Skip to content
2000
image of Investigating the Mechanism of Astragalus mongholicus-Mediated Treatment of Silicosis in Mice from the Perspective of Alternative Splicing

Abstract

Introduction

Astragalus mongholicus is distributed in Inner Mongolia, China, and has a certain therapeutic effect on silicosis. However, the regulatory mechanisms of Astragalus mongholicus mediated by alternative splicing (AS) sis pathology and treatment remain unclear.

Methods

The pathological examination was performed on the lung tissue from a constructed mouse model of silicosis. Then, rMATS-based AS detection, target prediction, PPI analysis, and molecular docking were conducted to investigate the mechanism of Astragalus mongholicus-mediated treatment of silicosis in mice from the perspective of AS.

Results

A total of 404 differentially alternatively spliced genes (DASGs) were identified between the Astragalus mongholicus treatment and the silicosis model group. Moreover, 194 potential targets were predicted from 33 active components of Astragalus mongholicus, of which the targets, Rps6ka2 and Clk4, underwent differential AS. Network pharmacology analysis indicated that the Isomucronulatol, 7-o-methylisomucronulatol, and Medicarpin in Astragalus mongholicus might participate in the treatment of silicosis through differential splicing of Rps6ka2 or Clk4. Molecular docking confirmed a strong binding affinity between the protein Rps6ka2 and Medicarpin.

Discussion

This study suggests that Isomucronulatol, 7-o-methylisomucronulatol, and Medicarpin, being active components in Astragalus mongholicus, may intervene sis pathogenesis through differential splicing of Rps6ka2 or Clk4, involving biological processes such as protein serine/threonine kinase activity. However, further experimental validation is required to confirm these findings.

Conclusion

A large number of DASEs exist in the development and treatment of silicosis. Astragalus mongholicus may alleviate silicosis through AS-regulated mechanisms involving Rps6ka2 and Clk4. This finding provides novel strategies and potential molecular targets for silicosis treatment.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501408966250903070801
2025-09-12
2025-11-08
Loading full text...

Full text loading...

