Skip to content
2000
image of MET Exon 14 Skipping Mutation in NSCLC: From Genomic Discovery to Biomarker-Guided Therapeutic Innovation

Abstract

Introduction

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, and the MET exon 14 skipping mutation is a key oncogenic driver, which promotes tumor progression and provides a new direction for precision therapy.

Methods

A systematic search of English-language literature and clinical trial data related to the MET exon 14 skipping mutation from 2020-2025 was performed to summarize the role of the mutation and therapeutic advances.

Results

DNA-based next-generation sequencing (NGS), RNA-based NGS, and RT-qPCR were employed as the main detection methods. Preclinical models confirmed that mutations promote tumor progression by activating the RAS/MAPK pathway. Clinical trials have reported objective remission rates (ORR) of 46-68% for first-line treatment with MET inhibitors in NSCLC patients harboring MET exon 14 skipping mutations.

Discussion

MET exon 14 skipping mutation as a therapeutic target for NSCLC has made significant progress, and MET inhibitors are more advantageous than chemotherapy and immunotherapy, and have been recommended by national and international guidelines as a first-line treatment option. Additionally, NGS technology has the potential to dynamically monitor tumor evolution and drug-resistant mutations, thereby helping to realize precision medicine.

Conclusion

The MET exon 14 skipping mutation is an important target for the precision treatment of NSCLC, and MET-TKIs have remarkable efficacy but a prominent problem with drug resistance. The construction of a precision medicine system encompassing diagnosis, treatment, and drug resistance management through multi-omics research, technological innovation, and international collaboration is a key direction for improving prognosis.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501409916251103161912
2026-01-22
2026-01-28
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  2. Hendriks L.E. Kerr K.M. Menis J. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023 34 4 339 357 10.1016/j.annonc.2022.12.009 36872130
    [Google Scholar]
  3. Herrera-Juárez M. Serrano-Gómez C. Bote-de-Cabo H. Paz-Ares L. Targeted therapy for lung cancer: Beyond EGFR and ALK. Cancer 2023 129 12 1803 1820 10.1002/cncr.34757 37073562
    [Google Scholar]
  4. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014 511 7511 543 550 10.1038/nature13385 25079552
    [Google Scholar]
  5. Moosavi F. Giovannetti E. Saso L. Firuzi O. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit. Rev. Clin. Lab. Sci. 2019 56 8 533 566 10.1080/10408363.2019.1653821 31512514
    [Google Scholar]
  6. Yang X. Liao H.Y. Zhang H.H. Roles of MET in human cancer. Clin. Chim. Acta 2022 525 69 83 10.1016/j.cca.2021.12.017 34951962
    [Google Scholar]
  7. Leardini D. Messelodi D. Muratore E. Role of CBL mutations in cancer and non-malignant phenotype. Cancers 2022 14 3 839 10.3390/cancers14030839 35159106
    [Google Scholar]
  8. Chen K. Cai J. Wang S. Aptamer inhibits tumor growth by leveraging cellular proteasomal degradation system to degrade c‐Met in mice. Angew. Chem. Int. Ed. 2023 62 2 e202208451 10.1002/anie.202208451 36268649
    [Google Scholar]
  9. Lee J.K. Madison R. Classon A. Characterization of non–small-cell lung cancers with met exon 14 skipping alterations detected in tissue or liquid: Clinicogenomics and real-world treatment patterns. JCO Precis. Oncol. 2021 5 5 1354 1376 10.1200/PO.21.00122 34476332
