Skip to content
2000
image of Targeting the Toll-like Receptor Signaling Pathway in Lung Cancer: Therapeutic Opportunities and Challenges

Abstract

Lung cancer, particularly non-small cell lung cancer, is a leading cause of global mortality, with many cases diagnosed at advanced stages. The Toll-Like Receptor (TLR) signaling pathway plays a crucial role in linking inflammation to lung cancer progression, with both pro-tumor and anti-tumor effects. This perspective delves into the complex functions of TLR proteins in lung cancers, elucidating their involvement in tumor growth, angiogenesis, and metastasis. In addition, we highlight the therapeutic potentials of TLR agonists and antagonists, emphasizing their interplay with immune checkpoint inhibitors like PD-1/PD-L1 blockers to overcome immunosuppressive barriers. Nevertheless, the paradoxical effects of TLR activation, balancing immune stimulation and suppression, demand precise targeting strategies. Collectively, our study synthesizes the current understanding of TLR signaling pathways in lung cancers, offering insights into their potential for advancing lung cancer therapies.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501414090250903070446
2025-11-03
2025-09-14
Loading full text...

Full text loading...

References

  1. Calabrese F. Pezzuto F. Lunardi F. Fortarezza F. Tzorakoleftheraki S.E. Resi M.V. Tiné M. Pasello G. Hofman P. Morphologic-Molecular transformation of oncogene addicted non-small cell lung cancer. Int. J. Mol. Sci. 2022 23 8 4164 10.3390/ijms23084164 35456982
    [Google Scholar]
  2. Stridfeldt F. Cavallaro S. Hååg P. Lewensohn R. Linnros J. Viktorsson K. Dev A. Analyses of single extracellular vesicles from non-small lung cancer cells to reveal effects of epidermal growth factor receptor inhibitor treatments. Talanta 2023 259 124553 10.1016/j.talanta.2023.124553 37084607
    [Google Scholar]
  3. Wang M. Herbst R.S. Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med. 2021 27 8 1345 1356 10.1038/s41591‑021‑01450‑2 34385702
    [Google Scholar]
  4. Zhao Y. Guo S. Deng J. Shen J. Du F. Wu X. Chen Y. Li M. Chen M. Li X. Li W. Gu L. Sun Y. Wen Q. Li J. Xiao Z. VEGF/VEGFR-Targeted therapy and immunotherapy in non-small cell lung cancer: Targeting the tumor microenvironment. Int. J. Biol. Sci. 2022 18 9 3845 3858 10.7150/ijbs.70958 35813484
    [Google Scholar]
  5. Li Y. Yan B. He S. Advances and challenges in the treatment of lung cancer. Biomed. Pharmacother. 2023 169 115891 10.1016/j.biopha.2023.115891 37979378
    [Google Scholar]
  6. Diebels I. Van Schil P.E.Y. Diagnosis and treatment of non-small cell lung cancer: Current advances and challenges. J. Thorac. Dis. 2022 14 6 1753 1757 10.21037/jtd‑22‑364 35813756
    [Google Scholar]
  7. Attieh F. Chartouni A. Boutros M. Mouawad A. Kourie H.R. Tackling the immunotherapy conundrum: Advances and challenges for operable non-small-cell lung cancer treatment. Immunotherapy 2023 15 16 1415 1428 10.2217/imt‑2023‑0128 37671552
    [Google Scholar]
  8. Vicidomini G. Current challenges and future advances in lung cancer: Genetics, instrumental diagnosis and treatment. Cancers 2023 15 14 3710 10.3390/cancers15143710 37509371
