Skip to content
2000
image of 
Association Between EGFR Expression in Non-Small Cell Lung Cancer and Dietary Legume Intake

Abstract

Introduction

This study aimed to investigate the expression of the epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) tissues and its association with the frequency of legume food intake.

Methods

Clinical data from 93 NSCLC patients at Jiujiang University-affiliated Hospital (2018-2023) were collected. Postoperative recurrence status and legume intake were obtained telephone follow-up. Fourteen patients with recurrence or metastasis were assigned to the first progression (FP) group. Propensity score matching (1:3) was used to select 42 non-progression (NP) matched patients, totaling 56 for analysis. Patients were divided into low- and high-legume intake groups. EGFR expression was assessed by immunohistochemistry and statistical analysis.

Results

EGFR positivity was higher in the FP group (78.6%, 11/14) than in the NP group (47.6%, 20/42) ( < 0.05). The NP group had a greater proportion of patients with high-frequency legume consumption compared to the FP group (71.4% vs. 35.7%, < 0.05). Furthermore, patients with high-frequency legume intake (42.9%, 15/35) showed significantly lower EGFR positivity than those in the low-frequency intake group (76.2%, 16/21) ( < 0.05). These results indicate that higher legume intake correlates with both reduced EGFR expression and a decreased postoperative recurrence risk.

Discussion

These findings suggest that higher legume intake is associated with reduced EGFR expression and better postoperative outcomes in NSCLC patients. Legume consumption may modulate disease progression through EGFR regulation.

Conclusion

High legume intake correlates with improved prognosis and lower EGFR expression in NSCLC. Further large-scale prospective studies are needed to validate these associations and explore their clinical implications.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501406097251015114440
2026-01-09
2026-01-28
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Chen P. Liu Y. Wen Y. Zhou C. Non-small cell lung cancer in China. Cancer Commun. 2022 42 10 937 970 10.1002/cac2.12359 36075878
    [Google Scholar]
  3. Fu D. Zhang B. Fan W. Zeng F. Feng J. Wang X. Fatty acid metabolism prognostic signature predicts tumor immune microenvironment and immunotherapy, and identifies tumorigenic role of MOGAT2 in lung adenocarcinoma. Front. Immunol. 2024 15 1456719 10.3389/fimmu.2024.1456719 39478862
    [Google Scholar]
  4. Zeng F. Wang X. Wang C. Zhang Y. Fu D. Wang X. Analysis of screening outcomes and factors influencing compliance among community-based lung cancer high-risk population in Nanchang, China, 2018-2020. Front. Oncol. 2024 14 1339036 10.3389/fonc.2024.1339036 38406800
    [Google Scholar]
  5. McDonald F. De Waele M. Hendriks L.E.L. Faivre-Finn C. Dingemans A.M.C. Van Schil P.E. Management of stage I and II nonsmall cell lung cancer. Eur. Respir. J. 2017 49 1 1600764 10.1183/13993003.00764‑2016 28049169
    [Google Scholar]
