5 1074 1099 10.37349/etat.2024.00264 39351437
    [Google Scholar]
  71. Hassan LA Darweesh MF Hasan TH The immune-modulator activity of pseudomonas aeruginosa extracted protein: Azurin charming protein. Lat Am J Pharm 2023 42 S 245 51
    [Google Scholar]
  72. Hassan L.A. Darweesh M.F. Al-Muhanna S.G. Evaluation the fascinating effect of redox protein on the immune system. Lat. Am. J. Pharm. 2024 43 S5 1630 1636
    [Google Scholar]
  73. Ghasemi-Dehkordi P. Doosti A. Jami M.S. The effects of pBudCE4.1-azurin-MAM-A recombinant vector on IL-2, IL-6, IL-7, and IL-10 expressions in laboratory mice. Shahrekord Univ. Med. Sci. J. 2020 22 1 38 45 10.34172/jsums.2020.07
    [Google Scholar]
  74. Yaghoubi A. Movaqar A. Asgharzadeh F. Anticancer activity of Pseudomonas aeruginosa derived peptide with iRGD in colon cancer therapy. Iran. J. Basic Med. Sci. 2023 26 7 768 776 10.22038/IJBMS.2023.68331.14913 37396945
    [Google Scholar]
  75. Man M.Q. Wakefield J.S. Mauro T.M. Elias P.M. Regulatory role of nitric oxide in cutaneous inflammation. Inflammation 2022 45 3 949 964 10.1007/s10753‑021‑01615‑8 35094214
    [Google Scholar]
  76. Qin S. He G. Yang J. Nanomaterial combined engineered bacteria for intelligent tumor immunotherapy. J. Mater. Chem. B Mater. Biol. Med. 2024 12 39 9795 9820 10.1039/D4TB00741G 39225508
    [Google Scholar]
  77. Ebrahimzadeh S. Ahangari H. Soleimanian A. Colorectal cancer treatment using bacteria: Focus on molecular mechanisms. BMC Microbiol. 2021 21 1 218 10.1186/s12866‑021‑02274‑3 34281519
    [Google Scholar]
  78. Giurini E.F. Godla A. Gupta K.H. Redefining bioactive small molecules from microbial metabolites as revolutionary anticancer agents. Cancer Gene Ther. 2024 31 2 187 206 10.1038/s41417‑023‑00715‑x 38200347
    [Google Scholar]
  79. Bakare O.O. Gokul A. Wu R. Niekerk L.A. Klein A. Keyster M. Biomedical relevance of novel anticancer peptides in the sensitive treatment of cancer. Biomolecules 2021 11 8 1120 10.3390/biom11081120 34439786
    [Google Scholar]
  80. Anjana, Tiwari SK. Bacteriocin-producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota. Front. Cell. Infect. Microbiol. 2022 12 851140 10.3389/fcimb.2022.851140 35651753
    [Google Scholar]
  81. Balcik-Ercin P. Sever B. An investigation of bacteriocin nisin anti-cancer effects and FZD7 protein interactions in liver cancer cells. Chem. Biol. Interact. 2022 366 110152 10.1016/j.cbi.2022.110152 36084725
    [Google Scholar]
  82. Daba G.M. Elkhateeb W.A. Ribosomally synthesized bacteriocins of lactic acid bacteria: Simplicity yet having wide potentials – A review. Int. J. Biol. Macromol. 2024 256 Pt 1 128325 10.1016/j.ijbiomac.2023.128325 38007012
    [Google Scholar]
  83. Goh K.S. Ng Z.J. Halim M. Oslan S.N. Oslan S.N.H. Tan J.S. A comprehensive review on the anticancer potential of bacteriocin: Preclinical and clinical studies. Int. J. Pept. Res. Ther. 2022 28 2 75 10.1007/s10989‑022‑10386‑1
    [Google Scholar]
  84. Ma T. Liu Y. Yu B. DRAMP 4.0: An open-access data repository dedicated to the clinical translation of antimicrobial peptides. Nucleic Acids Res. 2025 53 D1 D403 D410 10.1093/nar/gkae1046 39526377
    [Google Scholar]
  85. Liu Z. Liu X. Zhang W. Gao R. Wei H. Yu C.Y. Current advances in modulating tumor hypoxia for enhanced therapeutic efficacy. Acta Biomater. 2024 176 1 27 10.1016/j.actbio.2024.01.010 38232912
