Skip to content
2000
image of Bidirectional Communication of Estrogen in Gut-Brain Axis: Evidence from Preclinical and Clinical Studies

Abstract

Introduction

Estrogen deficiency in postmenopausal women influences several physiological processes, notably affecting the gut-brain axis (GBA). Emerging evidence from both preclinical and clinical studies suggests that the loss of estrogen following menopause contributes to GBA dysfunction. The present review aims to explore the clinical and preclinical evidence linking estrogen deficiency-induced gut dysbiosis with GBA dysfunction in postmenopausal women.

Methods

A literature survey was conducted using scientific databases such as PubMed, Google Scholar, ResearchGate, and Semantic Scholar to evaluate studies focused on estrogen's role in modulating GBA dysfunction using keywords such as estrogen, GBA, menopause, gut dysbiosis, and GM. Both experimental and observational studies were considered to synthesize current findings.

Results

Estrogen deficiency has been shown to alter the composition and diversity of GM, impair gut barrier function, and dysregulate immune responses involving T cells and microglia within the GIT and CNS. These disruptions are associated with cognitive decline, emotional disturbances, and neurodegenerative conditions. Evidence supports a strong association between menopause-related estrogen loss, gut microbial imbalance, and GBA dysfunction.

Discussion

The estrogen-GBA plays a crucial role in postmenopausal health, and phytoestrogen- mediated modulation of GM offers a promising therapeutic approach supported by preclinical evidence. However, limited clinical data and population variability highlight the need for well-designed human studies to validate these findings.

Conclusion

Targeting GM modulation presents a promising therapeutic strategy for mitigating GBA dysfunction in postmenopausal women. This review consolidates existing evidence and highlights the need for further research into microbiota-based interventions to alleviate estrogen deficiency-related neurophysiological disorders.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501406082251019170714
2026-01-15
2026-01-28
Loading full text...

Full text loading...

