Skip to content
2000
Volume 26, Issue 15
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Lung cancer, particularly non-small cell lung cancer, is a leading cause of global mortality, with many cases diagnosed at advanced stages. The Toll-Like Receptor (TLR) signaling pathway plays a crucial role in linking inflammation to lung cancer progression, with both pro-tumor and anti-tumor effects. This perspective delves into the complex functions of TLR proteins in lung cancers, elucidating their involvement in tumor growth, angiogenesis, and metastasis. In addition, we highlight the therapeutic potentials of TLR agonists and antagonists, emphasizing their interplay with immune checkpoint inhibitors like PD-1/PD-L1 blockers to overcome immunosuppressive barriers. Nevertheless, the paradoxical effects of TLR activation, balancing immune stimulation and suppression, demand precise targeting strategies. Collectively, our study synthesizes the current understanding of TLR signaling pathways in lung cancers, offering insights into their potential for advancing lung cancer therapies.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501414090250903070446
2025-09-03
2026-01-28
Loading full text...

Full text loading...

References

  1. CalabreseF. PezzutoF. LunardiF. FortarezzaF. TzorakoleftherakiS.E. ResiM.V. TinéM. PaselloG. HofmanP. Morphologic-Molecular transformation of oncogene addicted non-small cell lung cancer.Int. J. Mol. Sci.2022238416410.3390/ijms2308416435456982
    [Google Scholar]
  2. StridfeldtF. CavallaroS. HåågP. LewensohnR. LinnrosJ. ViktorssonK. DevA. Analyses of single extracellular vesicles from non-small lung cancer cells to reveal effects of epidermal growth factor receptor inhibitor treatments.Talanta202325912455310.1016/j.talanta.2023.12455337084607
    [Google Scholar]
  3. WangM. HerbstR.S. BoshoffC. Toward personalized treatment approaches for non-small-cell lung cancer.Nat. Med.20212781345135610.1038/s41591‑021‑01450‑234385702
    [Google Scholar]
  4. ZhaoY. GuoS. DengJ. ShenJ. DuF. WuX. ChenY. LiM. ChenM. LiX. LiW. GuL. SunY. WenQ. LiJ. XiaoZ. VEGF/VEGFR-Targeted therapy and immunotherapy in non-small cell lung cancer: Targeting the tumor microenvironment.Int. J. Biol. Sci.20221893845385810.7150/ijbs.7095835813484
    [Google Scholar]
  5. LiY. YanB. HeS. Advances and challenges in the treatment of lung cancer.Biomed. Pharmacother.202316911589110.1016/j.biopha.2023.11589137979378
    [Google Scholar]
  6. DiebelsI. Van SchilP.E.Y. Diagnosis and treatment of non-small cell lung cancer: Current advances and challenges.J. Thorac. Dis.20221461753175710.21037/jtd‑22‑36435813756
    [Google Scholar]
  7. AttiehF. ChartouniA. BoutrosM. MouawadA. KourieH.R. Tackling the immunotherapy conundrum: Advances and challenges for operable non-small-cell lung cancer treatment.Immunotherapy202315161415142810.2217/imt‑2023‑012837671552
    [Google Scholar]
  8. VicidominiG. Current challenges and future advances in lung cancer: Genetics, instrumental diagnosis and treatment.Cancers20231514371010.3390/cancers1514371037509371