  6. Potter A.L. Costantino C.L. Suliman R.A. Haridas C.S. Senthil P. Kumar A. Mayne N.R. Panda N. Martin L.W. Yang C.F.J. Recurrence after complete resection for non-small cell lung cancer in the national lung screening trial. Ann. Thorac. Surg. 2023 116 4 684 692 10.1016/j.athoracsur.2023.06.004 37356517
    [Google Scholar]
  7. Mahajan A. Esper S. Oo T.H. McKibben J. Garver M. Artman J. Klahre C. Ryan J. Sadhasivam S. Holder-Murray J. Marroquin O.C. Development and validation of a Machine Learning model to identify patients before surgery at high risk for postoperative adverse events. JAMA Netw. Open 2023 6 7 2322285 10.1001/jamanetworkopen.2023.22285 37418262
    [Google Scholar]
  8. Wei X. Zhu C. Ji M. Fan J. Xie J. Huang Y. Jiang X. Xu J. Yin R. Du L. Wang Y. Dai J. Jin G. Xu L. Hu Z. Shen H. Zhu M. Ma H. Diet and risk of incident lung cancer: A large prospective cohort study in UK biobank. Am. J. Clin. Nutr. 2021 114 6 2043 2051 10.1093/ajcn/nqab298 34582556
    [Google Scholar]
  9. Roddy M.K. Flores R.M. Burt B. Badr H. Lifestyle behaviors and intervention preferences of early-stage lung cancer survivors and their family caregivers. Support. Care Cancer 2021 29 3 1465 1475 10.1007/s00520‑020‑05632‑5 32691229
    [Google Scholar]
  10. Park S.Y. Boushey C.J. Shvetsov Y.B. Wirth M.D. Shivappa N. Hébert J.R. Haiman C.A. Wilkens L.R. Le Marchand L. Diet quality and risk of lung cancer in the multiethnic cohort study. Nutrients 2021 13 5 1614 10.3390/nu13051614 34065794
    [Google Scholar]
  11. Petitprez F. Meylan M. de Reyniès A. Sautès-Fridman C. Fridman W.H. The tumor microenvironment in the response to immune checkpoint blockade therapies. Front. Immunol. 2020 11 784 10.3389/fimmu.2020.00784 32457745
    [Google Scholar]
  12. Brody R. Zhang Y. Ballas M. Siddiqui M.K. Gupta P. Barker C. Midha A. Walker J. PD-L1 expression in advanced NSCLC: Insights into risk stratification and treatment selection from a systematic literature review. Lung Cancer 2017 112 200 215 10.1016/j.lungcan.2017.08.005 29191596
    [Google Scholar]
  13. Nicholson R.I. Gee J.M.W. Harper M.E. EGFR and cancer prognosis. Eur. J. Cancer 2001 37 Suppl. 4 9 15 10.1016/S0959‑8049(01)00231‑3 11597399
    [Google Scholar]
  14. Gazdar AF Activating and resistance mutations of EGFR in non-small-cell lung cancer: Role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 2009 28 Suppl 1 S24 S31 10.1038/onc.2009.198
    [Google Scholar]
  15. Sharma S.V. Bell D.W. Settleman J. Haber D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 2007 7 3 169 181 10.1038/nrc2088 17318210
    [Google Scholar]
  16. Hirano T. Yasuda H. Tani T. Hamamoto J. Oashi A. Ishioka K. Arai D. Nukaga S. Miyawaki M. Kawada I. Naoki K. Costa D.B. Kobayashi S.S. Betsuyaku T. Soejima K. In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer. Oncotarget 2015 6 36 38789 38803 10.18632/oncotarget.5887 26515464
    [Google Scholar]
  17. Yang M. Xu X. Cai J. Ning J. Wery J.P. Li Q.X. NSCLC harboring EGFR exon-20 insertions after the regulatory C -helix of kinase domain responds poorly to known EGFR inhibitors. Int. J. Cancer 2016 139 1 171 176 10.1002/ijc.30047 26891175
    [Google Scholar]