    [Google Scholar]
  10. Wong S.K. Alex D. Bosdet I. MET exon 14 skipping mutation positive non-small cell lung cancer: Response to systemic therapy. Lung Cancer 2021 154 142 145 10.1016/j.lungcan.2021.02.030 33667719
    [Google Scholar]
  11. Mazieres J. Vioix H. Pfeiffer B.M. MET Exon 14 Skipping in NSCLC: A systematic literature review of epidemiology, clinical characteristics, and outcomes. Clin. Lung Cancer 2023 24 6 483 497 10.1016/j.cllc.2023.06.008 37451931
    [Google Scholar]
  12. Santarpia M. Massafra M. Gebbia V. A narrative review of MET inhibitors in non-small cell lung cancer with MET exon 14 skipping mutations. Transl. Lung Cancer Res. 2021 10 3 1536 1556 10.21037/tlcr‑20‑1113 33889528
    [Google Scholar]
  13. Chevallier M. Borgeaud M. Addeo A. Friedlaender A. Oncogenic driver mutations in non-small cell lung cancer: Past, present and future. World J. Clin. Oncol. 2021 12 4 217 237 10.5306/wjco.v12.i4.217 33959476
    [Google Scholar]
  14. Le X. Hong L. Hensel C. Landscape and clonal dominance of co-occurring genomic alterations in non–small-cell lung cancer Harboring MET Exon 14 Skipping. JCO Precis. Oncol. 2021 5 5 1802 1812 10.1200/PO.21.00135 34957368
    [Google Scholar]
  15. Socinski M.A. Pennell N.A. Davies K.D. MET Exon 14 skipping mutations in non-small-cell lung cancer: An overview of biology, clinical outcomes, and testing considerations. JCO Precis. Oncol. 2021 5 5 34036238
    [Google Scholar]
  16. Remon J. Hendriks L E L. Mountzios G. Met alterations in NSCLC-current perspectives and future challenges. J. Thorac. Oncol. 2023 18 4 419 435 10.1016/j.jtho.2022.10.015 36441095
    [Google Scholar]
  17. Davies K.D. Merrick D.T. Skipping expected mechanisms of MET-mediated oncogenesis. J. Thorac. Oncol. 2020 15 1 9 11 10.1016/j.jtho.2019.11.003 31864551
    [Google Scholar]
  18. Benayed R. Offin M. Mullaney K. High Yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden. Clin. Cancer Res. 2019 25 15 4712 4722 10.1158/1078‑0432.CCR‑19‑0225 31028088
    [Google Scholar]
  19. Davies K.D. Lomboy A. Lawrence C.A. Dna-based versus RNA-based detection of MET exon 14 skipping events in lung cancer. J. Thorac. Oncol. 2019 14 4 737 741 10.1016/j.jtho.2018.12.020 30639620
    [Google Scholar]
  20. Rolfo C. Malapelle U. Russo A. Skipping or Not Skipping? That’s the Question! An Algorithm to Classify Novel MET Exon 14 Variants in Non–Small-Cell Lung Cancer. JCO Precis. Oncol. 2023 7 7 e2200674 10.1200/PO.22.00674 36848608
    [Google Scholar]
  21. Pruis MA Geurts-Giele WRR von der TJH, Highly accurate DNA-based detection and treatment results of MET exon 14 skipping mutations in lung cancer. Lung Cancer 2020 140 46 54 10.1016/j.lungcan.2019.11.010 31862577
    [Google Scholar]
  22. Descarpentries C. Leprêtre F. Escande F. Optimization of routine testing for MET exon 14 splice site mutations in NSCLC patients. J. Thorac. Oncol. 2018 13 12 1873 1883
    [Google Scholar]
  23. Zakrzewski F. Gieldon L. Rump A. Targeted capture-based NGS is superior to multiplex PCR-based NGS for hereditary BRCA1 and BRCA2 gene analysis in FFPE tumor samples. BMC Cancer 2019 19 1 396 10.1186/s12885‑019‑5584‑6 31029168
    [Google Scholar]
  24. Jurkiewicz M. Saqi A. Mansukhani M.M. Efficacy of DNA versus RNA NGS-based Methods in MET Exon 14 skipping mutation detection. J. Clin. Oncol. 2020 38 15_suppl. 9036 10.1200/JCO.2020.38.15_suppl.9036