    [Google Scholar]
  9. YingJ. HongH. YuC. JiangM. DingD. Identification of TLRs as potential prognostic biomarkers for lung adenocarcinoma.Medicine202310238e3495410.1097/MD.000000000003495437746997
    [Google Scholar]
  10. MillarF.R. PennycuickA. MuirM. QuintanillaA. HariP. FreyerE. GautierP. MeynertA. GrimesG. CollC.S. ZdralS. VictorelliS. TeixeiraV.H. ConnellyJ. PassosJ.F. RosM.A. WallaceW.A.H. FrameM.C. SimsA.H. BoulterL. JanesS.M. WilkinsonS. AcostaJ.C. Toll-like receptor 2 orchestrates a tumor suppressor response in non-small cell lung cancer.Cell Rep.202241611159610.1016/j.celrep.2022.11159636351380
    [Google Scholar]
  11. HodenB. DeRubeisD. Martinez-MoczygembaM. RamosK.S. ZhangD. Understanding the role of Toll-like receptors in lung cancer immunity and immunotherapy.Front. Immunol.202213103348310.3389/fimmu.2022.103348336389785
    [Google Scholar]
  12. OtsukaT. NishidaS. ShibaharaT. TemizozB. HamaguchiM. ShiroyamaT. KimuraK. MiyakeK. HirataH. MizunoY. YagitaM. ManabeY. KurodaE. TakedaY. KidaH. IshiiK.J. KumanogohA. CpG ODN (K3)—toll- like receptor 9 agonist—induces Th1-type immune response and enhances cytotoxic activity in advanced lung cancer patients: A phase I study.BMC Cancer202222174410.1186/s12885‑022‑09818‑435799134
    [Google Scholar]
  13. JiangD.S. WangY.W. JiangJ. LiS.M. LiangS.Z. FangH.Y. MicroRNA-26a involved in Toll-like receptor 9-mediated lung cancer growth and migration.Int. J. Mol. Med.201434130731210.3892/ijmm.2014.176424788552
    [Google Scholar]
  14. PedicilloM.C. De StefanoI.S. ZampareseR. BarileR. MeccarielloM. AgostinoneA. VillaniG. ColangeloT. ServiddioG. CassanoT. RonchiA. FrancoR. PannoneP. Zito MarinoF. MieleF. MunicinòM. PannoneG. The role of toll- like receptor-4 in macrophage imbalance in lethal covid-19 lung disease, and its correlation with galectin-3.Int. J. Mol. Sci.202324171325910.3390/ijms24171325937686069
    [Google Scholar]
  15. CeccarelliS. Pasqua MarzolesiV. VannucciJ. BellezzaG. FloridiC. NocentiniG. CariL. TrainaG. PetriD. PumaF. ConteC. Toll-Like receptor 4 and 8 are overexpressed in lung biopsies of human non-small cell lung carcinoma.Lung202520313810.1007/s00408‑025‑00793‑840025339
    [Google Scholar]
  16. GowingS.D. ChowS.C. Cools-LartigueJ.J. ChenC.B. NajmehS. JiangH.Y. BourdeauF. BeauchampA. ManciniU. AngersI. GianniasB. SpicerJ.D. RousseauS. QureshiS.T. FerriL.E. Gram-positive pneumonia augments non-small cell lung cancer metastasis via host toll-like receptor 2 activation.Int. J. Cancer2017141356157110.1002/ijc.3073428401532
    [Google Scholar]
  17. ChenK. HuangJ. GongW. IribarrenP. DunlopN.M. WangJ.M. Toll-like receptors in inflammation, infection and cancer.Int. Immunopharmacol.20077101271128510.1016/j.intimp.2007.05.01617673142
    [Google Scholar]
  18. GuJ. LiuY. XieB. YeP. HuangJ. LuZ. Roles of toll-like receptors: From inflammation to lung cancer progression.Biomed. Rep.20188212613229435270
    [Google Scholar]