    [Google Scholar]
  9. Ying J. Hong H. Yu C. Jiang M. Ding D. Identification of TLRs as potential prognostic biomarkers for lung adenocarcinoma. Medicine 2023 102 38 e34954 10.1097/MD.0000000000034954 37746997
    [Google Scholar]
  10. Millar F.R. Pennycuick A. Muir M. Quintanilla A. Hari P. Freyer E. Gautier P. Meynert A. Grimes G. Coll C.S. Zdral S. Victorelli S. Teixeira V.H. Connelly J. Passos J.F. Ros M.A. Wallace W.A.H. Frame M.C. Sims A.H. Boulter L. Janes S.M. Wilkinson S. Acosta J.C. Toll-like receptor 2 orchestrates a tumor suppressor response in non-small cell lung cancer. Cell Rep. 2022 41 6 111596 10.1016/j.celrep.2022.111596 36351380
    [Google Scholar]
  11. Hoden B. DeRubeis D. Martinez-Moczygemba M. Ramos K.S. Zhang D. Understanding the role of Toll-like receptors in lung cancer immunity and immunotherapy. Front. Immunol. 2022 13 1033483 10.3389/fimmu.2022.1033483 36389785
    [Google Scholar]
  12. Otsuka T. Nishida S. Shibahara T. Temizoz B. Hamaguchi M. Shiroyama T. Kimura K. Miyake K. Hirata H. Mizuno Y. Yagita M. Manabe Y. Kuroda E. Takeda Y. Kida H. Ishii K.J. Kumanogoh A. CpG ODN (K3)—toll- like receptor 9 agonist—induces Th1-type immune response and enhances cytotoxic activity in advanced lung cancer patients: A phase I study. BMC Cancer 2022 22 1 744 10.1186/s12885‑022‑09818‑4 35799134
    [Google Scholar]
  13. Jiang D.S. Wang Y.W. Jiang J. Li S.M. Liang S.Z. Fang H.Y. MicroRNA-26a involved in Toll-like receptor 9-mediated lung cancer growth and migration. Int. J. Mol. Med. 2014 34 1 307 312 10.3892/ijmm.2014.1764 24788552
    [Google Scholar]
  14. Pedicillo M.C. De Stefano I.S. Zamparese R. Barile R. Meccariello M. Agostinone A. Villani G. Colangelo T. Serviddio G. Cassano T. Ronchi A. Franco R. Pannone P. Zito Marino F. Miele F. Municinò M. Pannone G. The role of toll- like receptor-4 in macrophage imbalance in lethal covid-19 lung disease, and its correlation with galectin-3. Int. J. Mol. Sci. 2023 24 17 13259 10.3390/ijms241713259 37686069
    [Google Scholar]
  15. Ceccarelli S. Pasqua Marzolesi V. Vannucci J. Bellezza G. Floridi C. Nocentini G. Cari L. Traina G. Petri D. Puma F. Conte C. Toll-Like receptor 4 and 8 are overexpressed in lung biopsies of human non-small cell lung carcinoma. Lung 2025 203 1 38 10.1007/s00408‑025‑00793‑8 40025339
    [Google Scholar]
  16. Gowing S.D. Chow S.C. Cools-Lartigue J.J. Chen C.B. Najmeh S. Jiang H.Y. Bourdeau F. Beauchamp A. Mancini U. Angers I. Giannias B. Spicer J.D. Rousseau S. Qureshi S.T. Ferri L.E. Gram-positive pneumonia augments non-small cell lung cancer metastasis via host toll-like receptor 2 activation. Int. J. Cancer 2017 141 3 561 571 10.1002/ijc.30734 28401532
    [Google Scholar]
  17. Chen K. Huang J. Gong W. Iribarren P. Dunlop N.M. Wang J.M. Toll-like receptors in inflammation, infection and cancer. Int. Immunopharmacol. 2007 7 10 1271 1285 10.1016/j.intimp.2007.05.016 17673142
    [Google Scholar]
  18. Gu J. Liu Y. Xie B. Ye P. Huang J. Lu Z. Roles of toll-like receptors: From inflammation to lung cancer progression. Biomed. Rep. 2018 8 2 126 132 29435270
    [Google Scholar]