    [Google Scholar]
  25. Moore D.A. Benafif S. Poskitt B. Optimising fusion detection through sequential DNA and RNA molecular profiling of non-small cell lung cancer. Lung Cancer 2021 161 55 59 10.1016/j.lungcan.2021.08.008 34536732
    [Google Scholar]
  26. Kim E.K. Kim K.A. Lee C.Y. Molecular diagnostic assays and clinicopathologic implications of met exon 14 skipping mutation in non–small-cell lung cancer. Clin. Lung Cancer 2019 20 1 e123 e132 10.1016/j.cllc.2018.10.004 30391211
    [Google Scholar]
  27. Guo R. Luo J. Chang J. Rekhtman N. Arcila M. Drilon A. MET-dependent solid tumours — Molecular diagnosis and targeted therapy. Nat. Rev. Clin. Oncol. 2020 17 9 569 587 10.1038/s41571‑020‑0377‑z 32514147
    [Google Scholar]
  28. Frampton G.M. Ali S.M. Rosenzweig M. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015 5 8 850 859 10.1158/2159‑8290.CD‑15‑0285 25971938
    [Google Scholar]
  29. Lu D. Nagelberg A. Chow J.L.M. MET Exon 14 Splice-Site Mutations Preferentially Activate KRAS Signaling to Drive Tumourigenesis. Cancers 2022 14 6 1378 10.3390/cancers14061378 35326531
    [Google Scholar]
  30. Liang Q. Hu Y. Yuan Q. Yu M. Wang H. Zhao B. MET exon 14 skipping mutation drives cancer progression and recurrence via activation of SMAD2 signalling. Br. J. Cancer 2024 130 3 380 393 10.1038/s41416‑023‑02495‑5 38110666
    [Google Scholar]
  31. Fernandes M. Hoggard B. Jamme P. MET exon 14 skipping mutation is a hepatocyte growth factor (HGF)‐dependent oncogenic driver in vitro and in humanised HGF knock‐in mice. Mol. Oncol. 2023 17 11 2257 2274 10.1002/1878‑0261.13397 36799689
    [Google Scholar]
  32. Bahcall M. Awad M.M. Sholl L.M. Amplification of wild-type kras imparts resistance to crizotinib in met exon 14 mutant non–small cell lung cancer. Clin. Cancer Res. 2018 24 23 5963 5976 10.1158/1078‑0432.CCR‑18‑0876 30072474
    [Google Scholar]
  33. Suzawa K. Offin M. Lu D. Activation of KRAS mediates resistance to targeted therapy in MET Exon 14–mutant non–small cell lung cancer. Clin. Cancer Res. 2019 25 4 1248 1260 10.1158/1078‑0432.CCR‑18‑1640 30352902
    [Google Scholar]
  34. Recondo G. Bahcall M. Spurr L.F. Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors in patients with MET Exon 14–Mutant NSCLC. Clin. Cancer Res. 2020 26 11 2615 2625 10.1158/1078‑0432.CCR‑19‑3608 32034073
    [Google Scholar]
  35. Engstrom L.D. Aranda R. Lee M. Glesatinib exhibits antitumor activity in lung cancer models and patients harboring MET Exon 14 mutations and overcomes mutation-mediated resistance to type I MET inhibitors in nonclinical models. Clin. Cancer Res. 2017 23 21 6661 6672 10.1158/1078‑0432.CCR‑17‑1192 28765324
    [Google Scholar]
  36. Heist R.S. Sequist L.V. Borger D. Acquired resistance to crizotinib in NSCLC with MET exon 14 skipping. J. Thorac. Oncol. 2016 11 8 1242 1245
    [Google Scholar]
  37. Fujino T. Kobayashi Y. Suda K. Sensitivity and resistance of MET exon 14 mutations in lung cancer to eight MET tyrosine kinase inhibitors in vitro. J. Thorac. Oncol. 2019 14 10 1753 1765
    [Google Scholar]
  38. Zhai D. Rogers E. Deng W. TPX-0022, a polypharmacology inhibitor of MET/CSF1R/SRC for treatment of cancers with abnormal HGF/MET signaling. Cancer Res. 2019 79 13
    [Google Scholar]
  39. Recondo G. Che J. Jänne P.A. Awad M.M. Targeting MET dysregulation in cancer. Cancer Discov. 2020 10 7 922 934 10.1158/2159‑8290.CD‑19‑1446 32532746