  19. VelascoW.V. KhosraviN. Castro-PandoS. Torres-GarzaN. GrimaldoM.T. KrishnaA. ClowersM.J. UmerM. Tariq AmirS. Del BosqueD. DaliriS. De La GarzaM.M. Ramos-CastanedaM. EvansS.E. MoghaddamS.J. Toll-like receptors 2, 4, and 9 modulate promoting effect of COPD-like airway inflammation on K-ras-driven lung cancer through activation of the MyD88/NF-ĸB pathway in the airway epithelium.Front. Immunol.202314111872110.3389/fimmu.2023.111872137283745
    [Google Scholar]
  20. JiS. ZhouX. HoffmannJ.A. Toll-mediated airway homeostasis is essential for fly survival upon injection of RasV12-GFP oncogenic cells.Cell Rep.202443211367710.1016/j.celrep.2024.11367738236774
    [Google Scholar]
  21. TakedaK. KaishoT. AkiraS. Toll-Like Receptors.Annu. Rev. Immunol.200321133537610.1146/annurev.immunol.21.120601.14112612524386
    [Google Scholar]
  22. AkiraS. Toll receptor families: Structure and function.Semin. Immunol.20041611210.1016/j.smim.2003.10.00114751756
    [Google Scholar]
  23. JanewayC.A.Jr MedzhitovR. Innate immune recognition.Annu. Rev. Immunol.200220119721610.1146/annurev.immunol.20.083001.08435911861602
    [Google Scholar]
  24. KawaiT. AkiraS. Toll-like receptor downstream signaling.Arthritis Res.200571121910.1186/ar146915642149
    [Google Scholar]
  25. AkiraS. UematsuS. TakeuchiO. Pathogen recognition and innate immunity.Cell2006124478380110.1016/j.cell.2006.02.01516497588
    [Google Scholar]
  26. KawaiT. AkiraS. TLR signaling.Semin. Immunol.2007191243210.1016/j.smim.2006.12.00417275323
    [Google Scholar]
  27. KumagaiY. TakeuchiO. AkiraS. Pathogen recognition by innate receptors.J. Infect. Chemother.2008142869210.1007/s10156‑008‑0596‑118622669
    [Google Scholar]
  28. JiS. HoffmannJ. A. Toll-9 prevents the proliferation of injected oncogenic cells in adult flies.J Genet Genomics202451111331133310.1016/j.jgg.2024.07.00238972373
    [Google Scholar]
  29. FischD. ZhangT. SunH. MaW. TanY. GygiS.P. HigginsD.E. KaganJ.C. Molecular definition of the endogenous Toll-like receptor signalling pathways.Nature2024631802163564410.1038/s41586‑024‑07614‑738961291
    [Google Scholar]
  30. SchultzT.E. MathmannC.D. Domínguez CadenaL.C. MuusseT.W. KimH. WellsJ.W. UlettG.C. HamermanJ.A. BrooksA.J. KobeB. SweetM.J. StaceyK.J. BlumenthalA. TLR4 endocytosis and endosomal TLR4 signaling are distinct and independent outcomes of TLR4 activation.EMBO Rep.202526102740276610.1038/s44319‑025‑00444‑240204912
    [Google Scholar]
  31. JavaidN. ChoiS. Toll-like receptors from the perspective of cancer treatment.Cancers202012229710.3390/cancers1202029732012718
    [Google Scholar]
  32. SamaraK. AntoniouK.M. KaragiannisK. MargaritopoulosG. LasithiotakiI. KoutalaE. SiafakasN.M. Expression profiles of Toll-like receptors in non-small cell lung cancer and idiopathic pulmonary fibrosis.Int. J. Oncol.20124051397140410.3892/ijo.2012.137422344343
    [Google Scholar]
  33. ZhangY.B. HeF.L. FangM. HuaT.F. HuB.D. ZhangZ.H. CaoQ. LiuR.Y. Increased expression of Toll- like receptors 4 and 9 in human lung cancer.Mol. Biol. Rep.20093661475148110.1007/s11033‑008‑9338‑918763053
    [Google Scholar]