References

  1. Krefft S. Wolff J. Rose C. Silicosis: An update and guide for clinicians. Clin. Chest Med. 2020 41 4 709 722 10.1016/j.ccm.2020.08.012 33153689
    [Google Scholar]
  2. Jamshidi P. Danaei B. Arbabi M. Mohammadzadeh B. Khelghati F. Akbari Aghababa A. Nayebzade A. Shahidi Bonjar A.H. Centis R. Sotgiu G. Nasiri M.J. Migliori G.B. Silicosis and tuberculosis: A systematic review and meta-analysis. Pulmonology 2025 31 1 2416791 10.1016/j.pulmoe.2023.05.001 37349198
    [Google Scholar]
  3. Tan S. Chen S. Macrophage Autophagy and Silicosis: Current Perspective and Latest Insights. Int. J. Mol. Sci. 2021 22 1 453 10.3390/ijms22010453 33466366
    [Google Scholar]
  4. Marques Da Silva V. Benjdir M. Montagne P. Pairon J.C. Lanone S. Andujar P. Pulmonary toxicity of silica linked to its micro- or nanometric particle size and crystal structure: A review. Nanomaterials 2022 12 14 2392 10.3390/nano12142392 35889616
    [Google Scholar]
  5. Feary J. Devaraj A. Burton M. Chua F. Coker R.K. Datta A. Hewitt R.J. Kokosi M. Kouranos V. Reynolds C.J. Ross C.L. Smith V. Ward K. Wickremasinghe M. Szram J. Artificial stone silicosis: A UK case series. Thorax 2024 79 10 979 981 10.1136/thorax‑2024‑221715 39107113
    [Google Scholar]
  6. Yin H. Xie Y. Gu P. Li W. Zhang Y. Yao Y. Chen W. Ma J. The emerging role of epigenetic regulation in the progression of silicosis. Clin. Epigenetics 2022 14 1 169 10.1186/s13148‑022‑01391‑8 36494831
    [Google Scholar]
  7. Bonella F. Spagnolo P. Ryerson C. Current and future treatment landscape for idiopathic pulmonary fibrosis. Drugs 2023 83 17 1581 1593 10.1007/s40265‑023‑01950‑0 37882943
    [Google Scholar]
  8. Scalia Carneiro A.P. Algranti E. Chérot-Kornobis N. Silva Bezerra F. Tibiriça Bon A.M. Felicidade Tomaz Braz N. Soares Souza D.M. de Paula Costa G. Bussacos M.A. de Paula Alves Bezerra O.M. Talvani A. Inflammatory and oxidative stress biomarkers induced by silica exposure in crystal craftsmen. Am. J. Ind. Med. 2020 63 4 337 347 10.1002/ajim.23088 31953962
    [Google Scholar]
  9. Zhao M. Wang L. Wang M. Zhou S. Lu Y. Cui H. Racanelli A.C. Zhang L. Ye T. Ding B. Zhang B. Yang J. Yao Y. Targeting fibrosis: Mechanisms and clinical trials. Signal Transduct. Target. Ther. 2022 7 1 206 10.1038/s41392‑022‑01070‑3 35773269
    [Google Scholar]
  10. Kumar S. Malviya R. Uniyal P. Vaccine for targeted therapy of lung cancer: Advances and developments. Curr. Drug Targets 2024 25 8 526 529 10.2174/0113894501306103240426131249 38712374
    [Google Scholar]
  11. Peng F.D. Dai J. Ding C.G. Research progress of macrophage polarization in silico fibrosis. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2024 42 4 315 320 10.3760/cma.j.cn121094‑20230306‑00067 38678001
    [Google Scholar]
  12. Yang X. Wang H. Liu A. Ni Y. Wang J. Han Y. Xie B. Geng J. Ren Y. Zhang R. Liu M. Dai H. Evaluation of respiratory muscle dysfunction in patients with idiopathic pulmonary fibrosis: A prospective observational study with magnetic resonance imaging. BMC Pulm. Med. 2025 25 1 118 10.1186/s12890‑025‑03572‑6 40087606
    [Google Scholar]
  13. Hasegawa Y. Franks J.M. Tanaka Y. Uehara Y. Read D.F. Williams C. Srivatsan S. Pitstick L.B. Nikolaidis N.M. Shaver C.M. Kropski J. Ware L.B. Taylor C.J. Banovich N.E. Wu H. Gardner J.C. Osterburg A.R. Yu J.J. Kopras E.J. Teitelbaum S.L. Wikenheiser-Brokamp K.A. Trapnell C. McCormack F.X. Pulmonary osteoclast- like cells in silica induced pulmonary fibrosis. Sci. Adv. 2024 10 28 eadl4913 10.1126/sciadv.adl4913 38985878
    [Google Scholar]
  14. Tan S. Chen S. The mechanism and effect of autophagy, apoptosis, and pyroptosis on the progression of silicosis. Int. J. Mol. Sci. 2021 22 15 8110 10.3390/ijms22158110 34360876
    [Google Scholar]
  15. Yang B. Liu X. Peng C. Meng X. Jia Q. Silicosis: From pathogenesis to therapeutics. Front. Pharmacol. 2025 16 1516200 10.3389/fphar.2025.1516200 39944632