  18. Yasuda H. Park E. Yun C.H. Sng N.J. Lucena-Araujo A.R. Yeo W.L. Huberman M.S. Cohen D.W. Nakayama S. Ishioka K. Yamaguchi N. Hanna M. Oxnard G.R. Lathan C.S. Moran T. Sequist L.V. Chaft J.E. Riely G.J. Arcila M.E. Soo R.A. Meyerson M. Eck M.J. Kobayashi S.S. Costa D.B. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci. Transl. Med. 2013 5 216 216ra177 10.1126/scitranslmed.3007205 24353160
    [Google Scholar]
  19. Bazhenova L. Minchom A. Viteri S. Bauml J.M. Ou S.H.I. Gadgeel S.M. Trigo J.M. Backenroth D. Li T. Londhe A. Mahadevia P. Girard N. Comparative clinical outcomes for patients with advanced NSCLC harboring EGFR exon 20 insertion mutations and common EGFR mutations. Lung Cancer 2021 162 154 161 10.1016/j.lungcan.2021.10.020 34818606
    [Google Scholar]
  20. Ramalingam S.S. Vansteenkiste J. Planchard D. Cho B.C. Gray J.E. Ohe Y. Zhou C. Reungwetwattana T. Cheng Y. Chewaskulyong B. Shah R. Cobo M. Lee K.H. Cheema P. Tiseo M. John T. Lin M.C. Imamura F. Kurata T. Todd A. Hodge R. Saggese M. Rukazenkov Y. Soria J.C. Overall survival with osimertinib in untreated, EGFR -mutated advanced NSCLC. N. Engl. J. Med. 2020 382 1 41 50 10.1056/NEJMoa1913662 31751012
    [Google Scholar]
  21. Riess J.W. Gandara D.R. Frampton G.M. Madison R. Peled N. Bufill J.A. Dy G.K. Ou S.H.I. Stephens P.J. McPherson J.D. Lara P.N. Jr Burich R.A. Ross J.S. Miller V.A. Ali S.M. Mack P.C. Schrock A.B. Diverse EGFR Exon 20 insertions and co-occurring molecular alterations identified by comprehensive genomic profiling of NSCLC. J. Thorac. Oncol. 2018 13 10 1560 1568 10.1016/j.jtho.2018.06.019 29981927
    [Google Scholar]
  22. Yasuda H. Kobayashi S. Costa D.B. EGFR exon 20 insertion mutations in non-small-cell lung cancer: Preclinical data and clinical implications. Lancet Oncol. 2012 13 1 e23 e31 10.1016/S1470‑2045(11)70129‑2 21764376
    [Google Scholar]
  23. Arcila M.E. Nafa K. Chaft J.E. Rekhtman N. Lau C. Reva B.A. Zakowski M.F. Kris M.G. Ladanyi M. EGFR exon 20 insertion mutations in lung adenocarcinomas: Prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 12 2 220 229 10.1158/1535‑7163.MCT‑12‑0620 23371856
    [Google Scholar]
  24. Oxnard G.R. Lo P.C. Nishino M. Dahlberg S.E. Lindeman N.I. Butaney M. Jackman D.M. Johnson B.E. Jänne P.A. Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. J. Thorac. Oncol. 2013 8 2 179 184 10.1097/JTO.0b013e3182779d18 23328547
    [Google Scholar]
  25. Naidoo J. Sima C.S. Rodriguez K. Busby N. Nafa K. Ladanyi M. Riely G.J. Kris M.G. Arcila M.E. Yu H.A. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer 2015 121 18 3212 3220 10.1002/cncr.29493 26096453
    [Google Scholar]
  26. Tang L.L. Chen Y.P. Chen C.B. Chen M.Y. Chen N.Y. Chen X.Z. Du X.J. Fang W.F. Feng M. Gao J. Han F. He X. Hu C.S. Hu D. Hu G.Y. Jiang H. Jiang W. Jin F. Lang J.Y. Li J.G. Lin S.J. Liu X. Liu Q.F. Ma L. Mai H.Q. Qin J.Y. Shen L.F. Sun Y. Wang P.G. Wang R.S. Wang R.Z. Wang X.S. Wang Y. Wu H. Xia Y.F. Xiao S.W. Yang K.Y. Yi J.L. Zhu X.D. Ma J. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma. Cancer Commun. 2021 41 11 1195 1227 10.1002/cac2.12218 34699681
    [Google Scholar]
  27. Imyanitov E.N. Iyevleva A.G. Levchenko E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. Hematol. 2021 157 103194 10.1016/j.critrevonc.2020.103194 33316418
    [Google Scholar]