    [Google Scholar]
  40. Ayoub N. Al-Shami K. Alqudah M.A.Y. Mhaidat N. Crizotinib, a MET inhibitor, inhibits growth, migration, and invasion of breast cancer cells in vitro and synergizes with chemotherapeutic agents. OncoTargets Ther. 2017 10 4869 4883 10.2147/OTT.S148604 29042798
    [Google Scholar]
  41. Ferrari S.M. Ragusa F. Elia G. Antineoplastic effect of ALK inhibitor crizotinib in primary human anaplastic thyroid cancer cells with STRN–ALK fusion in vitro. Int. J. Mol. Sci. 2024 25 12 6734 10.3390/ijms25126734 38928438
    [Google Scholar]
  42. Lin J. Lyu Y. Li L. Crizotinib inhibits activation of MET pathway caused by MET extracellular SEMA domain duplication. Lung Cancer 2020 147 64 70 10.1016/j.lungcan.2020.07.006 32673828
    [Google Scholar]
  43. Ou S.I. Young L. Schrock A.B. Emergence of preexisting MET Y1230C mutation as a resistance mechanism to crizotinib in NSCLC with MET exon 14 skipping. J. Thorac. Oncol. 2017 12 1 137 140 10.1016/j.jtho.2016.09.119 27666659
    [Google Scholar]
  44. Drilon A. Clark J.W. Weiss J. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat. Med. 2020 26 1 47 51 10.1038/s41591‑019‑0716‑8 31932802
    [Google Scholar]
  45. Moro-Sibilot D. Cozic N. Pérol M. Crizotinib in c-MET- or ROS1-positive NSCLC: Results of the AcSé phase II trial. Ann. Oncol. 2019 30 12 1985 1991 10.1093/annonc/mdz407 31584608
    [Google Scholar]
  46. Vuong H.G. Nguyen T.Q. Nguyen H.C. Nguyen P.T. Ho A.T.N. Hassell L. Efficacy and safety of crizotinib in the treatment of advanced Non-Small-Cell lung cancer with ROS1 rearrangement or MET alteration: A systematic review and meta-analysis. Target. Oncol. 2020 15 5 589 598 10.1007/s11523‑020‑00745‑7 32865687
    [Google Scholar]
  47. Yang H. Zhou Z. Lin L. Characterization of MET exon 14 alteration and association with clinical outcomes of crizotinib in Chinese lung cancers. Lung Cancer 2020 148 113 121 10.1016/j.lungcan.2020.08.009 32889305
    [Google Scholar]
  48. Hida T. Nokihara H. Kondo M. Alectinib versus crizotinib in patients with ALK -positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet 2017 390 10089 29 39 10.1016/S0140‑6736(17)30565‑2 28501140
    [Google Scholar]
  49. Baltschukat S. Engstler B.S. Huang A. Capmatinib (INC280) is active against models of non–small cell lung cancer and other cancer types with defined mechanisms of MET activation. Clin. Cancer Res. 2019 25 10 3164 3175 10.1158/1078‑0432.CCR‑18‑2814 30674502
    [Google Scholar]
  50. Heist RS Seto T Han JY CMET-22. Capmatinib (INC280) in metδex14-mutated advanced non-small cell lung cancer (NSCLC): efficacy data from the phase 2 geometry mono-1 study Neuro-oncol 2019 21 vi56 Suppl.6 10.1093/neuonc/noz175.223
    [Google Scholar]
  51. Schuler M. Berardi R. Lim W.T. Molecular correlates of response to capmatinib in advanced non-small-cell lung cancer: Clinical and biomarker results from a phase I trial. Ann. Oncol. 2020 31 6 789 797 10.1016/j.annonc.2020.03.293 32240796
    [Google Scholar]
  52. Wolf J. Seto T. Han J.Y. Capmatinib in MET Exon 14–Mutated or MET -Amplified Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020 383 10 944 957 10.1056/NEJMoa2002787 32877583
    [Google Scholar]
  53. Wu Y.L. Zhang L. Kim D.W. Phase Ib/II Study of Capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR -Mutated, MET factor–dysregulated non–small-cell lung cancer. J. Clin. Oncol. 2018 36 31 3101 3109 10.1200/JCO.2018.77.7326 30156984