    [Google Scholar]
  16. Ternier G. Shahzad K. Edirisinghe O. Okoto P. Alraawi Z. Sonnaila S. Phan P. Adams P.D. Thallapuranam S.K. Fibroblast growth factors: Roles and emerging therapeutic applications. Curr. Drug Targets 2025 26 8 551 570 10.2174/0113894501351461250301072444 40051360
    [Google Scholar]
  17. Zhang X. Zhao L. He M. Huang X. Liu D. Burden of silicosis based on the Global Burden of Disease Study 2021: Trend analysis of incidence, mortality, and disability-adjusted life years, and projections for the next 30 years. J. Thorac. Dis. 2025 17 2 872 886 10.21037/jtd‑24‑1341 40083511
    [Google Scholar]
  18. Liu X. Jiang Q. Wu P. Han L. Zhou P. Global incidence, prevalence and disease burden of silicosis: 30 years’ overview and forecasted trends. BMC Public Health 2023 23 1 1366 10.1186/s12889‑023‑16295‑2 37461046
    [Google Scholar]
  19. Chen Y. Li X. Yang M. Liu S.B. Research progress on morphology and mechanism of programmed cell death. Cell Death Dis. 2024 15 5 327 10.1038/s41419‑024‑06712‑8 38729953
    [Google Scholar]
  20. Cao Z. Liu Y. Zhang Z. Yang P. Li Z. Song M. Qi X. Han Z. Pang J. Li B. Zhang X. Dai H. Wang J. Wang C. Pirfenidone ameliorates silica-induced lung inflammation and fibrosis in mice by inhibiting the secretion of interleukin-17A. Acta Pharmacol. Sin. 2022 43 4 908 918 10.1038/s41401‑021‑00706‑4 34316030
    [Google Scholar]
  21. Jia Y. Wang A. Liu L. Wang H. Li G. Zhang F. Chinese medicinal plant Polygonum cuspidatum ameliorates silicosis via suppressing the Wnt/β-catenin pathway. Open Chem. 2022 20 1 1601 1611 10.1515/chem‑2022‑0266
    [Google Scholar]
  22. Gao J. Li C. Wang X. Sun X. Zhang R. chen C. Yu M. Liu Y. Zhu Y. Chen J. Oridonin attenuates lung inflammation and fibrosis in silicosis via covalent targeting iNOS. Biomed. Pharmacother. 2022 153 113532 10.1016/j.biopha.2022.113532 36076611
    [Google Scholar]
  23. Chen S. Tang K. Hu P. Tan S. Yang S. Yang C. Chen G. Luo Y. Zou H. Atractylenolide III alleviates the apoptosis through inhibition of autophagy by the mTOR-dependent pathway in alveolar macrophages of human silicosis. Mol. Cell. Biochem. 2021 476 2 809 818 10.1007/s11010‑020‑03946‑w 33078341
    [Google Scholar]
  24. Li T. Yang X. Xu H. Liu H. Early identification, accurate diagnosis, and treatment of silicosis. Can. Respir. J. 2022 2022 1 6 10.1155/2022/3769134 35509892
    [Google Scholar]
  25. Li J. Zhao H. Xie Y. Li J. Li Q. Chen X. Zhang W. Clinical efficacy of comprehensive therapy based on traditional Chinese medicine patterns on patients with pneumoconiosis: A pilot double-blind, randomized, and placebo-controlled study. Front. Med. 2022 16 5 736 744 10.1007/s11684‑021‑0870‑5 35451681
    [Google Scholar]
  26. Ferreira de Sousa Natália Ribeiro de Sousa Gabriela Teles Ramos de Lima Natanael Bezerra de Assis Edileuza Costa Aragão Mariana Paiva de Moura Érika Gopalsamy Rajiv Gandhi Scotti Marcus Tullius Scotti Luciana Multitarget Compounds for Neglected Diseases: A Review. Curr Med Chem 2024 25 9 577 601 10.2174/0113894501298864240627060247 38967077
    [Google Scholar]
  27. Adamcakova J. Mokra D. Herbal compounds in the treatment of pulmonary silicosis. Physiol. Res. 2021 70 S3 S275 S287 10.33549/physiolres.934817 35099247
    [Google Scholar]
  28. Li N. Wu K. Feng F. Wang L. Zhou X. Wang W. Astragaloside IV alleviates silica-induced pulmonary fibrosis via inactivation of the TGF-β1/Smad2/3 signaling pathway. Int. J. Mol. Med. 2021 47 3 16 10.3892/ijmm.2021.4849 33448318
    [Google Scholar]
  29. Li R. Kang H. Chen S. From basic research to clinical practice: Considerations for treatment drugs for silicosis. Int. J. Mol. Sci. 2023 24 9 8333 10.3390/ijms24098333 37176040
    [Google Scholar]