  34. Smok-KalwatJ. MertowskaP. MertowskiS. GóźdźS. Korona-GłowniakI. KwaśniewskiW. GrywalskaE. Analysis of selected toll-like receptors in the pathogenesis and advancement of non-small-cell lung cancer.J. Clin. Med.20241310279310.3390/jcm1310279338792335
    [Google Scholar]
  35. BaiJ. ShiZ. WangS. PanH. ZhangT. MiR-21 and let-7 cooperation in the regulation of lung cancer.Front. Oncol.20221295004310.3389/fonc.2022.95004336249072
    [Google Scholar]
  36. CretoiuD. ChenF. ZhengY. ZhangD. QianB. JiH. LongF. CretoiuD. miR-21 regulates growth and EMT in lung cancer cells via PTEN Akt GSK3 β signaling.Front. Biosci.20192481426143910.2741/478831136988
    [Google Scholar]
  37. RamaA.R. QuiñoneroF. MesasC. MelguizoC. PradosJ. Synthetic circular mir-21 sponge as tool for lung cancer treatment.Int. J. Mol. Sci.2022236296310.3390/ijms2306296335328383
    [Google Scholar]
  38. Pop-BicaC. PinteaS. MagdoL. CojocneanuR. GuleiD. FerracinM. Berindan-NeagoeI. The Clinical Utility of miR-21 and let-7 in Non-small Cell Lung Cancer (NSCLC). A systematic review and meta-analysis.Front. Oncol.20201051685010.3389/fonc.2020.51685033194579
    [Google Scholar]
  39. YangG. WangT. QuX. ChenS. HanZ. ChenS. ChenM. LinJ. YuS. GaoL. PengK. KangM. Exosomal miR-21/Let-7a ratio distinguishes non-small cell lung cancer from benign pulmonary diseases.Asia Pac. J. Clin. Oncol.202016428028610.1111/ajco.1334332525285
    [Google Scholar]
  40. KimM.J. MinY. SonJ. KimJ.Y. LeeJ.S. KimD.H. LeeK.Y. AMPKα1 regulates lung and breast cancer progression by regulating tlr4-mediated traf6-becn1 signaling axis.Cancers20201211328910.3390/cancers1211328933172060
    [Google Scholar]
  41. RenJ. HeJ. ZhangH. XiaY. HuZ. LoughranP. BilliarT. HuangH. TsungA. Platelet TLR4-ERK5 axis facilitates net-mediated capturing of circulating tumor cells and distant metastasis after surgical stress.Cancer Res.20218192373238510.1158/0008‑5472.CAN‑20‑322233687949
    [Google Scholar]
  42. KangX. LiP. ZhangC. ZhaoY. HuH. WenG. The TLR4/ERK/PD-L1 axis may contribute to NSCLC initiation.Int. J. Oncol.202057245646510.3892/ijo.2020.506832468028
    [Google Scholar]
  43. LiottiF. MarottaM. SorrientoD. PoneE. MorraF. MelilloR.M. PreveteN. Toll-Like receptor 7 mediates inflammation resolution and inhibition of angiogenesis in non-small cell lung cancer.Cancers202113474010.3390/cancers1304074033578955
    [Google Scholar]
  44. KimM.J. KimJ.Y. ShinJ.H. KangY. LeeJ.S. SonJ. JeongS.K. KimD. KimD.H. ChunE. LeeK.Y. FFAR2 antagonizes TLR2- and TLR3-induced lung cancer progression via the inhibition of AMPK-TAK1 signaling axis for the activation of NF-κB.Cell Biosci.202313110210.1186/s13578‑023‑01038‑y37287005
    [Google Scholar]
  45. ZhangM. ZhouY. ZhangY. High Expression of TLR2 in the serum of patients with tuberculosis and lung cancer, and can promote the progression of lung cancer.Math. Biosci. Eng.20201731959197210.3934/mbe.202010432233518
    [Google Scholar]