  28. Hsu F. De Caluwe A. Anderson D. Nichol A. Toriumi T. Ho C. EGFR mutation status on brain metastases from non-small cell lung cancer. Lung Cancer 2016 96 101 107 10.1016/j.lungcan.2016.04.004 27133758
    [Google Scholar]
  29. He C. Wei C. Wen J. Chen S. Chen L. Wu Y. Shen Y. Bai H. Zhang Y. Chen X. Li X. Comprehensive analysis of NGS and ARMS-PCR for detecting EGFR mutations based on 4467 cases of NSCLC patients. J. Cancer Res. Clin. Oncol. 2022 148 2 321 330 10.1007/s00432‑021‑03818‑w 34693477
    [Google Scholar]
  30. Fu Y. Liu L. Zhan J. Zhan H. Qiu C. LncRNA GAS5 expression in non-small cell lung cancer tissues and its correlation with Ki67 and EGFR. Am. J. Transl. Res. 2021 13 5 4900 4907 34150073
    [Google Scholar]
  31. Fu D. Zhang B. Zhang Y. Feng J. Jiang H. Immunogenomic classification of lung squamous cell carcinoma characterizes tumor immune microenvironment and predicts cancer therapy. Genes Dis. 2023 10 6 2274 2277 10.1016/j.gendis.2023.01.022 37554217
    [Google Scholar]
  32. Aredo J.V. Luo S.J. Gardner R.M. Sanyal N. Choi E. Hickey T.P. Riley T.L. Huang W.Y. Kurian A.W. Leung A.N. Wilkens L.R. Robbins H.A. Riboli E. Kaaks R. Tjønneland A. Vermeulen R.C.H. Panico S. Le Marchand L. Amos C.I. Hung R.J. Freedman N.D. Johansson M. Cheng I. Wakelee H.A. Han S.S. Tobacco smoking and risk of second primary lung cancer. J. Thorac. Oncol. 2021 16 6 968 979 10.1016/j.jtho.2021.02.024 33722709
    [Google Scholar]
  33. Islami F. Marlow E.C. Thomson B. McCullough M.L. Rumgay H. Gapstur S.M. Patel A.V. Soerjomataram I. Jemal A. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States, 2019. CA Cancer J. Clin. 2024 74 5 405 432 10.3322/caac.21858 38990124
    [Google Scholar]
  34. Zeng F. Zhang Y. Luo T. Wang C. Fu D. Wang X. Daidzein inhibits non-small cell lung cancer growth by pyroptosis. Curr. Pharm. Des. 2025 31 11 884 924 10.2174/0113816128330530240918073721 39623715
    [Google Scholar]
  35. Nachvak S.M. Moradi S. Anjom-shoae J. Rahmani J. Nasiri M. Maleki V. Sadeghi O. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: A systematic review and dose–response meta- analysis of prospective cohort studies. J. Acad. Nutr. Diet. 2019 119 9 1483 1500.e17 10.1016/j.jand.2019.04.011 31278047
    [Google Scholar]
  36. Fan Y. Wang M. Li Z. Jiang H. Shi J. Shi X. Liu S. Zhao J. Kong L. Zhang W. Ma L. Intake of soy, soy isoflavones and soy protein and risk of cancer incidence and mortality. Front. Nutr. 2022 9 847421 10.3389/fnut.2022.847421 35308286
    [Google Scholar]
  37. Yu Y. Xing Y. Zhang Q. Zhang Q. Huang S. Li X. Gao C. Soy isoflavone genistein inhibits hsa_circ_0031250/miR -873-5p/FOXM1 axis to suppress non-small-cell lung cancer progression. IUBMB Life 2021 73 1 92 107 10.1002/iub.2404 33159503
    [Google Scholar]
  38. Basson A.R. Ahmed S. Almutairi R. Seo B. Cominelli F. Regulation of intestinal inflammation by soybean and soy-derived compounds. Foods 2021 10 4 774 10.3390/foods10040774 33916612
    [Google Scholar]
  39. Jubaidi F.F. Zainalabidin S. Taib I.S. Hamid Z.A. Budin S.B. The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis. Int. J. Mol. Sci. 2021 22 10 5094 10.3390/ijms22105094 34065781
    [Google Scholar]