    [Google Scholar]
  86. Xiao S. Shi H. Zhang Y. Bacteria-driven hypoxia targeting delivery of chemotherapeutic drug proving outcome of breast cancer. J. Nanobiotechnology 2022 20 1 178 10.1186/s12951‑022‑01373‑1 35366890
    [Google Scholar]
  87. Gammuto L. Chiellini C. Iozzo M. Fani R. Petroni G. The azurin coding gene: Origin and phylogenetic distribution. Microorganisms 2021 10 1 9 10.3390/microorganisms10010009 35056457
    [Google Scholar]
  88. Iozzo M. Vitali F. Chiellini C. Preliminary analysis of the presence of bacterial azurin coding gene in CRC patients and correlation with the microbiota composition. Front Biosci Land 2022 27 11 305 10.31083/j.fbl2711305 36472111
    [Google Scholar]
  89. Gao T. Niu L. Wu X. Sonogenetics-controlled synthetic designer cells for cancer therapy in tumor mouse models. Cell Rep. Med. 2024 5 5 101513 10.1016/j.xcrm.2024.101513 38608697
    [Google Scholar]
  90. Jia J. Wang X. Lin X. Zhao Y. Engineered microorganisms for advancing tumor therapy. Adv. Mater. 2024 36 24 2313389 10.1002/adma.202313389 38485221
    [Google Scholar]
  91. Lin Z. Meng F. Ma Y. In situ immunomodulation of tumors with biosynthetic bacteria promote anti-tumor immunity. Bioact. Mater. 2024 32 12 27 10.1016/j.bioactmat.2023.09.007 37790917
    [Google Scholar]
  92. Kiaheyrati N. Babaei A. Ranji R. Bahadoran E. Taheri S. Farokhpour Z. Cancer therapy with the viral and bacterial pathogens: The past enemies can be considered the present allies. Life Sci. 2024 349 122734 10.1016/j.lfs.2024.122734 38788973
    [Google Scholar]
  93. Murali S.K. Mansell T.J. Next generation probiotics: Engineering live biotherapeutics. Biotechnol. Adv. 2024 72 108336 10.1016/j.biotechadv.2024.108336 38432422
    [Google Scholar]
  94. Zhou Y. Li Q. Wu Y. Synergistic brilliance: Engineered bacteria and nanomedicine unite in cancer therapy. Adv. Mater. 2024 36 21 2313953 10.1002/adma.202313953 38400833
    [Google Scholar]
  95. Yu X. Lin C. Yu J. Qi Q. Wang Q. Bioengineered Escherichia coli Nissle 1917 for tumour-targeting therapy. Microb. Biotechnol. 2020 13 3 629 636 10.1111/1751‑7915.13523 31863567
    [Google Scholar]
  96. Xia X. Zhang J. Zhao B. Progress of engineered bacteria for tumour therapy. Int. Immunopharmacol. 2024 132 111935 10.1016/j.intimp.2024.111935 38599096
    [Google Scholar]
  97. Chen Y. Du M. Yuan Z. Chen Z. Yan F. Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy. Nat. Commun. 2022 13 1 4468 10.1038/s41467‑022‑31932‑x 35918309
    [Google Scholar]
  98. Jia L. Zhu L. The bacterial type III secretion system as a broadly applied protein delivery tool in biological sciences. Microorganisms 2025 13 1 75 10.3390/microorganisms13010075 39858842
    [Google Scholar]
  99. Lv Y. Li F. Wang S. Near-infrared light–triggered platelet arsenal for combined photothermal-immunotherapy against cancer. Sci. Adv. 2021 7 13 eabd7614 10.1126/sciadv.abd7614 33771861
    [Google Scholar]
  100. Zhang Y. Zhang Y. Xia L. Escherichia coli Nissle 1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein. Appl. Environ. Microbiol. 2012 78 21 7603 7610 10.1128/AEM.01390‑12 22923405
    [Google Scholar]