  46. ZhouS.X. LiF.S. QiaoY.L. ZhangX.Q. WangZ.D. Toll-like receptor 5 agonist inhibition of growth of A549 lung cancer cells in vivo in a Myd88 dependent manner.Asian Pac. J. Cancer Prev.20121362807281210.7314/APJCP.2012.13.6.280722938463
    [Google Scholar]
  47. KimJ.Y. ShinJ.H. KimM.J. KangY. LeeJ.S. SonJ. JeongS.K. KimD. KimD.H. ChunE. LeeK.Y. β-arrestin 2 negatively regulates lung cancer progression by inhibiting the TRAF6 signaling axis for NF-κB activation and autophagy induced by TLR3 and TLR4.Cell Death Dis.202314742210.1038/s41419‑023‑05945‑337443143
    [Google Scholar]
  48. BelmontL. RabbeN. AntoineM. CathelinD. GuignabertC. KurieJ. CadranelJ. WislezM. Expression of TLR9 in tumor-infiltrating mononuclear cells enhances angiogenesis and is associated with a worse survival in lung cancer.Int. J. Cancer2014134476577710.1002/ijc.2841323913633
    [Google Scholar]
  49. KeshavarzA. Pourbagheri-SigaroodiA. ZafariP. BagheriN. GhaffariS.H. BashashD. Toll-like receptors (TLRs) in cancer; with an extensive focus on TLR agonists and antagonists.IUBMB Life2021731102510.1002/iub.241233217774
    [Google Scholar]
  50. YaoY. LiJ. QuK. WangY. WangZ. LuW. YuY. WangL. Immunotherapy for lung cancer combining the oligodeoxynucleotides of TLR9 agonist and TGF-β2 inhibitor.Cancer Immunol. Immunother.20237251103112010.1007/s00262‑022‑03315‑036326892
    [Google Scholar]
  51. BelaniC.P. ChakrabortyB.C. ModiR.I. KhamarB.M. A randomized trial of TLR-2 agonist CADI-05 targeting desmocollin-3 for advanced non-small-cell lung cancer.Ann. Oncol.201728229830410.1093/annonc/mdw60827831503
    [Google Scholar]
  52. ZuoX. ChengQ. WangZ. LiuJ. LuW. WuG. ZhuS. LiuX. LvT. SongY. A novel oral TLR7 agonist orchestrates immune response and synergizes with PD-L1 blockade via type I IFN pathway in lung cancer.Int. Immunopharmacol.202413711247810.1016/j.intimp.2024.11247838901243
    [Google Scholar]
  53. PerryJ.L. TianS. SengottuvelN. HarrisonE.B. GorentlaB.K. KapadiaC.H. ChengN. LuftJ.C. TingJ.P.Y. DeSimoneJ.M. PecotC.V. Pulmonary delivery of nanoparticle-bound toll-like receptor 9 agonist for the treatment of metastatic lung cancer.ACS Nano20201467200721510.1021/acsnano.0c0220732463690
    [Google Scholar]
  54. ChakrabortyS. YeJ. WangH. SunM. ZhangY. SangX. ZhuangZ. Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy.Front. Immunol.202314122783310.3389/fimmu.2023.122783337936697
    [Google Scholar]
  55. LiL. PuH. ZhangX. GuoX. LiG. ZhangM. Resistance to PD-1/PD-L1 immune checkpoint blockade in advanced non-small cell lung cancer.Crit. Rev. Oncol. Hematol.202520910468310.1016/j.critrevonc.2025.10468340024354
    [Google Scholar]
  56. YiM. ZhengX. NiuM. ZhuS. GeH. WuK. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions.Mol. Cancer20222112810.1186/s12943‑021‑01489‑235062949
    [Google Scholar]
  57. ZhuangY. LiuC. LiuJ. LiG. Resistance mechanism of pd-1/pd-l1 blockade in the cancer-immunity cycle.OncoTargets Ther.202013839410.2147/OTT.S23939832021257
    [Google Scholar]
  58. ChuX. TianW. WangZ. ZhangJ. ZhouR. Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: Mechanisms and clinical trials.Mol. Cancer20232219310.1186/s12943‑023‑01800‑337291608