  30. Yang C.G. Mao X.L. Wu J.F. An X. Cao J.J. Zhang X.Y. Li M. Zhang F.F. Amelioration of lung fibrosis by total flavonoids of astragalus via inflammatory modulation and epithelium regeneration. Am. J. Chin. Med. 2023 51 2 373 389 10.1142/S0192415X23500192 36655684
    [Google Scholar]
  31. Li N. Feng F. Wu K. Zhang H. Zhang W. Wang W. Inhibitory effects of astragaloside IV on silica-induced pulmonary fibrosis via inactivating TGF-β1/Smad3 signaling. Biomed. Pharmacother. 2019 119 109387 10.1016/j.biopha.2019.109387 31487583
    [Google Scholar]
  32. Wang W. Zhang Y. Zhai Y. Yang W. Xing Y. Alternative splicing dynamics during gastrulation in mouse embryo. Sci. Rep. 2025 15 1 10948 10.1038/s41598‑025‑96148‑7 40159515
    [Google Scholar]
  33. Choi S. Cho N. Kim K.K. The implications of alternative pre-mRNA splicing in cell signal transduction. Exp. Mol. Med. 2023 55 4 755 766 10.1038/s12276‑023‑00981‑7 37009804
    [Google Scholar]
  34. Bao N. Wang Z. Fu J. Dong H. Jin Y. RNA structure in alternative splicing regulation: From mechanism to therapy. Acta Biochim. Biophys. Sin. 2024 57 1 3 21 10.3724/abbs.2024119 39034824
    [Google Scholar]
  35. Huang R. Liu X. Li H. Ning H. Zhou P.K. PRKCSH alternative splicing involves in silica-induced expression of epithelial-mesenchymal transition markers and cell proliferation. Dose Response 2020 18 2 1559325820923825 10.1177/1559325820923825 32425726
    [Google Scholar]
  36. He Y. Yang F. Yang L. Yuan H. You Y. Chen Y. Wu X. Min H. Chen J. Li C. Mechanics-activated fibroblasts promote pulmonary group 2 innate lymphoid cell plasticity propelling silicosis progression. Nat. Commun. 2024 15 1 9770 10.1038/s41467‑024‑54174‑5 39532893
    [Google Scholar]
  37. Zhao H. Jiang Z. Lv R. Li X. Xing Y. Gao Y. Lv D. Si Y. Wang J. Li J. Zhao X. Cai L. Transcriptome profile analysis reveals a silica-induced immune response and fibrosis in a silicosis rat model. Toxicol. Lett. 2020 333 42 48 10.1016/j.toxlet.2020.07.021 32721576
    [Google Scholar]
  38. Ji Y. Mishra R.K. Davuluri R.V. in silico analysis of alternative splicing on drug-target gene interactions. Sci. Rep. 2020 10 1 134 10.1038/s41598‑019‑56894‑x 31924844
    [Google Scholar]
  39. Tomokuni A. Aikoh T. Matsuki T. Isozaki Y. Otsuki T. Kita S. Ueki H. Kusaka M. Kishimoto T. Ueki A. Elevated soluble Fas/APO-1 (CD95) levels in silicosis patients without clinical symptoms of autoimmune diseases or malignant tumours. Clin. Exp. Immunol. 2007 110 2 303 309 10.1111/j.1365‑2249.1997.tb08332.x 9367417
    [Google Scholar]
  40. Andrade da Silva L.H. Vieira J.B. Cabral M.R. Antunes M.A. Lee D. Cruz F.F. Hanes J. Rocco P.R.M. Morales M.M. Suk J.S. Development of nintedanib nanosuspension for inhaled treatment of experimental silicosis. Bioeng. Transl. Med. 2023 8 2 10401 10.1002/btm2.10401 36925690
    [Google Scholar]
  41. Martínez-López A. Candel S. Tyrkalska S.D. Animal models of silicosis: Fishing for new therapeutic targets and treatments. Eur. Respir. Rev. 2023 32 169 230078 10.1183/16000617.0078‑2023 37558264
    [Google Scholar]
  42. Song M. Wang J. Sun Y. Han Z. Zhou Y. Liu Y. Fan T. Li Z. Qi X. Luo Y. Yang P. Li B. Zhang X. Wang J. Wang C. Tetrandrine alleviates silicosis by inhibiting canonical and non-canonical NLRP3 inflammasome activation in lung macrophages. Acta Pharmacol. Sin. 2022 43 5 1274 1284 10.1038/s41401‑021‑00693‑6 34417574
    [Google Scholar]
  43. Schneider C.A. Rasband W.S. Eliceiri K.W. NIH image to imageJ: 25 years of image analysis. Nat. Methods 2012 9 7 671 675 10.1038/nmeth.2089 22930834
    [Google Scholar]
  44. Andrews S. FastQc a quality control tool for high throughput sequence data. 2014
    [Google Scholar]
  45. Bolger A.M. Lohse M. Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014 30 15 2114 2120 10.1093/bioinformatics/btu170 24695404
    [Google Scholar]
  46. Dobin A. Davis C.A. Schlesinger F. Drenkow J. Zaleski C. Jha S. Batut P. Chaisson M. Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013 29 1 15 21 10.1093/bioinformatics/bts635 23104886