  101. Ma Y. Zhu G. Feng L. Jiang S. Xiang Q. Wang J. Efficient cytotoxicity of recombinant Azurin in Escherichia coli nissle 1917-derived minicells against colon cancer cells. Bioengineering 2023 10 10 1188 10.3390/bioengineering10101188 37892918
    [Google Scholar]
  102. Abdessalem M.A. Adham S.A. Research advancements in nanoparticles and cell-based drug delivery systems for the targeted killing of cancer cells. Oncol. Res. 2025 33 1 27 44 10.32604/or.2024.056955 39735681
    [Google Scholar]
  103. Evans L. Walker R. MacDiarmid J. A phase 1 study of intravenous EGFR-ErbituxEDVsMIT in children with solid or CNS tumours expressing epidermal growth factor receptor. Target. Oncol. 2024 19 3 333 342 10.1007/s11523‑024‑01051‑2 38546944
    [Google Scholar]
  104. Radford G.A. Vrbanac L. de Nys R.T. Towards understanding tumour colonisation by probiotic bacterium E. coli nissle 1917. Cancers 2024 16 17 2971 10.3390/cancers16172971 39272829
    [Google Scholar]
  105. Ghasemi K. Ghasemi K. A Brief look at antitumor effects of doxycycline in the treatment of colorectal cancer and combination therapies. Eur. J. Pharmacol. 2022 916 174593 10.1016/j.ejphar.2021.174593 34973952
    [Google Scholar]
  106. Tang H. Zhou T. Jin W. Tumor-targeting engineered probiotic Escherichia coli Nissle 1917 inhibits colorectal tumorigenesis and modulates gut microbiota homeostasis in mice. Life Sci. 2023 324 121709 10.1016/j.lfs.2023.121709 37100380
    [Google Scholar]
  107. Van den Berghe L. Masschelein J. Pinheiro V.B. From competition to cure: The development of live biotherapeutic products for anticancer therapy in the iGEM competition. Front. Bioeng. Biotechnol. 2024 12 1447176 10.3389/fbioe.2024.1447176 39351063
    [Google Scholar]
  108. Falzone L. Lavoro A. Candido S. Salmeri M. Zanghì A. Libra M. Benefits and concerns of probiotics: An overview of the potential genotoxicity of the colibactin-producing Escherichia coli Nissle 1917 strain. Gut Microbes 2024 16 1 2397874 10.1080/19490976.2024.2397874 39229962
    [Google Scholar]
  109. Qu B. Yuan J. Liu X. Zhang S. Ma X. Lu L. Anticancer activities of natural antimicrobial peptides from animals. Front. Microbiol. 2024 14 1321386 10.3389/fmicb.2023.1321386 38298540
    [Google Scholar]
  110. Chinnadurai R.K. Khan N. Meghwanshi G.K. Ponne S. Althobiti M. Kumar R. Current research status of anti-cancer peptides: Mechanism of action, production, and clinical applications. Biomed. Pharmacother. 2023 164 114996 10.1016/j.biopha.2023.114996 37311281
    [Google Scholar]
  111. Bhattarai S. Tayara H. Chong K.T. Advancing peptide-based cancer therapy with AI: In-depth analysis of state-of-the-art AI models. J. Chem. Inf. Model. 2024 64 13 4941 4957 10.1021/acs.jcim.4c00295 38874445
    [Google Scholar]
  112. Lei Y. Liu J. Bai Y. Zheng C. Wang D. Peptides as versatile regulators in cancer immunotherapy: Recent advances, challenges, and future prospects. Pharmaceutics 2025 17 1 46 10.3390/pharmaceutics17010046 39861694
    [Google Scholar]
  113. Vadevoo S.M.P. Gurung S. Lee H.S. Peptides as multifunctional players in cancer therapy. Exp. Mol. Med. 2023 55 6 1099 1109 10.1038/s12276‑023‑01016‑x 37258584
    [Google Scholar]
  114. Ghaly G. Tallima H. Dabbish E. Anti-cancer peptides: Status and future prospects. Molecules 2023 28 3 1148 10.3390/molecules28031148 36770815
    [Google Scholar]