  40. Luo T Daidzein affects proliferation and apoptosis in non-small cell lung cancer cells: Role of p53 signaling pathway. Zhongguo Yaolixue Tongbao 2023 431 438
    [Google Scholar]
  41. Roman A. Motoc A. Marcovici I. Dehelean C. Nicolescu L. Boru C. Genistein improves the cytotoxic, apoptotic, and oxidative-stress-inducing properties of doxorubicin in SK-MEL-28 cancer cells. Medicina 2025 61 5 798 10.3390/medicina61050798 40428756
    [Google Scholar]
  42. Applegate C. Rowles J. III Ranard K. Jeon S. Erdman J. Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients 2018 10 1 40 10.3390/nu10010040 29300347
    [Google Scholar]
  43. Zhang F.F. Haslam D.E. Terry M.B. Knight J.A. Andrulis I.L. Daly M.B. Buys S.S. John E.M. Dietary isoflavone intake and all-cause mortality in breast cancer survivors: The Breast Cancer Family Registry. Cancer 2017 123 11 2070 2079 10.1002/cncr.30615 28263368
    [Google Scholar]
  44. Yang G. Shu X.O. Li H.L. Chow W.H. Wen W. Xiang Y.B. Zhang X. Cai H. Ji B.T. Gao Y.T. Zheng W. Prediagnosis soy food consumption and lung cancer survival in women. J. Clin. Oncol. 2013 31 12 1548 1553 10.1200/JCO.2012.43.0942 23530109
    [Google Scholar]
  45. Das R. Woo J. Identifying the multitarget pharmacological mechanism of action of genistein on lung cancer by integrating network pharmacology and molecular dynamic simulation. Molecules 2024 29 9 1913 10.3390/molecules29091913 38731403
    [Google Scholar]
  46. Roy A. Khan A. Ahmad I. Alghamdi S. Rajab B.S. Babalghith A.O. Alshahrani M.Y. Islam S. Islam M.R. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Res. Int. 2022 2022 1 5445291 10.1155/2022/5445291 35707379
    [Google Scholar]
  47. Rizzo G. The antioxidant role of soy and soy foods in human health. Antioxidants 2020 9 7 635 10.3390/antiox9070635 32708394
    [Google Scholar]
  48. Guan T. Liu X. Zhang L. Ren C. Feng Y. Yang Z. Xiao L. Soybean-derived bioactive components in prevention and intervention of lung cancer. Mol. Nutr. Food Res. 2025 69 13 70105 10.1002/mnfr.70105 40344500
    [Google Scholar]
  49. Chan S.G. Ho S.C. Kreiger N. Darlington G. Adlaf E.M. So K.F. Chong P.Y.Y. Validation of a food frequency questionnaire for assessing dietary soy isoflavone intake among midlife Chinese women in Hong Kong. J. Nutr. 2008 138 3 567 573 10.1093/jn/138.3.567 18287368
    [Google Scholar]
  50. Li C. Lei S. Ding L. Xu Y. Wu X. Wang H. Zhang Z. Gao T. Zhang Y. Li L. Global burden and trends of lung cancer incidence and mortality. Chin. Med. J. 2023 136 13 1583 1590 10.1097/CM9.0000000000002529 37027426
    [Google Scholar]
  51. Torroja C. Sanchez-Cabo F. Corrigendum: Digitaldlsorter: Deep-Learning on scRNA-Seq to deconvolute gene expression data. Front. Genet. 2020 10 1373 10.3389/fgene.2019.01373 32117421
    [Google Scholar]
  52. Siegel R.L. Kratzer T.B. Giaquinto A.N. Sung H. Jemal A. Cancer statistics, 2025. CA Cancer J. Clin. 2025 75 1 10 45 10.3322/caac.21871 39817679
    [Google Scholar]
  53. Ganti A.K. Klein A.B. Cotarla I. Seal B. Chou E. Update of incidence, prevalence, survival, and initial treatment in patients with non–small cell lung cancer in the US. JAMA Oncol. 2021 7 12 1824 1832 10.1001/jamaoncol.2021.4932 34673888
    [Google Scholar]