    [Google Scholar]
  59. HuangM.Y. JiangX.M. WangB.L. SunY. LuJ.J. Combination therapy with PD-1/PD-L1 blockade in non-small cell lung cancer: Strategies and mechanisms.Pharmacol. Ther.202121910769410.1016/j.pharmthera.2020.10769432980443
    [Google Scholar]
  60. RolfoC. GiovannettiE. MartinezP. McCueS. NaingA. Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer.NPJ Precis. Oncol.2023712610.1038/s41698‑023‑00364‑136890302
    [Google Scholar]
  61. LeeJ. ImK.I. GilS. NaH. MinG.J. KimN. ChoS.G. TLR5 agonist in combination with anti-PD-1 treatment enhances anti-tumor effect through M1/M2 macrophage polarization shift and CD8+ T cell priming.Cancer Immunol. Immunother.202473610210.1007/s00262‑024‑03679‑538630304
    [Google Scholar]
  62. LiA. LuoM. LiuX. WuH. LiuX. ZhangZ. ZhangX. Toll-like receptor 3 activation enhances antitumor immune response in lung adenocarcinoma through NF-κB signaling pathway.Front. Immunol.202516158574710.3389/fimmu.2025.158574740406122
    [Google Scholar]
  63. AhonenC.L. DoxseeC.L. McGurranS.M. RiterT.R. WadeW.F. BarthR.J. VasilakosJ.P. NoelleR.J. KedlR.M. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN.J. Exp. Med.2004199677578410.1084/jem.2003159115007094
    [Google Scholar]
  64. VargheseB. WidmanA. DoJ. TaidiB. CzerwinskiD.K. TimmermanJ. LevyS. LevyR. Generation of CD8+ T cell–mediated immunity against idiotype-negative lymphoma escapees.Blood2009114204477448510.1182/blood‑2009‑05‑22326319762487
    [Google Scholar]
  65. PatraM.C. ChoiS. Recent progress in the development of Toll- like receptor (TLR) antagonists.Expert Opin. Ther. Pat.201626671973010.1080/13543776.2016.118541527136061
    [Google Scholar]
  66. KashaniB. ZandiZ. Pourbagheri-SigaroodiA. BashashD. GhaffariS.H. The role of toll-like receptor 4 (TLR4) in cancer progression: A possible therapeutic target?J. Cell. Physiol.202123664121413710.1002/jcp.3016633230811
    [Google Scholar]
  67. FanS. LiaoY. QiuW. LiL. LiD. CaoX. AiB. Targeting Toll-like receptor 4 with CLI-095 (TAK-242) enhances the antimetastatic effect of the estrogen receptor antagonist fulvestrant on non-small cell lung cancer.Clin. Transl. Oncol.202022112074208610.1007/s12094‑020‑02353‑332367494
    [Google Scholar]
  68. ChenX. ZhaoY. WangX. LinY. ZhaoW. WuD. PanJ. LuoW. WangY. LiangG. FAK mediates LPS-induced inflammatory lung injury through interacting TAK1 and activating TAK1-NFκB pathway.Cell Death Dis.202213758910.1038/s41419‑022‑05046‑735803916
    [Google Scholar]
  69. ChenR. HuangM. YangX. ChenX.H. ShiM.Y. LiZ.F. ChenZ.N. WangK. CALR-TLR4 complex inhibits non-small cell lung cancer progression by regulating the migration and maturation of dendritic cells.Front. Oncol.20211174305010.3389/fonc.2021.74305034660305
    [Google Scholar]
  70. XuanS. MaY. ZhouH. GuS. YaoX. ZengX. The implication of dendritic cells in lung diseases: Immunological role of toll-like receptor 4.Genes Dis.202411610100710.1016/j.gendis.2023.04.03639238498
    [Google Scholar]