    [Google Scholar]
  54. McCoach C.E. Yu A. Gandara D.R. Phase I/II study of capmatinib plus erlotinib in patients With MET-Positive non–small-cell lung cancer. JCO Precis. Oncol. 2021 1 5 177 190 10.1200/PO.20.00279 34036220
    [Google Scholar]
  55. Friese-Hamim M. Bladt F. Locatelli G. Stammberger U. Blaukat A. The selective c-Met inhibitor tepotinib can overcome epidermal growth factor receptor inhibitor resistance mediated by aberrant c-Met activation in NSCLC models. Am. J. Cancer Res. 2017 7 4 962 972 28469968
    [Google Scholar]
  56. Falchook G.S. Kurzrock R. Amin H.M. First-in-Man Phase I trial of the selective MET inhibitor tepotinib in patients with advanced solid tumors. Clin. Cancer Res. 2020 26 6 1237 1246 10.1158/1078‑0432.CCR‑19‑2860 31822497
    [Google Scholar]
  57. Paik P.K. Felip E. Veillon R. Tepotinib in Non–Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020 383 10 931 943 10.1056/NEJMoa2004407 32469185
    [Google Scholar]
  58. Sakai H. Morise M. Kato T. Tepotinib in patients with NSCLC harbouring MET exon 14 skipping: Japanese subset analysis from the Phase II VISION study. Jpn. J. Clin. Oncol. 2021 51 8 1261 1268 10.1093/jjco/hyab072 34037224
    [Google Scholar]
  59. Wu Y.L. Cheng Y. Zhou J. Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): An open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir. Med. 2020 8 11 1132 1143 10.1016/S2213‑2600(20)30154‑5 32479794
    [Google Scholar]
  60. Gan H.K. Millward M. Hua Y. First-in-Human phase i study of the selective MET inhibitor, savolitinib, in patients with advanced solid tumors: safety, pharmacokinetics, and antitumor activity. Clin. Cancer Res. 2019 25 16 4924 4932 10.1158/1078‑0432.CCR‑18‑1189 30952639
    [Google Scholar]
  61. Choueiri T.K. Heng D.Y.C. Lee J.L. Efficacy of savolitinib vs sunitinib in patients with MET -Driven papillary renal cell carcinoma. JAMA Oncol. 2020 6 8 1247 1255 10.1001/jamaoncol.2020.2218 32469384
    [Google Scholar]
  62. Oxnard G.R. Yang J.C.H. Yu H. TATTON: A multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann. Oncol. 2020 31 4 507 516 10.1016/j.annonc.2020.01.013 32139298
    [Google Scholar]
  63. Yang J.J. Fang J. Shu Y.Q. A phase Ib study of the highly selective MET-TKI savolitinib plus gefitinib in patients with EGFR-mutated, MET-amplified advanced non-small-cell lung cancer. Invest. New Drugs 2021 39 2 477 487 10.1007/s10637‑020‑01010‑4 33052556
    [Google Scholar]
  64. Lee T.S. Kim J.Y. Lee M.H. Savolitinib: A promising targeting agent for cancer. Cancers 2023 15 19 4708 10.3390/cancers15194708 37835402
    [Google Scholar]
  65. Markham A. Savolitinib: First Approval. Drugs 2021 81 14 1665 1670 10.1007/s40265‑021‑01584‑0 34455538
    [Google Scholar]
  66. Lu S. Fang J. Cao L. Abstract CT031: Preliminary efficacy and safety results of savolitinib treating patients with pulmonary sarcomatoid carcinoma (PSC) and other types of non-small cell lung cancer (NSCLC) harboring MET exon 14 skipping mutations. Cancer Res. 2019 79 13_supplement CT031 10.1158/1538‑7445.AM2019‑CT031
    [Google Scholar]
  67. Hartmaier R.J. Markovets A.A. Ahn M.J. Osimertinib + savolitinib to overcome acquired MET-Mediated resistance in epidermal growth factor receptor–mutated, MET -Amplified non–small cell lung cancer: TATTON. Cancer Discov. 2023 13 1 98 113 10.1158/2159‑8290.CD‑22‑0586 36264123