    [Google Scholar]
  47. Pertea M. Pertea G.M. Antonescu C.M. Chang T.C. Mendell J.T. Salzberg S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015 33 3 290 295 10.1038/nbt.3122 25690850
    [Google Scholar]
  48. Shen S. Park J.W. Lu Z. Lin L. Henry M.D. Wu Y.N. Zhou Q. Xing Y. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. USA 2014 111 51 E5593 E5601 10.1073/pnas.1419161111 25480548
    [Google Scholar]
  49. Katz Y. Wang E.T. Silterra J. Schwartz S. Wong B. Thorvaldsdóttir H. Robinson J.T. Mesirov J.P. Airoldi E.M. Burge C.B. Quantitative visualization of alternative exon expression from RNA-seq data. Bioinformatics 2015 31 14 2400 2402 10.1093/bioinformatics/btv034 25617416
    [Google Scholar]
  50. Xu S. Hu E. Cai Y. Xie Z. Luo X. Zhan L. Tang W. Wang Q. Liu B. Wang R. Xie W. Wu T. Xie L. Yu G. Using clusterProfiler to characterize multiomics data. Nat. Protoc. 2024 19 11 3292 3320 10.1038/s41596‑024‑01020‑z 39019974
    [Google Scholar]
  51. Gu Z. Hübschmann D. SimplifyEnrichment : A bioconductor package for clustering and visualizing functional enrichment results. Genomics Proteomics Bioinformatics 2023 21 1 190 202 10.1016/j.gpb.2022.04.008 35680096
    [Google Scholar]
  52. Fang S. Dong L. Liu L. Guo J. Zhao L. Zhang J. Bu D. Liu X. Huo P. Cao W. Dong Q. Wu J. Zeng X. Wu Y. Zhao Y. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021 49 D1 D1197 D1206 10.1093/nar/gkaa1063 33264402
    [Google Scholar]
  53. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021 49 D1 D1388 D1395 10.1093/nar/gkaa971 33151290
    [Google Scholar]
  54. Hastings J. Owen G. Dekker A. Ennis M. Kale N. Muthukrishnan V. Turner S. Swainston N. Mendes P. Steinbeck C. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res. 2016 44 D1 D1214 D1219 10.1093/nar/gkv1031 26467479
    [Google Scholar]
  55. Samigulina G. Samigulina Z. Ontological model of multi-agent Smart-system for predicting drug properties based on modified algorithms of artificial immune systems. Theor. Biol. Med. Model. 2020 17 1 12 10.1186/s12976‑020‑00130‑x 32669115
    [Google Scholar]
  56. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  57. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  58. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  59. Killcoyne S. Carter G.W. Smith J. Boyle J. Cytoscape: A community-based framework for network modeling. Methods Mol. Biol. 2009 563 219 239 10.1007/978‑1‑60761‑175‑2_12 19597788
    [Google Scholar]
  60. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  61. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  62. Bateman A. Martin M-J. Orchard S. Magrane M. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bye-A-Jee H. Cukura A. Denny P. Dogan T. Ebenezer T.G. Fan J. Garmiri P. da Costa Gonzales L.J. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Joshi V. Jyothi D. Kandasaamy S. Lock A. Luciani A. Lugaric M. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Mishra A. Moulang K. Nightingale A. Pundir S. Qi G. Raj S. Raposo P. Rice D.L. Saidi R. Santos R. Speretta E. Stephenson J. Totoo P. Turner E. Tyagi N. Vasudev P. Warner K. Watkins X. Zaru R. Zellner H. Bridge A.J. Aimo L. Argoud-Puy G. Auchincloss A.H. Axelsen K.B. Bansal P. Baratin D. Batista Neto T.M. Blatter M-C. Bolleman J.T. Boutet E. Breuza L. Gil B.C. Casals-Casas C. Echioukh K.C. Coudert E. Cuche B. de Castro E. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gaudet P. Gehant S. Gerritsen V. Gos A. Gruaz N. Hulo C. Hyka-Nouspikel N. Jungo F. Kerhornou A. Le Mercier P. Lieberherr D. Masson P. Morgat A. Muthukrishnan V. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Poux S. Pozzato M. Pruess M. Redaschi N. Rivoire C. Sigrist C.J.A. Sonesson K. Sundaram S. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Zhang J. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res. 2023 51 D1 D523 D531 10.1093/nar/gkac1052 36408920