  19. Velasco W.V. Khosravi N. Castro-Pando S. Torres-Garza N. Grimaldo M.T. Krishna A. Clowers M.J. Umer M. Tariq Amir S. Del Bosque D. Daliri S. De La Garza M.M. Ramos-Castaneda M. Evans S.E. Moghaddam S.J. Toll-like receptors 2, 4, and 9 modulate promoting effect of COPD-like airway inflammation on K-ras-driven lung cancer through activation of the MyD88/NF-ĸB pathway in the airway epithelium. Front. Immunol. 2023 14 1118721 10.3389/fimmu.2023.1118721 37283745
    [Google Scholar]
  20. Ji S. Zhou X. Hoffmann J.A. Toll-mediated airway homeostasis is essential for fly survival upon injection of RasV12-GFP oncogenic cells. Cell Rep. 2024 43 2 113677 10.1016/j.celrep.2024.113677 38236774
    [Google Scholar]
  21. Takeda K. Kaisho T. Akira S. Toll-Like Receptors. Annu. Rev. Immunol. 2003 21 1 335 376 10.1146/annurev.immunol.21.120601.141126 12524386
    [Google Scholar]
  22. Akira S. Toll receptor families: Structure and function. Semin. Immunol. 2004 16 1 1 2 10.1016/j.smim.2003.10.001 14751756
    [Google Scholar]
  23. Janeway C.A. Jr Medzhitov R. Innate immune recognition. Annu. Rev. Immunol. 2002 20 1 197 216 10.1146/annurev.immunol.20.083001.084359 11861602
    [Google Scholar]
  24. Kawai T. Akira S. Toll-like receptor downstream signaling. Arthritis Res. 2005 7 1 12 19 10.1186/ar1469 15642149
    [Google Scholar]
  25. Akira S. Uematsu S. Takeuchi O. Pathogen recognition and innate immunity. Cell 2006 124 4 783 801 10.1016/j.cell.2006.02.015 16497588
    [Google Scholar]
  26. Kawai T. Akira S. TLR signaling. Semin. Immunol. 2007 19 1 24 32 10.1016/j.smim.2006.12.004 17275323
    [Google Scholar]
  27. Kumagai Y. Takeuchi O. Akira S. Pathogen recognition by innate receptors. J. Infect. Chemother. 2008 14 2 86 92 10.1007/s10156‑008‑0596‑1 18622669
    [Google Scholar]
  28. Ji S. Hoffmann J. A. Toll-9 prevents the proliferation of injected oncogenic cells in adult flies. J Genet Genomics 2024 51 11 1331 1333 10.1016/j.jgg.2024.07.002 38972373
    [Google Scholar]
  29. Fisch D. Zhang T. Sun H. Ma W. Tan Y. Gygi S.P. Higgins D.E. Kagan J.C. Molecular definition of the endogenous Toll-like receptor signalling pathways. Nature 2024 631 8021 635 644 10.1038/s41586‑024‑07614‑7 38961291
    [Google Scholar]
  30. Schultz T.E. Mathmann C.D. Domínguez Cadena L.C. Muusse T.W. Kim H. Wells J.W. Ulett G.C. Hamerman J.A. Brooks A.J. Kobe B. Sweet M.J. Stacey K.J. Blumenthal A. TLR4 endocytosis and endosomal TLR4 signaling are distinct and independent outcomes of TLR4 activation. EMBO Rep. 2025 26 10 2740 2766 10.1038/s44319‑025‑00444‑2 40204912
    [Google Scholar]
  31. Javaid N. Choi S. Toll-like receptors from the perspective of cancer treatment. Cancers 2020 12 2 297 10.3390/cancers12020297 32012718
    [Google Scholar]
  32. Samara K. Antoniou K.M. Karagiannis K. Margaritopoulos G. Lasithiotaki I. Koutala E. Siafakas N.M. Expression profiles of Toll-like receptors in non-small cell lung cancer and idiopathic pulmonary fibrosis. Int. J. Oncol. 2012 40 5 1397 1404 10.3892/ijo.2012.1374 22344343
    [Google Scholar]
  33. Zhang Y.B. He F.L. Fang M. Hua T.F. Hu B.D. Zhang Z.H. Cao Q. Liu R.Y. Increased expression of Toll- like receptors 4 and 9 in human lung cancer. Mol. Biol. Rep. 2009 36 6 1475 1481 10.1007/s11033‑008‑9338‑9 18763053