    [Google Scholar]
  68. Atkins M.B. Tannir N.M. Current and emerging therapies for first-line treatment of metastatic clear cell renal cell carcinoma. Cancer Treat. Rev. 2018 70 127 137 10.1016/j.ctrv.2018.07.009 30173085
    [Google Scholar]
  69. Harada G. Santini F.C. Wilhelm C.J. A Phase II Study of Cabozantinib in Patients With MET-Altered Lung Cancers. JTO Clin Res Rep 2025 6 8 100857 10.1016/j.jtocrr.2025.100857 40687931
    [Google Scholar]
  70. Neal J.W. Dahlberg S.E. Wakelee H.A. Erlotinib, cabozantinib, or erlotinib plus cabozantinib as second-line or third-line treatment of patients with EGFR wild-type advanced non-small-cell lung cancer (ECOG-ACRIN 1512): A randomised, controlled, open-label, multicentre, phase 2 trial. Lancet Oncol. 2016 17 12 1661 1671 10.1016/S1470‑2045(16)30561‑7 27825638
    [Google Scholar]
  71. Neal J.W. Santoro A. Gonzalez-Cao M. Cabozantinib plus atezolizumab or cabozantinib alone in patients with advanced NSCLC previously treated with an immune checkpoint inhibitor: Results from the phase 1b COSMIC-021 Study. JTO Clin Res Rep 2024 5 10 100666 10.1016/j.jtocrr.2024.100666 39318387
    [Google Scholar]
  72. Patnaik A. Gadgeel S. Papadopoulos K.P. Study of glesatinib (MGCD265) in combination with erlotinib or docetaxel in patients with advanced solid tumors (vol 17, pg 125, 2022). Target. Oncol. 2022 17 2 139 9 10.1007/s11523‑022‑00877‑y 35380379
    [Google Scholar]
  73. Kollmannsberger C. Hurwitz H. Bazhenova L. Phase I study evaluating glesatinib (MGCD265), An Inhibitor of MET and AXL, in patients with non-small cell lung cancer and other advanced solid tumors. Target. Oncol. 2023 18 1 105 118 10.1007/s11523‑022‑00931‑9 36459255
    [Google Scholar]
  74. Hong D.S. Cappuzzo F. Chul Cho B. Phase II study investigating the efficacy and safety of glesatinib (MGCD265) in patients with advanced NSCLC containing MET activating alterations. Lung Cancer 2024 190 107512 10.1016/j.lungcan.2024.107512 38417277
    [Google Scholar]
  75. Fang G. Pi Z. An Y. Cost-effectiveness analysis of gumarontinib versus savolitinib for the treatment of advanced or metastatic NSCLC with MET exon 14 skipping mutations in China using partitioned survival model. Front. Pharmacol. 2025 16 1400422 10.3389/fphar.2025.1400422 39925845
    [Google Scholar]
  76. Planchard D Popat S Kerr K Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up Ann Oncol 2018 29 iv92 237 Suppl. 4 10.1093/annonc/mdy275 30285222
    [Google Scholar]
  77. Wu Y.L. Planchard D. Lu S. Pan-Asian adapted Clinical Practice Guidelines for the management of patients with metastatic non-small-cell lung cancer: a CSCO–ESMO initiative endorsed by JSMO, KSMO, MOS, SSO and TOS. Ann. Oncol. 2019 30 2 171 210 10.1093/annonc/mdy554 30596843
    [Google Scholar]
  78. Guidelines on clinical practice of molecular tests in non-small cell lung cancer in china (2024 version) 2024 53 10 981 995 39375078
  79. Abughanimeh O. Kaur A. El Osta B. Ganti A.K. Novel targeted therapies for advanced non-small lung cancer. Semin. Oncol. 2022 49 3-4 326 336 10.1053/j.seminoncol.2022.03.003 35414419
    [Google Scholar]
  80. Chagas G.C.L. Rangel A.R. El Osta B. MET alterations in advanced non-small cell lung cancer. Curr. Probl. Cancer 2024 49 101075 10.1016/j.currproblcancer.2024.101075 38480027
    [Google Scholar]
  81. Riely G.J. Wood D.E. Ettinger D.S. Non–Small cell lung cancer, Version 4.2024. J. Natl. Compr. Canc. Netw. 2024 22 4 249 274 10.6004/jnccn.2204.0023 38754467