  54. Roldan Ruiz J. Fuentes Gago M. Chinchilla Tabora L. Gonzalez Morais I. Sayagués J. Abad Hernández M. Cordovilla Pérez M. Ludeña de la Cruz M. del Barco Morillo E. Rodriguez Gonzalez M. The impact of liquid biopsies positive for EGFR mutations on overall survival in non-small cell lung cancer patients. Diagnostics 2023 13 14 2347 10.3390/diagnostics13142347 37510091
    [Google Scholar]
  55. Aupérin A. Le Péchoux C. Rolland E. Curran W.J. Furuse K. Fournel P. Belderbos J. Clamon G. Ulutin H.C. Paulus R. Yamanaka T. Bozonnat M.C. Uitterhoeve A. Wang X. Stewart L. Arriagada R. Burdett S. Pignon J.P. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol. 2010 28 13 2181 2190 10.1200/JCO.2009.26.2543 20351327
    [Google Scholar]
  56. Chen J.W. Maldonado D.R. Kowalski B.L. Miecznikowski K.B. Kyin C. Gornbein J.A. Domb B.G. Best practice guidelines for propensity score methods in medical research: Consideration on theory, implementation, and reporting. A review. Arthroscopy 2022 38 2 632 642 10.1016/j.arthro.2021.06.037 34547404
    [Google Scholar]
  57. Levantini E. Maroni G. Del Re M. Tenen D.G. EGFR signaling pathway as therapeutic target in human cancers. Semin. Cancer Biol. 2022 85 253 275 10.1016/j.semcancer.2022.04.002 35427766
    [Google Scholar]
  58. Han S.C. Wang G.Z. Zhou G.B. Air pollution, EGFR mutation, and cancer initiation. Cell Rep. Med. 2023 4 5 101046 10.1016/j.xcrm.2023.101046 37196632
    [Google Scholar]
  59. Batra U. Biswas B. Prabhash K. Krishna M.V. Differential clinicopathological features, treatments and outcomes in patients with Exon 19 deletion and Exon 21 L858R EGFR mutation-positive adenocarcinoma non-small-cell lung cancer. BMJ Open Respir. Res. 2023 10 1 001492 10.1136/bmjresp‑2022‑001492 37321664
    [Google Scholar]
  60. Harrison P.T. Vyse S. Huang P.H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin. Cancer Biol. 2020 61 167 179 10.1016/j.semcancer.2019.09.015 31562956
    [Google Scholar]
  61. Bethune G. Bethune D. Ridgway N. Xu Z. Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update. J. Thorac. Dis. 2010 2 1 48 51 22263017
    [Google Scholar]
  62. Rybarczyk-Kasiuchnicz A. Ramlau R. Stencel K. Treatment of brain metastases of non-small cell lung carcinoma. Int. J. Mol. Sci. 2021 22 2 593 10.3390/ijms22020593 33435596
    [Google Scholar]
  63. Hsu P.C. Jablons D.M. Yang C.T. You L. Epidermal growth factor receptor (EGFR) pathway, yes-associated protein (YAP) and the regulation of programmed death-ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). Int. J. Mol. Sci. 2019 20 15 3821 10.3390/ijms20153821 31387256
    [Google Scholar]
  64. Keedy V.L. Temin S. Somerfield M.R. Beasley M.B. Johnson D.H. McShane L.M. Milton D.T. Strawn J.R. Wakelee H.A. Giaccone G. American Society of Clinical Oncology provisional clinical opinion: Epidermal growth factor receptor (EGFR) Mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J. Clin. Oncol. 2011 29 15 2121 2127 10.1200/JCO.2010.31.8923 21482992
    [Google Scholar]
  65. Barr Kumarakulasinghe N. Zanwijk N. Soo R.A. Molecular targeted therapy in the treatment of advanced stage non-small cell lung cancer ( NSCLC ). Respirology 2015 20 3 370 378 10.1111/resp.12490 25689095