  115. Khazaei Monfared Y. Mahmoudian M. Cecone C. Stabilization and anticancer enhancing activity of the peptide nisin by cyclodextrin-based nanosponges against colon and breast cancer cells. Polymers 2022 14 3 594 10.3390/polym14030594 35160583
    [Google Scholar]
  116. Lättig-Tünnemann G. Prinz M. Hoffmann D. Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides. Nat. Commun. 2011 2 1 453 10.1038/ncomms1459 21878907
    [Google Scholar]
  117. Ma Y. Gong C. Ma Y. Direct cytosolic delivery of cargoes in vivo by a chimera consisting of D- and L-arginine residues. J. Control. Release 2012 162 2 286 294 10.1016/j.jconrel.2012.07.022 22824782
    [Google Scholar]
  118. Bottens R.A. Yamada T. Cell-penetrating peptides (CPPs) as therapeutic and diagnostic agents for cancer. Cancers 2022 14 22 5546 10.3390/cancers14225546 36428639
    [Google Scholar]
  119. Shuaib H. Saleem M.Z. Alshahrani M.Y. Development and bioactivity assessment of a recombinant Pseudomonas aeruginosa azurin-BR2 peptide fusion protein: A novel approach to cancer immunotherapy. J. Biol. Regul. Homeost. Agents 2024 38 7 5573 5581 10.23812/j.biol.regul.homeost.agents.20243807.448
    [Google Scholar]
  120. Sadeghi F. Kajbaf M. Shafiee F. BR2, a buforin-derived cancer-specific cell-penetrating peptide for targeted delivering of toxic agents: A review article. Int. J. Pept. Res. Ther. 2022 28 3 93 10.1007/s10989‑022‑10384‑3
    [Google Scholar]
  121. Rehman H.M. Yousaf N. Hina S.M. Design and computational analysis of a novel Azurin-BR2 chimeric protein against breast cancer. Toxicol. Res. 2024 13 6 tfae179 10.1093/toxres/tfae179 39507591
    [Google Scholar]
  122. Wang W. Zou R. Qiu Y. Interaction networks converging on immunosuppressive roles of granzyme B: Special niches within the tumor microenvironment. Front. Immunol. 2021 12 670324 10.3389/fimmu.2021.670324 33868318
    [Google Scholar]
  123. Paydarnia N. Khoshtinat Nikkhoi S. Fakhravar A. Mehdiabdol M. Heydarzadeh H. Ranjbar S. Synergistic effect of granzyme B-azurin fusion protein on breast cancer cells. Mol. Biol. Rep. 2019 46 3 3129 3140 10.1007/s11033‑019‑04767‑x 30937652
    [Google Scholar]
  124. Nikitovic D. Kukovyakina E. Berdiaki A. Enhancing tumor-targeted therapy: The role of iRGD peptide in advanced drug delivery systems. Cancers 2024 16 22 3768 10.3390/cancers16223768 39594723
    [Google Scholar]
  125. Singh S Anshita D Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol 2021 Dec 101 Pt B 107598 10.1016/j.intimp.2021.107598
    [Google Scholar]
  126. Kardani K. Bolhassani A. Cppsite 2.0: An available database of experimentally validated cell-penetrating peptides predicting their secondary and tertiary structures. J. Mol. Biol. 2021 433 11 166703 10.1016/j.jmb.2020.11.002 33186582
    [Google Scholar]
  127. Cerrato C.P. Langel Ü. An update on cell-penetrating peptides with intracellular organelle targeting. Expert Opin. Drug Deliv. 2022 19 2 133 146 10.1080/17425247.2022.2034784 35086398
    [Google Scholar]
  128. Sousa M.L. Ribeiro T. Vasconcelos V. Linder S. Urbatzka R. Portoamides A and B are mitochondrial toxins and induce cytotoxicity on the proliferative cell layer of in vitro microtumours. Toxicon 2020 175 49 56 10.1016/j.toxicon.2019.12.159 31887317
    [Google Scholar]