    [Google Scholar]
  34. Smok-Kalwat J. Mertowska P. Mertowski S. Góźdź S. Korona-Głowniak I. Kwaśniewski W. Grywalska E. Analysis of selected toll-like receptors in the pathogenesis and advancement of non-small-cell lung cancer. J. Clin. Med. 2024 13 10 2793 10.3390/jcm13102793 38792335
    [Google Scholar]
  35. Bai J. Shi Z. Wang S. Pan H. Zhang T. MiR-21 and let-7 cooperation in the regulation of lung cancer. Front. Oncol. 2022 12 950043 10.3389/fonc.2022.950043 36249072
    [Google Scholar]
  36. Cretoiu D. Chen F. Zheng Y. Zhang D. Qian B. Ji H. Long F. Cretoiu D. miR-21 regulates growth and EMT in lung cancer cells via PTEN Akt GSK3 β signaling. Front. Biosci. 2019 24 8 1426 1439 10.2741/4788 31136988
    [Google Scholar]
  37. Rama A.R. Quiñonero F. Mesas C. Melguizo C. Prados J. Synthetic circular mir-21 sponge as tool for lung cancer treatment. Int. J. Mol. Sci. 2022 23 6 2963 10.3390/ijms23062963 35328383
    [Google Scholar]
  38. Pop-Bica C. Pintea S. Magdo L. Cojocneanu R. Gulei D. Ferracin M. Berindan-Neagoe I. The Clinical Utility of miR-21 and let-7 in Non-small Cell Lung Cancer (NSCLC). A systematic review and meta-analysis. Front. Oncol. 2020 10 516850 10.3389/fonc.2020.516850 33194579
    [Google Scholar]
  39. Yang G. Wang T. Qu X. Chen S. Han Z. Chen S. Chen M. Lin J. Yu S. Gao L. Peng K. Kang M. Exosomal miR-21/Let-7a ratio distinguishes non-small cell lung cancer from benign pulmonary diseases. Asia Pac. J. Clin. Oncol. 2020 16 4 280 286 10.1111/ajco.13343 32525285
    [Google Scholar]
  40. Kim M.J. Min Y. Son J. Kim J.Y. Lee J.S. Kim D.H. Lee K.Y. AMPKα1 regulates lung and breast cancer progression by regulating tlr4-mediated traf6-becn1 signaling axis. Cancers 2020 12 11 3289 10.3390/cancers12113289 33172060
    [Google Scholar]
  41. Ren J. He J. Zhang H. Xia Y. Hu Z. Loughran P. Billiar T. Huang H. Tsung A. Platelet TLR4-ERK5 axis facilitates net-mediated capturing of circulating tumor cells and distant metastasis after surgical stress. Cancer Res. 2021 81 9 2373 2385 10.1158/0008‑5472.CAN‑20‑3222 33687949
    [Google Scholar]
  42. Kang X. Li P. Zhang C. Zhao Y. Hu H. Wen G. The TLR4/ERK/PD‑L1 axis may contribute to NSCLC initiation. Int. J. Oncol. 2020 57 2 456 465 10.3892/ijo.2020.5068 32468028
    [Google Scholar]
  43. Liotti F. Marotta M. Sorriento D. Pone E. Morra F. Melillo R.M. Prevete N. Toll-Like receptor 7 mediates inflammation resolution and inhibition of angiogenesis in non-small cell lung cancer. Cancers 2021 13 4 740 10.3390/cancers13040740 33578955
    [Google Scholar]
  44. Kim M.J. Kim J.Y. Shin J.H. Kang Y. Lee J.S. Son J. Jeong S.K. Kim D. Kim D.H. Chun E. Lee K.Y. FFAR2 antagonizes TLR2- and TLR3-induced lung cancer progression via the inhibition of AMPK-TAK1 signaling axis for the activation of NF-κB. Cell Biosci. 2023 13 1 102 10.1186/s13578‑023‑01038‑y 37287005
    [Google Scholar]
  45. Zhang M. Zhou Y. Zhang Y. High Expression of TLR2 in the serum of patients with tuberculosis and lung cancer, and can promote the progression of lung cancer. Math. Biosci. Eng. 2020 17 3 1959 1972 10.3934/mbe.2020104 32233518
    [Google Scholar]