    [Google Scholar]
  82. Gow C.H. Hsieh M.S. Wu S.G. Shih J.Y. A comprehensive analysis of clinical outcomes in lung cancer patients harboring a MET exon 14 skipping mutation compared to other driver mutations in an East Asian population. Lung Cancer 2017 103 82 89 10.1016/j.lungcan.2016.12.001 28024701
    [Google Scholar]
  83. Guisier F. Dubos-Arvis C. Viñas F. Efficacy and safety of anti-PD-1 immunotherapy in patients with advanced NSCLC with BRAF, HER2, or MET mutations or RET translocation: GFPC 01-2018. J. Thorac. Oncol. 2020 15 4 628 636
    [Google Scholar]
  84. Sabari J.K. Leonardi G.C. Shu C.A. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann. Oncol. 2018 29 10 2085 2091 10.1093/annonc/mdy334 30165371
    [Google Scholar]
  85. Wolf J. Garon E.B. Groen H.J.M. Capmatinib in MET exon 14-mutated, advanced NSCLC: Updated results from the GEOMETRY mono-1 study. J. Clin. Oncol. 2021 39 15_suppl. 9020 10.1200/JCO.2021.39.15_suppl.9020
    [Google Scholar]
  86. Poonnen P.J. Duffy J.E. Hintze B. Genomic analysis of metastatic solid tumors in veterans: Findings from the VHA national precision oncology program. JCO Precis. Oncol. 2019 3 3 32914016
    [Google Scholar]
  87. De Mello R.A. Neves N.M. Amaral G.A. The Role of MET inhibitor therapies in the treatment of advanced non-small cell lung cancer. J. Clin. Med. 2020 9 6 1918 10.3390/jcm9061918 32575417
    [Google Scholar]
  88. Camidge D.R. Moran T. Demedts I. A Randomized, Open-Label Phase II study evaluating emibetuzumab plus erlotinib and emibetuzumab monotherapy in MET immunohistochemistry positive NSCLC patients with acquired resistance to erlotinib. Clin. Lung Cancer 2022 23 4 300 310 10.1016/j.cllc.2022.03.003 35400584
    [Google Scholar]
  89. Wang V.E. Blaser B.W. Patel R.K. Inhibition of MET signaling with ficlatuzumab in combination with chemotherapy in refractory AML: Clinical outcomes and high-dimensional analysis. Blood Cancer Discov. 2021 2 5 434 449 10.1158/2643‑3230.BCD‑21‑0055 34514432
    [Google Scholar]
  90. Desai A. Abdayem P. Adjei A.A. Planchard D. Antibody-drug conjugates: A promising novel therapeutic approach in lung cancer. Lung Cancer 2022 163 96 106 10.1016/j.lungcan.2021.12.002 34942494
    [Google Scholar]
  91. Lu R.M. Hwang Y.C. Liu I.J. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020 27 1 1 10.1186/s12929‑019‑0592‑z 31894001
    [Google Scholar]
  92. Marks S. Naidoo J. Antibody drug conjugates in non-small cell lung cancer: An emerging therapeutic approach. Lung Cancer 2022 163 59 68 10.1016/j.lungcan.2021.11.016 34923203
    [Google Scholar]
  93. Camidge D.R. Bar J. Horinouchi H. Telisotuzumab vedotin monotherapy in patients with previously treated c-met protein–overexpressing advanced nonsquamous EGFR -Wildtype non–small cell lung cancer in the phase II luminosity trial. J. Clin. Oncol. 2024 42 25 3000 3011 10.1200/JCO.24.00720 38843488
    [Google Scholar]
  94. Dempke W.C.M. Fenchel K. Has programmed cell death ligand-1 MET an accomplice in non-small cell lung cancer?—A narrative review. Transl. Lung Cancer Res. 2021 10 6 2667 2682 10.21037/tlcr‑21‑124 34295669
    [Google Scholar]
  95. Zhang Y. Yang Q. Zeng X. MET amplification attenuates lung tumor response to immunotherapy by inhibiting sting. Cancer Discov. 2021 11 11 2726 2737 10.1158/2159‑8290.CD‑20‑1500 34099454
    [Google Scholar]