    [Google Scholar]
  66. Gonzalez C.A. Riboli E. Diet and cancer prevention: Contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Cancer 2010 46 14 2555 2562 10.1016/j.ejca.2010.07.025 20843485
    [Google Scholar]
  67. Marventano S. Izquierdo Pulido M. Sánchez-González C. Godos J. Speciani A. Galvano F. Grosso G. Legume consumption and CVD risk: A systematic review and meta-analysis. Public Health Nutr. 2017 20 2 245 254 10.1017/S1368980016002299 28077199
    [Google Scholar]
  68. Zhu B. Sun Y. Qi L. Zhong R. Miao X. Dietary legume consumption reduces risk of colorectal cancer: Evidence from a meta-analysis of cohort studies. Sci. Rep. 2015 5 1 8797 10.1038/srep08797 25739376
    [Google Scholar]
  69. Li J. Mao Q.Q. Legume intake and risk of prostate cancer: A meta-analysis of prospective cohort studies. Oncotarget 2017 8 27 44776 44784 10.18632/oncotarget.16794 28423366
    [Google Scholar]
  70. Zhong X. Ge J. Chen S. Xiong Y. Ma S. Chen Q. Association between dietary isoflavones in soy and legumes and endometrial cancer: A systematic review and meta-analysis. J. Acad. Nutr. Diet. 2018 118 4 637 651 10.1016/j.jand.2016.09.036 27914914
    [Google Scholar]
  71. Viguiliouk E. Glenn A.J. Nishi S.K. Chiavaroli L. Seider M. Khan T. Bonaccio M. Iacoviello L. Mejia S.B. Jenkins D.J.A. Kendall C.W.C. Kahleová H. Rahelić D. Salas-Salvadó J. Sievenpiper J.L. Associations between dietary pulses alone or with other legumes and cardiometabolic disease outcomes: An umbrella review and updated systematic review and meta-analysis of prospective cohort studies. Adv. Nutr. 2019 10 Suppl. 4 S308 S319 10.1093/advances/nmz113 31728500
    [Google Scholar]
  72. Sahin I. Bilir B. Ali S. Sahin K. Kucuk O. Soy isoflavones in integrative oncology: Increased efficacy and decreased toxicity of cancer therapy. Integr. Cancer Ther. 2019 18 1534735419835310 10.1177/1534735419835310 30897972
    [Google Scholar]
  73. Yang Y. Zang A. Jia Y. Shang Y. Zhang Z. Ge K. Zhang J. Fan W. Wang B. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling. Oncol. Lett. 2016 12 3 2189 2193 10.3892/ol.2016.4817 27602162
    [Google Scholar]
  74. Acunzo M. Romano G. Palmieri D. Laganá A. Garofalo M. Balatti V. Drusco A. Chiariello M. Nana-Sinkam P. Croce C.M. Cross-talk between MET and EGFR in non-small cell lung cancer involves miR-27a and Sprouty2. Proc. Natl. Acad. Sci. USA 2013 110 21 8573 8578 10.1073/pnas.1302107110 23650389
    [Google Scholar]
  75. Martini D. Godos J. Marventano S. Tieri M. Ghelfi F. Titta L. Lafranconi A. Trigueiro H. Gambera A. Alonzo E. Sciacca S. Buscemi S. Ray S. Galvano F. Del Rio D. Grosso G. Nut and legume consumption and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2021 72 7 871 878 10.1080/09637486.2021.1880554 33541169
    [Google Scholar]
  76. López-Plaza B. Loria-Kohen V. González-Rodríguez L.G. Fernández-Cruz E. Diet and lifestyle in cancer prevention. Nutr. Hosp. 2022 39 Spec No3 74 77 10.20960/nh.04317 36040006
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501406097251015114440
Loading
/content/journals/cdt/10.2174/0113894501406097251015114440
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test