  46. Zhou S.X. Li F.S. Qiao Y.L. Zhang X.Q. Wang Z.D. Toll-like receptor 5 agonist inhibition of growth of A549 lung cancer cells in vivo in a Myd88 dependent manner. Asian Pac. J. Cancer Prev. 2012 13 6 2807 2812 10.7314/APJCP.2012.13.6.2807 22938463
    [Google Scholar]
  47. Kim J.Y. Shin J.H. Kim M.J. Kang Y. Lee J.S. Son J. Jeong S.K. Kim D. Kim D.H. Chun E. Lee K.Y. β-arrestin 2 negatively regulates lung cancer progression by inhibiting the TRAF6 signaling axis for NF-κB activation and autophagy induced by TLR3 and TLR4. Cell Death Dis. 2023 14 7 422 10.1038/s41419‑023‑05945‑3 37443143
    [Google Scholar]
  48. Belmont L. Rabbe N. Antoine M. Cathelin D. Guignabert C. Kurie J. Cadranel J. Wislez M. Expression of TLR9 in tumor-infiltrating mononuclear cells enhances angiogenesis and is associated with a worse survival in lung cancer. Int. J. Cancer 2014 134 4 765 777 10.1002/ijc.28413 23913633
    [Google Scholar]
  49. Keshavarz A. Pourbagheri-Sigaroodi A. Zafari P. Bagheri N. Ghaffari S.H. Bashash D. Toll-like receptors (TLRs) in cancer; with an extensive focus on TLR agonists and antagonists. IUBMB Life 2021 73 1 10 25 10.1002/iub.2412 33217774
    [Google Scholar]
  50. Yao Y. Li J. Qu K. Wang Y. Wang Z. Lu W. Yu Y. Wang L. Immunotherapy for lung cancer combining the oligodeoxynucleotides of TLR9 agonist and TGF-β2 inhibitor. Cancer Immunol. Immunother. 2023 72 5 1103 1120 10.1007/s00262‑022‑03315‑0 36326892
    [Google Scholar]
  51. Belani C.P. Chakraborty B.C. Modi R.I. Khamar B.M. A randomized trial of TLR-2 agonist CADI-05 targeting desmocollin-3 for advanced non-small-cell lung cancer. Ann. Oncol. 2017 28 2 298 304 10.1093/annonc/mdw608 27831503
    [Google Scholar]
  52. Zuo X. Cheng Q. Wang Z. Liu J. Lu W. Wu G. Zhu S. Liu X. Lv T. Song Y. A novel oral TLR7 agonist orchestrates immune response and synergizes with PD-L1 blockade via type I IFN pathway in lung cancer. Int. Immunopharmacol. 2024 137 112478 10.1016/j.intimp.2024.112478 38901243
    [Google Scholar]
  53. Perry J.L. Tian S. Sengottuvel N. Harrison E.B. Gorentla B.K. Kapadia C.H. Cheng N. Luft J.C. Ting J.P.Y. DeSimone J.M. Pecot C.V. Pulmonary delivery of nanoparticle-bound toll-like receptor 9 agonist for the treatment of metastatic lung cancer. ACS Nano 2020 14 6 7200 7215 10.1021/acsnano.0c02207 32463690
    [Google Scholar]
  54. Chakraborty S. Ye J. Wang H. Sun M. Zhang Y. Sang X. Zhuang Z. Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy. Front. Immunol. 2023 14 1227833 10.3389/fimmu.2023.1227833 37936697
    [Google Scholar]
  55. Li L. Pu H. Zhang X. Guo X. Li G. Zhang M. Resistance to PD-1/PD-L1 immune checkpoint blockade in advanced non-small cell lung cancer. Crit. Rev. Oncol. Hematol. 2025 209 104683 10.1016/j.critrevonc.2025.104683 40024354
    [Google Scholar]
  56. Yi M. Zheng X. Niu M. Zhu S. Ge H. Wu K. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol. Cancer 2022 21 1 28 10.1186/s12943‑021‑01489‑2 35062949
    [Google Scholar]
  57. Zhuang Y. Liu C. Liu J. Li G. Resistance mechanism of pd-1/pd-l1 blockade in the cancer-immunity cycle. OncoTargets Ther. 2020 13 83 94 10.2147/OTT.S239398 32021257
    [Google Scholar]
  58. Chu X. Tian W. Wang Z. Zhang J. Zhou R. Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: Mechanisms and clinical trials. Mol. Cancer 2023 22 1 93 10.1186/s12943‑023‑01800‑3 37291608