  96. Pennell N.A. Mutebi A. Zhou Z.Y. Economic impact of next-generation sequencing versus single-gene testing to detect genomic alterations in metastatic non–small-cell lung cancer using a decision analytic model. JCO Precis. Oncol. 2019 3 3 1 9 10.1200/PO.18.00356 35100695
    [Google Scholar]
  97. Siravegna G. Mussolin B. Venesio T. How liquid biopsies can change clinical practice in oncology. Ann. Oncol. 2019 30 10 1580 1590 10.1093/annonc/mdz227 31373349
    [Google Scholar]
  98. Kilgour E. Rothwell D.G. Brady G. Dive C. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell 2020 37 4 485 495 10.1016/j.ccell.2020.03.012 32289272
    [Google Scholar]
  99. Im Y.R. Tsui D.W.Y. Diaz L.A. Wan J.C.M. Next-Generation liquid biopsies: Embracing data science in oncology. Trends Cancer 2021 7 4 283 292 10.1016/j.trecan.2020.11.001 33317961
    [Google Scholar]
  100. Gregg J.P. Li T. Yoneda K.Y. Molecular testing strategies in non-small cell lung cancer: Optimizing the diagnostic journey. Transl. Lung Cancer Res. 2019 8 3 286 301 10.21037/tlcr.2019.04.14 31367542
    [Google Scholar]
  101. Reckamp K.L. Patil T. Kirtane K. Duration of targeted therapy in patients with advanced non–small-cell lung cancer identified by circulating tumor DNA analysis. Clin. Lung Cancer 2020 21 6 545 552.e1 10.1016/j.cllc.2020.06.015 32665165
    [Google Scholar]
  102. Mack P.C. Banks K.C. Espenschied C.R. Spectrum of driver mutations and clinical impact of circulating tumor DNA analysis in non–small cell lung cancer: Analysis of over 8000 cases. Cancer 2020 126 14 3219 3228 10.1002/cncr.32876 32365229
    [Google Scholar]
  103. Wang M. Zhang S. Yi D. Advances in clinical research of MET exon 14 skipping mutations in non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2025 151 2 78 10.1007/s00432‑025‑06115‑y 39937291
    [Google Scholar]
  104. Russo A. Cardona A.F. Caglevic C. Overcoming TKI resistance in fusion-driven NSCLC: new generation inhibitors and rationale for combination strategies. Transl. Lung Cancer Res. 2020 9 6 2581 2598 10.21037/tlcr‑2019‑cnsclc‑06 33489820
    [Google Scholar]
  105. Bai Q. Shi X. Zhou X. Liang Z. Lu S. Wu Y. Chinese expert consensus on clinical practice of MET detection in non-small cell lung cancer. Ther. Adv. Med. Oncol. 2024 16 17588359231216096 10.1177/17588359231216096 38188466
    [Google Scholar]
  106. Gillette M.A. Satpathy S. Cao S. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 2020 182 1 200 225.e35 10.1016/j.cell.2020.06.013 32649874
    [Google Scholar]
  107. Liu Y. Colditz G.A. Kozower B.D. Association of medicaid expansion under the patient protection and affordable care act with non–small cell lung cancer survival. JAMA Oncol. 2020 6 8 1289 1290 10.1001/jamaoncol.2020.1040 32407435
    [Google Scholar]
  108. Fedewa S.A. Kazerooni E.A. Studts J.L. State variation in low-dose computed tomography scanning for lung cancer screening in the United States. J. Natl. Cancer Inst. 2021 113 8 1044 1052 10.1093/jnci/djaa170 33176362
    [Google Scholar]
  109. Ying S. Chi H. Wu X. Selective and orally bioavailable c-Met PROTACs for the Treatment of c-Met-Addicted Cancer. J. Med. Chem. 2024 67 19 17053 17069 10.1021/acs.jmedchem.3c02417 39348183
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501409916251103161912
Loading
/content/journals/cdt/10.2174/0113894501409916251103161912
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test