  71. ShiM.Y. LiuH.G. ChenX.H. TianY. ChenZ.N. WangK. The application basis of immuno-checkpoint inhibitors combined with chemotherapy in cancer treatment.Front. Immunol.202313108888610.3389/fimmu.2022.108888636703971
    [Google Scholar]
  72. ZhouJ. ZhaoL. LiuL. HeL. ChenY. WangF. CuiD. WangL. ZhouQ. The emerging mechanisms and therapeutic potentials of dendritic cells in NSCLC.J. Inflamm. Res.2025185061507610.2147/JIR.S50664440255658
    [Google Scholar]
  73. AwasthiS. Toll-like receptor-4 modulation for cancer immunotherapy.Front. Immunol.2014532810.3389/fimmu.2014.0032825120541
    [Google Scholar]
  74. LiY. TangT. SunY. ChenG. YuanX. CaiD. The role of TLR-4 in chemoresistance of cancer.Discov. Oncol.202516186510.1007/s12672‑025‑02509‑z40404908
    [Google Scholar]
  75. AmosuM.M. JankowskiA.M. McCrightJ.C. YangB.E. Grano de Oro FernandezJ. MooreK.A. GaddeH.S. DonthiM. KaluzienskiM.L. MaiselK. Plasmacytoid dendritic cells mediate cpg-odn–induced increase in survival in a mouse model of lymphangioleiomyomatosis.Am. J. Respir. Cell Mol. Biol.202471551953310.1165/rcmb.2023‑0410OC38990702
    [Google Scholar]
  76. SorrentinoR. MorelloS. GiordanoM.G. ArraC. MaiolinoP. AdcockI.M. PintoA. CpG-ODN increases the release of VEGF in a mouse model of lung carcinoma.Int. J. Cancer2011128122815282210.1002/ijc.2562620725994
    [Google Scholar]
  77. GongN. AlamehM.G. El-MaytaR. XueL. WeissmanD. MitchellM.J. Enhancing in situ cancer vaccines using delivery technologies.Nat. Rev. Drug Discov.202423860762510.1038/s41573‑024‑00974‑938951662
    [Google Scholar]
  78. PsallidasI. BackerV. KunaP. PalmérR. NecanderS. AurellM. KorsbackK. TaibZ. HashemiM. GustafsonP. AsimusS. DelaneyS. PardaliK. JiangF. AlmquistJ. JacksonS. CoffmanR.L. KeelingD. SethiT. A Phase 2a, double-blind, placebo-controlled randomized trial of inhaled tlr9 agonist azd1419 in asthma.Am. J. Respir. Crit. Care Med.2021203329630610.1164/rccm.202001‑0133OC32809843
    [Google Scholar]
  79. RostamizadehL. MolaviO. RashidM. RamazaniF. BaradaranB. LavasanaifarA. LaiR. Recent advances in cancer immunotherapy: Modulation of tumor microenvironment by Toll-like receptor ligands.Bioimpacts202212326129010.34172/bi.2022.2389635677663
    [Google Scholar]
  80. YazdaniM. GholizadehZ. NikpoorA.R. Mohamadian RoshanN. JaafariM.R. BadieeA. ex-vivo dendritic cell-based (DC) vaccine pulsed with a low dose of liposomal antigen and CpG-ODN improved PD-1 blockade immunotherapy.Sci. Rep.20211111466110.1038/s41598‑021‑94250‑034282215
    [Google Scholar]
  81. QuirogaD. WesolowskiR. ZelinskasS. PinetteA. BennerB. SchwarzE. SavardekarH. JohnsonC. StiffA. YuL. MacraeE. LustbergM. MrozekE. RamaswamyB. CarsonW.E.III An open-label study of subcutaneous cpg oligodeoxynucleotide (pf03512676) in combination with trastuzumab in patients with metastatic her2+ breast cancer.Cancer Contr.20243110.1177/1073274824125018938797949
    [Google Scholar]
  82. YazdaniM. HatamipourM. AlaniB. NikzadH. Mohamadian RoshanN. VerdiJ. JaafariM.R. NoureddiniM. BadieeA. Liposomal gp100 vaccine combined with CpG ODN sensitizes established B16F10 melanoma tumors to anti PD-1 therapy.Iran. J. Basic Med. Sci.20202381065107732952954