    [Google Scholar]
  59. Huang M.Y. Jiang X.M. Wang B.L. Sun Y. Lu J.J. Combination therapy with PD-1/PD-L1 blockade in non-small cell lung cancer: Strategies and mechanisms. Pharmacol. Ther. 2021 219 107694 10.1016/j.pharmthera.2020.107694 32980443
    [Google Scholar]
  60. Rolfo C. Giovannetti E. Martinez P. McCue S. Naing A. Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer. NPJ Precis. Oncol. 2023 7 1 26 10.1038/s41698‑023‑00364‑1 36890302
    [Google Scholar]
  61. Lee J. Im K.I. Gil S. Na H. Min G.J. Kim N. Cho S.G. TLR5 agonist in combination with anti-PD-1 treatment enhances anti-tumor effect through M1/M2 macrophage polarization shift and CD8+ T cell priming. Cancer Immunol. Immunother. 2024 73 6 102 10.1007/s00262‑024‑03679‑5 38630304
    [Google Scholar]
  62. Li A. Luo M. Liu X. Wu H. Liu X. Zhang Z. Zhang X. Toll-like receptor 3 activation enhances antitumor immune response in lung adenocarcinoma through NF-κB signaling pathway. Front. Immunol. 2025 16 1585747 10.3389/fimmu.2025.1585747 40406122
    [Google Scholar]
  63. Ahonen C.L. Doxsee C.L. McGurran S.M. Riter T.R. Wade W.F. Barth R.J. Vasilakos J.P. Noelle R.J. Kedl R.M. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J. Exp. Med. 2004 199 6 775 784 10.1084/jem.20031591 15007094
    [Google Scholar]
  64. Varghese B. Widman A. Do J. Taidi B. Czerwinski D.K. Timmerman J. Levy S. Levy R. Generation of CD8+ T cell–mediated immunity against idiotype-negative lymphoma escapees. Blood 2009 114 20 4477 4485 10.1182/blood‑2009‑05‑223263 19762487
    [Google Scholar]
  65. Patra M.C. Choi S. Recent progress in the development of Toll- like receptor (TLR) antagonists. Expert Opin. Ther. Pat. 2016 26 6 719 730 10.1080/13543776.2016.1185415 27136061
    [Google Scholar]
  66. Kashani B. Zandi Z. Pourbagheri-Sigaroodi A. Bashash D. Ghaffari S.H. The role of toll-like receptor 4 (TLR4) in cancer progression: A possible therapeutic target? J. Cell. Physiol. 2021 236 6 4121 4137 10.1002/jcp.30166 33230811
    [Google Scholar]
  67. Fan S. Liao Y. Qiu W. Li L. Li D. Cao X. Ai B. Targeting Toll-like receptor 4 with CLI-095 (TAK-242) enhances the antimetastatic effect of the estrogen receptor antagonist fulvestrant on non-small cell lung cancer. Clin. Transl. Oncol. 2020 22 11 2074 2086 10.1007/s12094‑020‑02353‑3 32367494
    [Google Scholar]
  68. Chen X. Zhao Y. Wang X. Lin Y. Zhao W. Wu D. Pan J. Luo W. Wang Y. Liang G. FAK mediates LPS-induced inflammatory lung injury through interacting TAK1 and activating TAK1-NFκB pathway. Cell Death Dis. 2022 13 7 589 10.1038/s41419‑022‑05046‑7 35803916
    [Google Scholar]
  69. Chen R. Huang M. Yang X. Chen X.H. Shi M.Y. Li Z.F. Chen Z.N. Wang K. CALR-TLR4 complex inhibits non-small cell lung cancer progression by regulating the migration and maturation of dendritic cells. Front. Oncol. 2021 11 743050 10.3389/fonc.2021.743050 34660305
    [Google Scholar]
  70. Xuan S. Ma Y. Zhou H. Gu S. Yao X. Zeng X. The implication of dendritic cells in lung diseases: Immunological role of toll-like receptor 4. Genes Dis. 2024 11 6 101007 10.1016/j.gendis.2023.04.036 39238498