  129. Su P. Zhu Z. Tian Y. A TAT peptide-based ratiometric two-photon fluorescent probe for detecting biothiols and sequentially distinguishing GSH in mitochondria. Talanta 2020 218 121127 10.1016/j.talanta.2020.121127 32797884
    [Google Scholar]
  130. Teo S.L.Y. Rennick J.J. Yuen D. Al-Wassiti H. Johnston A.P.R. Pouton C.W. Unravelling cytosolic delivery of cell penetrating peptides with a quantitative endosomal escape assay. Nat. Commun. 2021 12 1 3721 10.1038/s41467‑021‑23997‑x 34140497
    [Google Scholar]
  131. Soni S. Kori S.K. Nema P. Iyer A.K. Soni V. Kashaw S.K. Cell-penetrating peptides as keys to endosomal escape and intracellular trafficking in nanomedicine delivery. Curr. Med. Chem. 2025 32 7 1288 1312 10.2174/0109298673278936240107121907 38362688
    [Google Scholar]
  132. Milewska S. Sadowska A. Stefaniuk N. Tumor-Homing peptides as crucial components of magnetic-based delivery systems: Recent developments and pharmacoeconomical perspective. Int. J. Mol. Sci. 2024 25 11 6219 10.3390/ijms25116219 38892406
    [Google Scholar]
  133. Khalid S. Rehman H.M. Al-Qassab Y. Design and computational analysis of a novel Leptulipin-p28 fusion protein as a multitarget anticancer therapy in breast cancer. Toxicol. Res. 2024 13 5 tfae174 10.1093/toxres/tfae174 39403123
    [Google Scholar]
  134. Soleimani M. Mirmohammmad Sadeghi H. Jahanian-Najafabadi A. A bi-functional targeted P28-NRC chimeric protein with enhanced cytotoxic effects on breast cancer cell lines. Iran. J. Pharm. Res. 2019 18 2 735 744 10.22037/ijpr.2019.2392 31531057
    [Google Scholar]
  135. Raber H.F. Heerde T. El Din S.N. Azulitox—A Pseudomonas aeruginosa P28-derived cancer-cell-specific protein photosensitizer. Biomacromolecules 2020 21 12 5067 5076 10.1021/acs.biomac.0c01216 33140635
    [Google Scholar]
  136. Ali N. Rasheed L. Rehman W. A review on recent trends in photo-drug efficiency of advanced biomaterials in photodynamic therapy of cancer. Mini Rev. Med. Chem. 2025 25 4 259 276 10.2174/0113895575320468240912093945 39364861
    [Google Scholar]
  137. Riani Y.D. Matsuda T. Nagai T. Genetically encoded photosensitizer for destruction of protein or cell function. Adv. Exp. Med. Biol. 2021 1293 265 279 10.1007/978‑981‑15‑8763‑4_16 33398819
    [Google Scholar]
  138. Favella P. Kissmann A.K. Raber H.F. Diffusion-controlled release of the theranostic protein-photosensitizer Azulitox from composite of Fmoc-Phenylalanine Fibrils encapsulated with BSA hydrogels. J. Biotechnol. 2021 341 51 62 10.1016/j.jbiotec.2021.08.014 34464649
    [Google Scholar]
  139. Pierri G. Schettini R. Advances in MRI: Peptide and peptidomimetic-based contrast agents. J. Pept. Sci. 2024 30 3 3544 10.1002/psc.3544 37726947
    [Google Scholar]
  140. Veal M. Dias G. Kersemans V. Sneddon D. Faulkner S. Cornelissen B. A model system to explore the detection limits of antibody-based immuno-SPECT imaging of exclusively intranuclear epitopes. J. Nucl. Med. 2021 62 11 1537 1544 10.2967/jnumed.120.251173 33789931
    [Google Scholar]
  141. Duan X. Wang P. He L. Peptide-functionalized inorganic oxide nanomaterials for solid cancer imaging and therapy. Adv. Mater. 2024 36 37 2311548 10.1002/adma.202311548 38333964
    [Google Scholar]
  142. Stiltner J. McCandless K. Zahid M. Cell-penetrating peptides: Applications in tumor diagnosis and therapeutics. Pharmaceutics 2021 13 6 890 10.3390/pharmaceutics13060890 34204007