    [Google Scholar]
  83. SharmaP. JhawatV. MathurP. DuttR. Innovation in cancer therapeutics and regulatory perspectives.Med. Oncol.20223957610.1007/s12032‑022‑01677‑035195787
    [Google Scholar]
  84. KinoshitaT. TeraiH. YaguchiT. Clinical Efficacy and Future Prospects of Immunotherapy in Lung Cancer.Life20211110102910.3390/life1110102934685400
    [Google Scholar]
  85. ChenJ. WangJ. XuH. Comparison of atezolizumab, durvalumab, pembrolizumab, and nivolumab as first-line treatment in patients with extensive-stage small cell lung cancer.Medicine202110015e2518010.1097/MD.000000000002518033847617
    [Google Scholar]
  86. ShiraishiY. HakozakiT. NomuraS. KataokaT. TanakaK. MiuraS. SekinoY. AndoM. HorinouchiH. OheY. OkamotoI. MulticenterA. A Multicenter, randomized phase iii study comparing platinum combination chemotherapy plus pembrolizumab with platinum combination chemotherapy plus nivolumab and ipilimumab for treatment-naive advanced non–small cell lung cancer without driver gene alterations: JCOG2007 (NIPPON Study).Clin. Lung Cancer2022234e285e28810.1016/j.cllc.2021.10.01234802879
    [Google Scholar]
  87. StarkM.C. JoubertA.M. VisagieM.H. Molecular farming of pembrolizumab and nivolumab.Int. J. Mol. Sci.202324121004510.3390/ijms24121004537373192
    [Google Scholar]
  88. TuliH.S. GargV.K. ChoudharyR. IqubalA. SakK. SainiA.K. SainiR.V. VashishthK. DhamaK. MohapatraR.K. GuptaD.S. KaurG. Immunotherapeutics in lung cancers: From mechanistic insight to clinical implications and synergistic perspectives.Mol. Biol. Rep.20235032685270010.1007/s11033‑022‑08180‑936534236
    [Google Scholar]
  89. HerbstR.S. SoriaJ.C. KowanetzM. FineG.D. HamidO. GordonM.S. SosmanJ.A. McDermottD.F. PowderlyJ.D. GettingerS.N. KohrtH.E.K. HornL. LawrenceD.P. RostS. LeabmanM. XiaoY. MokatrinA. KoeppenH. HegdeP.S. MellmanI. ChenD.S. HodiF.S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients.Nature2014515752856356710.1038/nature1401125428504
    [Google Scholar]
  90. PowlesT. EderJ.P. FineG.D. BraitehF.S. LoriotY. CruzC. BellmuntJ. BurrisH.A. PetrylakD.P. TengS. ShenX. BoydZ. HegdeP.S. ChenD.S. VogelzangN.J. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer.Nature2014515752855856210.1038/nature1390425428503
    [Google Scholar]
  91. MeleroI. CastanonE. AlvarezM. ChampiatS. MarabelleA. Intratumoural administration and tumour tissue targeting of cancer immunotherapies.Nat. Rev. Clin. Oncol.202118955857610.1038/s41571‑021‑00507‑y34006998
    [Google Scholar]
  92. DongyeZ. LiJ. WuY. Toll-like receptor 9 agonists and combination therapies: Strategies to modulate the tumour immune microenvironment for systemic anti-tumour immunity.Br. J. Cancer202212791584159410.1038/s41416‑022‑01876‑635902641
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501414090250903070446
Loading
/content/journals/cdt/10.2174/0113894501414090250903070446
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test