    [Google Scholar]
  71. Shi M.Y. Liu H.G. Chen X.H. Tian Y. Chen Z.N. Wang K. The application basis of immuno-checkpoint inhibitors combined with chemotherapy in cancer treatment. Front. Immunol. 2023 13 1088886 10.3389/fimmu.2022.1088886 36703971
    [Google Scholar]
  72. Zhou J. Zhao L. Liu L. He L. Chen Y. Wang F. Cui D. Wang L. Zhou Q. The emerging mechanisms and therapeutic potentials of dendritic cells in NSCLC. J. Inflamm. Res. 2025 18 5061 5076 10.2147/JIR.S506644 40255658
    [Google Scholar]
  73. Awasthi S. Toll-like receptor-4 modulation for cancer immunotherapy. Front. Immunol. 2014 5 328 10.3389/fimmu.2014.00328 25120541
    [Google Scholar]
  74. Li Y. Tang T. Sun Y. Chen G. Yuan X. Cai D. The role of TLR-4 in chemoresistance of cancer. Discov. Oncol. 2025 16 1 865 10.1007/s12672‑025‑02509‑z 40404908
    [Google Scholar]
  75. Amosu M.M. Jankowski A.M. McCright J.C. Yang B.E. Grano de Oro Fernandez J. Moore K.A. Gadde H.S. Donthi M. Kaluzienski M.L. Maisel K. Plasmacytoid dendritic cells mediate cpg-odn–induced increase in survival in a mouse model of lymphangioleiomyomatosis. Am. J. Respir. Cell Mol. Biol. 2024 71 5 519 533 10.1165/rcmb.2023‑0410OC 38990702
    [Google Scholar]
  76. Sorrentino R. Morello S. Giordano M.G. Arra C. Maiolino P. Adcock I.M. Pinto A. CpG-ODN increases the release of VEGF in a mouse model of lung carcinoma. Int. J. Cancer 2011 128 12 2815 2822 10.1002/ijc.25626 20725994
    [Google Scholar]
  77. Gong N. Alameh M.G. El-Mayta R. Xue L. Weissman D. Mitchell M.J. Enhancing in situ cancer vaccines using delivery technologies. Nat. Rev. Drug Discov. 2024 23 8 607 625 10.1038/s41573‑024‑00974‑9 38951662
    [Google Scholar]
  78. Psallidas I. Backer V. Kuna P. Palmér R. Necander S. Aurell M. Korsback K. Taib Z. Hashemi M. Gustafson P. Asimus S. Delaney S. Pardali K. Jiang F. Almquist J. Jackson S. Coffman R.L. Keeling D. Sethi T. A Phase 2a, double-blind, placebo-controlled randomized trial of inhaled tlr9 agonist azd1419 in asthma. Am. J. Respir. Crit. Care Med. 2021 203 3 296 306 10.1164/rccm.202001‑0133OC 32809843
    [Google Scholar]
  79. Rostamizadeh L. Molavi O. Rashid M. Ramazani F. Baradaran B. Lavasanaifar A. Lai R. Recent advances in cancer immunotherapy: Modulation of tumor microenvironment by Toll-like receptor ligands. Bioimpacts 2022 12 3 261 290 10.34172/bi.2022.23896 35677663
    [Google Scholar]
  80. Yazdani M. Gholizadeh Z. Nikpoor A.R. Mohamadian Roshan N. Jaafari M.R. Badiee A. ex-vivo dendritic cell-based (DC) vaccine pulsed with a low dose of liposomal antigen and CpG-ODN improved PD-1 blockade immunotherapy. Sci. Rep. 2021 11 1 14661 10.1038/s41598‑021‑94250‑0 34282215
    [Google Scholar]
  81. Quiroga D. Wesolowski R. Zelinskas S. Pinette A. Benner B. Schwarz E. Savardekar H. Johnson C. Stiff A. Yu L. Macrae E. Lustberg M. Mrozek E. Ramaswamy B. Carson W.E. III An open-label study of subcutaneous cpg oligodeoxynucleotide (pf03512676) in combination with trastuzumab in patients with metastatic her2+ breast cancer. Cancer Contr. 2024 31 10.1177/10732748241250189 38797949
    [Google Scholar]