    [Google Scholar]
  143. Karmarkar R. Benjafield A. Aroori S. The role of colour segmented fluorescence (CSF) mode and same-day administration of low-dose indocyanine green in liver surgery: Our initial experience. J. Fluoresc. 2024 34 5 2133 2138 10.1007/s10895‑023‑03434‑6 37713013
    [Google Scholar]
  144. Naffouje S. Goto M. Ryoo I. Green A. Das Gupta T.K. Yamada T. A method of tumor in vivo imaging with a new peptide-based fluorescent probe. Methods Mol. Biol. 2022 2394 857 865 10.1007/978‑1‑0716‑1811‑0_45 35094362
    [Google Scholar]
  145. Naffouje S.A. Goto M. Coward L.U. Nontoxic tumor-targeting optical agents for intraoperative breast tumor imaging. J. Med. Chem. 2022 65 10 7371 7379 10.1021/acs.jmedchem.2c00417 35544687
    [Google Scholar]
  146. Al-Hazmi N.E. Naguib D.M. Microbial azurin immobilized on nano-chitosan as anticancer and antibacterial agent against gastrointestinal cancers and related bacteria. J. Gastrointest. Cancer 2022 53 3 537 542 10.1007/s12029‑021‑00654‑6 34159520
    [Google Scholar]
  147. Bahramifar S. Baharifar H. Maghami P. Enhancement of anticancer effect of azurin using polymeric nanoparticles. Charact Applicat Nanomat 2023 6 1 1 9 10.24294/can.v6i1.2306
    [Google Scholar]
  148. Rani PS Reddy SA Anusha K An overview on tyrosine kinase inhibitor gefitinib drug delivery systems for enhanced treatment of cancer. Biotech Res Asia 2025 22 1 3ElQG6y
    [Google Scholar]
  149. Garizo A.R. Castro F. Martins C. p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer. J. Control. Release 2021 337 329 342 10.1016/j.jconrel.2021.07.035 34311024
    [Google Scholar]
  150. Wang S. Han J. Wang Z. Targeted therapy of tumors and cancer stem cells based on oxidant-regulated redox pathway and its mechanism. Curr. Computeraided Drug Des. 2025 21 4 425 440 10.2174/0115734099299174240522115944 38818918
    [Google Scholar]
  151. Northcote-Smith J. Suntharalingam K. Targeting chemotherapy-resistant tumour sub-populations using inorganic chemistry: Anti-cancer stem cell metal complexes. Curr. Opin. Chem. Biol. 2023 72 102237 10.1016/j.cbpa.2022.102237 36542889
    [Google Scholar]
  152. Sivakrishna N. Kondaiah P. Nethaji M. Phenanthroline arbitrated potent anticancer activity of the copper complex of nucleobase derivatives. SSRN 2024 4875578 10.2139/ssrn.4875578
    [Google Scholar]
  153. Lu X. Gao S. Lin H. Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy. Adv. Mater. 2020 32 36 2002246 10.1002/adma.202002246 32705751
    [Google Scholar]
  154. Johnson A. Iffland-Mühlhaus L. Northcote-Smith J. A bioinspired redox-modulating copper(ii)–macrocyclic complex bearing non-steroidal anti-inflammatory drugs with anti-cancer stem cell activity. Dalton Trans. 2022 51 15 5904 5912 10.1039/D2DT00788F 35348171
    [Google Scholar]
  155. Merola E. Grana C.M. Peptide receptor radionuclide therapy (PRRT): Innovations and improvements. Cancers 2023 15 11 2975 10.3390/cancers15112975 37296936
    [Google Scholar]
  156. Chakraborty K. Mondal J. An J.M. Park J. Lee Y.K. Advances in radionuclides and radiolabeled peptides for cancer therapeutics. Pharmaceutics 2023 15 3 971 10.3390/pharmaceutics15030971 36986832
    [Google Scholar]