    [Google Scholar]
  63. Dao F. Lebeau B. Ling C.C.Y. RepliChrom: Interpretable machine learning predicts cancer-associated enhancer-promoter interactions using DNA replication timing. 2025 Available from: https://doi.org/https://doi.org/10.1002/imt2.70052
  64. Hu B. Zhang X. Fan H. Jin X. Qi Y. Liu R. Li X. Duan M. Zhang C. Li S. Yao W. Hao C. FOXF1 reverses lung fibroblasts transdifferentiation via inhibiting TGF-β/SMAD2/3 pathway in silica-induced pulmonary fibrosis. Int. Immunopharmacol. 2024 133 112067 10.1016/j.intimp.2024.112067 38608444
    [Google Scholar]
  65. Long L. Dai X. Yao T. Zhang X. Jiang G. Cheng X. Jiang M. He Y. Peng Z. Hu G. Tao L. Meng J. Mefunidone alleviates silica-induced inflammation and fibrosis by inhibiting the TLR4-NF-κB/MAPK pathway and attenuating pyroptosis in murine macrophages. Biomed. Pharmacother. 2024 178 117216 10.1016/j.biopha.2024.117216 39096618
    [Google Scholar]
  66. Li K. Liu X. Hou R. Zhao H. Zhao P. Tian Y. Li J. Uncovering mechanisms of Baojin Chenfei formula treatment for silicosis by inhibiting inflammation and fibrosis based on serum pharmacochemistry and network analysis. Ecotoxicol. Environ. Saf. 2023 260 115082 10.1016/j.ecoenv.2023.115082 37257350
    [Google Scholar]
  67. Thannickal V.J. Fanburg B.L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000 279 6 L1005 L1028 10.1152/ajplung.2000.279.6.L1005 11076791
    [Google Scholar]
  68. Rahimi R.A. Leof E.B. TGF-β signaling: A tale of two responses. J. Cell. Biochem. 2007 102 3 593 608 10.1002/jcb.21501 17729308
    [Google Scholar]
  69. Zou M. Zhang G. Zou J. Liu Y. Liu B. Hu X. Cheng Z. Inhibition of the ERK1/2-ubiquitous calpains pathway attenuates experimental pulmonary fibrosis in vivo and in vitro. Exp. Cell Res. 2020 391 1 111886 10.1016/j.yexcr.2020.111886 32017927
    [Google Scholar]
  70. Nakamura K. Shirai T. Morishita S. Uchida S. Saeki-Miura K. Makishima F. p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Exp. Cell Res. 1999 250 2 351 363 10.1006/excr.1999.4535 10413589
    [Google Scholar]
  71. Bignone P.A. Lee K.Y. Liu Y. Emilion G. Finch J. Soosay A.E.R. Charnock F.M.L. Beck S. Dunham I. Mungall A.J. Ganesan T.S. RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer. Oncogene 2007 26 5 683 700 10.1038/sj.onc.1209827 16878154
    [Google Scholar]
  72. Milosevic N. Kühnemuth B. Mühlberg L. Ripka S. Griesmann H. Lölkes C. Buchholz M. Aust D. Pilarsky C. Krug S. Gress T. Michl P. Synthetic lethality screen identifies RPS6KA2 as modifier of epidermal growth factor receptor activity in pancreatic cancer. Neoplasia 2013 15 12 1354 1362 10.1593/neo.131660 24403857
    [Google Scholar]
  73. Zhang J. Liao J.Q. Wen L.R. Padhiar A.A. Li Z. He Z.Y. Wu H.C. Li J.F. Zhang S. Zhou Y. Pan X.H. Yang J.H. Zhou G.Q. Rps6ka2 enhances iMSC chondrogenic differentiation to attenuate knee osteoarthritis through articular cartilage regeneration in mice. Biochem. Biophys. Res. Commun. 2023 663 61 70 10.1016/j.bbrc.2023.04.049 37119767
    [Google Scholar]
  74. Kang E. Kim K. Jeon S.Y. Jung J.G. Kim H.K. Lee H.B. Han W. Targeting CLK4 inhibits the metastasis and progression of breast cancer by inactivating TGF-β pathway. Cancer Gene Ther. 2022 29 8-9 1168 1180 10.1038/s41417‑021‑00419‑0 35046528
    [Google Scholar]
  75. Yang C.L. Wu Y.W. Tu H.J. Yeh Y.H. Lin T.E. Sung T.Y. Li M.C. Yen S.C. Hsieh J.H. Yu M.C. Hsieh S.Y. Hsieh H.P. Pan S.L. Hsu K.C. Identification and biological evaluation of a novel clk4 inhibitor targeting alternative splicing in pancreatic cancer using structure-based virtual screening. Adv. Sci. 2025 12 19 2416323 10.1002/advs.202416323 40126184
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501408966250903070801
Loading
/content/journals/cdt/10.2174/0113894501408966250903070801
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test