  82. Yazdani M. Hatamipour M. Alani B. Nikzad H. Mohamadian Roshan N. Verdi J. Jaafari M.R. Noureddini M. Badiee A. Liposomal gp100 vaccine combined with CpG ODN sensitizes established B16F10 melanoma tumors to anti PD-1 therapy. Iran. J. Basic Med. Sci. 2020 23 8 1065 1077 32952954
    [Google Scholar]
  83. Sharma P. Jhawat V. Mathur P. Dutt R. Innovation in cancer therapeutics and regulatory perspectives. Med. Oncol. 2022 39 5 76 10.1007/s12032‑022‑01677‑0 35195787
    [Google Scholar]
  84. Kinoshita T. Terai H. Yaguchi T. Clinical Efficacy and Future Prospects of Immunotherapy in Lung Cancer. Life 2021 11 10 1029 10.3390/life11101029 34685400
    [Google Scholar]
  85. Chen J. Wang J. Xu H. Comparison of atezolizumab, durvalumab, pembrolizumab, and nivolumab as first-line treatment in patients with extensive-stage small cell lung cancer. Medicine 2021 100 15 e25180 10.1097/MD.0000000000025180 33847617
    [Google Scholar]
  86. Shiraishi Y. Hakozaki T. Nomura S. Kataoka T. Tanaka K. Miura S. Sekino Y. Ando M. Horinouchi H. Ohe Y. Okamoto I. Multicenter A. A Multicenter, randomized phase iii study comparing platinum combination chemotherapy plus pembrolizumab with platinum combination chemotherapy plus nivolumab and ipilimumab for treatment-naive advanced non–small cell lung cancer without driver gene alterations: JCOG2007 (NIPPON Study). Clin. Lung Cancer 2022 23 4 e285 e288 10.1016/j.cllc.2021.10.012 34802879
    [Google Scholar]
  87. Stark M.C. Joubert A.M. Visagie M.H. Molecular farming of pembrolizumab and nivolumab. Int. J. Mol. Sci. 2023 24 12 10045 10.3390/ijms241210045 37373192
    [Google Scholar]
  88. Tuli H.S. Garg V.K. Choudhary R. Iqubal A. Sak K. Saini A.K. Saini R.V. Vashishth K. Dhama K. Mohapatra R.K. Gupta D.S. Kaur G. Immunotherapeutics in lung cancers: From mechanistic insight to clinical implications and synergistic perspectives. Mol. Biol. Rep. 2023 50 3 2685 2700 10.1007/s11033‑022‑08180‑9 36534236
    [Google Scholar]
  89. Herbst R.S. Soria J.C. Kowanetz M. Fine G.D. Hamid O. Gordon M.S. Sosman J.A. McDermott D.F. Powderly J.D. Gettinger S.N. Kohrt H.E.K. Horn L. Lawrence D.P. Rost S. Leabman M. Xiao Y. Mokatrin A. Koeppen H. Hegde P.S. Mellman I. Chen D.S. Hodi F.S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014 515 7528 563 567 10.1038/nature14011 25428504
    [Google Scholar]
  90. Powles T. Eder J.P. Fine G.D. Braiteh F.S. Loriot Y. Cruz C. Bellmunt J. Burris H.A. Petrylak D.P. Teng S. Shen X. Boyd Z. Hegde P.S. Chen D.S. Vogelzang N.J. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014 515 7528 558 562 10.1038/nature13904 25428503
    [Google Scholar]
  91. Melero I. Castanon E. Alvarez M. Champiat S. Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat. Rev. Clin. Oncol. 2021 18 9 558 576 10.1038/s41571‑021‑00507‑y 34006998
    [Google Scholar]
  92. Dongye Z. Li J. Wu Y. Toll-like receptor 9 agonists and combination therapies: Strategies to modulate the tumour immune microenvironment for systemic anti-tumour immunity. Br. J. Cancer 2022 127 9 1584 1594 10.1038/s41416‑022‑01876‑6 35902641
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501414090250903070446
Loading
/content/journals/cdt/10.2174/0113894501414090250903070446
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test