  157. Carlsen E.A. Johnbeck C.B. Loft M. Semiautomatic tumor delineation for evaluation of 64Cu-DOTATATE PET/CT in patients with neuroendocrine neoplasms: Prognostication based on lowest lesion uptake and total tumor volume. J. Nucl. Med. 2021 62 11 1564 1570 10.2967/jnumed.120.258392 33637589
    [Google Scholar]
  158. Pinato O. Musetti C. Sissi C. Pt-based drugs: The spotlight will be on proteins. Metallomics 2014 6 3 380 395 10.1039/C3MT00357D 24510227
    [Google Scholar]
  159. A Ali M, S Mohamed M, G Sedek R, Anwar M. Can metal replacement increase the antitumor activity of azurin? (in vitro study). General Medicine Open 2017 1 2 1 7 10.15761/GMO.1000111
    [Google Scholar]
  160. Mahgoub E.O. Cho W.C. Sharifi M. Role of functional genomics in identifying cancer drug resistance and overcoming cancer relapse. Heliyon 2024 10 1 22095 10.1016/j.heliyon.2023.e22095 38249111
    [Google Scholar]
  161. Kozak M. Hu J. DNA vaccines: Their formulations, engineering and delivery. Vaccines 2024 12 1 71 10.3390/vaccines12010071 38250884
    [Google Scholar]
  162. Lu B. Lim J.M. Yu B. The next-generation DNA vaccine platforms and delivery systems: Advances, challenges and prospects. Front. Immunol. 2024 15 1332939 10.3389/fimmu.2024.1332939 38361919
    [Google Scholar]
  163. Kalakenger S. Yildiz Arslan S. Turhan F. Heterologous expression of codon-optimized azurin transferred by magnetofection method in MCF-10A cells. Mol. Biotechnol. 2024 66 6 1434 1445 10.1007/s12033‑023‑00798‑9 37378861
    [Google Scholar]
  164. Ghasemi-Dehkordi P. Doosti A. Jami M.S. The functions of azurin of Pseudomonas aeruginosa and human mammaglobin-A on proapoptotic and cell cycle regulatory genes expression in the MCF-7 breast cancer cell line. Saudi J. Biol. Sci. 2020 27 9 2308 2317 10.1016/j.sjbs.2020.04.007 32884412
    [Google Scholar]
  165. Solak K. Yildiz Arslan S. Acar M. Combination of magnetic hyperthermia and gene therapy for breast cancer. Apoptosis 2024 ••• 1 18 10.1007/s10495‑024‑02026‑4 39427089
    [Google Scholar]
  166. Mello D.B. Mesquita F.C.P. Silva dos Santos D. Mesenchymal stromal cell-based products: Challenges and clinical therapeutic options. Int. J. Mol. Sci. 2024 25 11 6063 10.3390/ijms25116063 38892249
    [Google Scholar]
  167. Gil-Chinchilla J.I. Zapata A.G. Moraleda J.M. García-Bernal D. Bioengineered mesenchymal stem/stromal cells in anti-cancer therapy: Current trends and future prospects. Biomolecules 2024 14 7 734 10.3390/biom14070734 39062449
    [Google Scholar]
  168. Waqar M.A. Zaman M. Khan R. Shafeeq Ur Rahman M. Majeed I. Navigating the tumor microenvironment: Mesenchymal stem cell-mediated delivery of anticancer agents. J. Drug Target. 2024 32 6 624 634 10.1080/1061186X.2024.2347356 38652480
    [Google Scholar]
  169. Boltman T. Meyer M. Ekpo O. Diagnostic and therapeutic approaches for glioblastoma and neuroblastoma cancers using chlorotoxin nanoparticles. Cancers (Basel) 2023 15 13 3388 10.3390/cancers15133388 37444498
    [Google Scholar]
  170. Li J. Sun Y. Zhao X. Radiation induces IRAK1 expression to promote radioresistance by suppressing autophagic cell death via decreasing the ubiquitination of PRDX1 in glioma cells. Cell Death Dis. 2023 14 4 259 10.1038/s41419‑023‑05732‑0 37031183
    [Google Scholar]
  171. Hutchinson M.K.N.D. Mierzwa M. D’Silva N.J. Radiation resistance in head and neck squamous cell carcinoma: Dire need for an appropriate sensitizer. Oncogene 2020 39 18 3638 3649 10.1038/s41388‑020‑1250‑3 32157215
    [Google Scholar]
  172. McKinnon C. Nandhabalan M. Murray S.A. Plaha P. Glioblastoma: Clinical presentation, diagnosis, and management. BMJ 2021 374 1560 n1560 10.1136/bmj.n1560 34261630
    [Google Scholar]
  173. Culkins C. Adomanis R. Phan N. Unlocking the gates: Therapeutic agents for noninvasive drug delivery across the blood-brain barrier. Mol. Pharm. 2024 21 11 5430 5454 10.1021/acs.molpharmaceut.4c00604 39324552
    [Google Scholar]
  174. Warso M.A. Richards J.M. Mehta D. A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. Br. J. Cancer 2013 108 5 1061 1070 10.1038/bjc.2013.74 23449360
    [Google Scholar]
  175. Lulla R.R. Goldman S. Yamada T. Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A pediatric brain tumor consortium study. Neuro-oncol. 2016 18 9 1319 1325 10.1093/neuonc/now047 27022131
    [Google Scholar]
  176. Mander S. Gorman G.S. Coward L.U. The brain-penetrant cell-cycle inhibitor p28 sensitizes brain metastases to DNA-damaging agents. Neurooncol. Adv. 2023 5 1 vdad042 10.1093/noajnl/vdad042 37197737
    [Google Scholar]
  177. Majerova P. Hanes J. Olesova D. Sinsky J. Pilipcinec E. Kovac A. Novel blood–brain barrier shuttle peptides discovered through the phage display method. Molecules 2020 25 4 874 10.3390/molecules25040874 32079185
    [Google Scholar]
  178. Ye Z. Sheu W.C. Qu H. Autocatalytic, brain tumor-targeting delivery of bardoxolone methyl self-assembled nanoparticles for glioblastoma treatment. Small Sci. 2024 4 8 2400081 10.1002/smsc.202400081 40212541
    [Google Scholar]
  179. Du T. Gao J. Li P. Pyroptosis, metabolism, and tumor immune microenvironment. Clin. Transl. Med. 2021 11 8 492 10.1002/ctm2.492 34459122
    [Google Scholar]
  180. Wei X. Xie F. Zhou X. Role of pyroptosis in inflammation and cancer. Cell. Mol. Immunol. 2022 19 9 971 992 10.1038/s41423‑022‑00905‑x 35970871
    [Google Scholar]
  181. Liu Z. Chen J. Ren Y. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct. Target. Ther. 2024 9 1 270 10.1038/s41392‑024‑01955‑5 39389953
    [Google Scholar]
  182. Xiang Y. Li Z. Pan D. Gong Q. Luo K. Liu Y. Challenges and opportunities of nanomedicine: Novel comprehensive approaches for brain metastasis. Small Struct. 2024 5 2 2300148 10.1002/sstr.202300148
    [Google Scholar]
  183. Baarda B.I. Zielke R.A. Jerse A.E. Sikora A.E. Lipid-modified azurin of Neisseria gonorrhoeae is not surface exposed and does not interact with the nitrite reductase AniA. Front. Microbiol. 2018 9 2915 10.3389/fmicb.2018.02915 30538694
    [Google Scholar]
  184. Hong C.S. Yamada T. Hashimoto W. Fialho A.M. Das Gupta T.K. Chakrabarty A.M. Disrupting the entry barrier and attacking brain tumors: The role of the Neisseria H.8 epitope and the Laz protein. Cell Cycle 2006 5 15 1633 1641 10.4161/cc.5.15.2991 16861907
    [Google Scholar]
  185. Mansour M. Ismail S. Abou-Aisha K. Bacterial delivery of the anti-tumor azurin-like protein Laz to glioblastoma cells. AMB Express 2020 10 1 59 10.1186/s13568‑020‑00995‑8 32221741
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501415032251108152158
Loading
/content/journals/cdt/10.2174/0113894501415032251108152158
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test