References

  1. Liu H.Y. Li S. Ogamune K.J. Ahmed A.A. Kim I.H. Zhang Y. Cai D. Fungi in the gut microbiota: interactions, Homeostasis, and host physiology. Microorganisms 2025 13 1 70 10.3390/microorganisms13010070 39858841
    [Google Scholar]
  2. Mishra A. Handa A.S. Handa D.A.K. Intricate interplay of bacteria, virus & our immune system. EPH -IJMHS 2025 11 1 9 19 10.53555/eijmhs.v11i1.250
    [Google Scholar]
  3. Liang J. Lin X. Liao X. Chen X. Zhou Y. Zhang L. Qin Y. Meng H. Feng Z. Global bibliometric analysis of traditional Chinese medicine regulating gut microbiota in the treatment of diabetes from 2004 to 2024. Front. Pharmacol. 2025 16 1533984 10.3389/fphar.2025.1533984 39917613
    [Google Scholar]
  4. Xiao Y. Feng Y. Zhao J. Chen W. Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J. Adv. Res. 2025 68 179 200 10.1016/j.jare.2024.03.005 38462039
    [Google Scholar]
  5. Tao W. Zhang Y. Wang B. Nie S. Fang L. Xiao J. Wu Y. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J. Adv. Res. 2025 69 261 278 10.1016/j.jare.2024.03.023 38579985
    [Google Scholar]
  6. Heiss C.N. Olofsson L.E. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J. Neuroendocrinol. 2019 31 5 e12684 10.1111/jne.12684 30614568
    [Google Scholar]
  7. Xu Q. Wang W. Li Y. Cui J. Zhu M. Liu Y. Liu Y. The oral-gut microbiota axis: A link in cardiometabolic diseases. NPJ Biofilms Microbiomes 2025 11 1 11 10.1038/s41522‑025‑00646‑5 39794340
    [Google Scholar]
  8. He B. Shen X. Li F. Zhou R. Xue H. Fan X. Wang Z. Guo X. Fan Y. Luo G. Zhang X. Zheng H. Exploring the impact of gut microbiota mediated regulation of exosomal miRNAs from bone marrow mesenchymal stem cells on the regulation of bone metabolism. Stem Cell Res. Ther. 2025 16 1 143 10.1186/s13287‑025‑04256‑y 40102952
    [Google Scholar]
  9. Zim A. Bommareddy A. Zim A.N. Estrogen-gut-brain axis: Examining the role of combined oral contraceptives on mental health through their impact on the gut microbiome. Cureus 2025 17 3 e81354 10.7759/cureus.81354 40291231
    [Google Scholar]
  10. Zhang W. Jia J. Yang Y. Ye D. Li Y. Li D. Wang J. Estradiol metabolism by gut microbiota in women’s depression pathogenesis: inspiration from nature. Front. Psychiatry 2025 16 1505991 10.3389/fpsyt.2025.1505991 39935532
    [Google Scholar]
  11. Xu M. Zhou E.Y. Shi H. Tryptophan and its metabolite serotonin impact metabolic and mental disorders via the brain–gut–microbiome axis: A focus on sex differences. Cells 2025 14 5 384 10.3390/cells14050384 40072112
    [Google Scholar]
  12. Organski A.C. Rajwa B. Reddivari A. Jorgensen J.S. Cross T.W.L. Gut microbiome-driven regulation of sex hormone homeostasis: a potential neuroendocrine connection. Gut Microbes 2025 17 1 2476562 10.1080/19490976.2025.2476562 40071861
    [Google Scholar]
  13. Zommiti M. Feuilloley M.G.J. Sex hormones–Gut microbiome axis: An update of what is known so far. Curr. Opin. Endocr. Metab. Res. 2025 38 100571 10.1016/j.coemr.2025.100571
    [Google Scholar]
  14. Xu Q. Xiang Q. Tan Z. Yang Q. Global research trends in the intestinal microflora and depression: bibliometrics and visual analysis. Front. Cell. Infect. Microbiol. 2025 15 1507667 10.3389/fcimb.2025.1507667 40070374
    [Google Scholar]
  15. Talgatbekova N. Makhambetov K. Bissenova N. Zhumanov A. Evaluation of the efficacy of probiotics in the complex treatment for patients with hyperosmolar diarrhea. Electron J. Gen Med 2025 22 1 em619
    [Google Scholar]
  16. Golshany H. Helmy S.A. Morsy N.F.S. Kamal A. Yu Q. Fan L. The gut microbiome across the lifespan: how diet modulates our microbial ecosystem from infancy to the elderly. Int. J. Food Sci. Nutr. 2025 76 2 95 121 10.1080/09637486.2024.2437472 39701663
    [Google Scholar]
  17. Huang C.Y. Luo Z.Z. Huang W.P. Lin L.P. Yao Y.T. Zhuang H.X. Xu Q.Y. Lai Y.D. Research hotspots and trends in gut microbiota and nonalcoholic fatty liver disease: A bibliometric study. World J. Hepatol. 2025 17 1 102034 10.4254/wjh.v17.i1.102034 39871912
    [Google Scholar]
  18. Zang R. Zhou R. Li Y. Wu H. Lu L. Xu H. The probiotic Lactobacillus plantarum alleviates colitis by modulating gut microflora to activate PPARγ and inhibit MAPKs/NF-κB. Eur. J. Nutr. 2025 64 1 32 10.1007/s00394‑024‑03520‑w 39607600
    [Google Scholar]
  19. Li N. Yang M. Feng M. Xu X. Li Y. Zhang Y. Xian C.J. Li T. Zhai Y. Locally delivered hydrogel with sustained release of flavonol compound kaempferol mitigates inflammatory progression of periodontitis and enhances the gut microflora composition in rats. ACS Biomater. Sci. Eng. 2025
    [Google Scholar]
  20. Frost Z. Bakhit S. Amaefuna C.N. Powers R.V. Ramana K.V. Recent advances on the role of B vitamins in cancer prevention and progression. Int. J. Mol. Sci. 2025 26 5 1967 10.3390/ijms26051967 40076592
    [Google Scholar]
  21. Ma Z.F. Lee Y.Y. The role of the gut microbiota in health, diet, and disease with a focus on obesity. Foods 2025 14 3 492 10.3390/foods14030492 39942085
    [Google Scholar]
  22. Hegde S. Effects of coffee on gut microbiota in health and diseases. Coffee in Health and Disease Prevention. Elsevier 2025 431 441 10.1016/B978‑0‑443‑13868‑3.00016‑8
    [Google Scholar]
  23. Liu Y. Chen Y. Zhang Q. Zhang Y. Xu F. A double blinded randomized placebo trial of Bifidobacterium animalis subsp. lactis BLa80 on sleep quality and gut microbiota in healthy adults. Sci. Rep. 2025 15 1 11095 10.1038/s41598‑025‑95208‑2 40169760
    [Google Scholar]
  24. Sun X. Zhai J. Research status and trends of gut microbiota and intestinal diseases based on bibliometrics. Microorganisms 2025 13 3 673 10.3390/microorganisms13030673 40142565
    [Google Scholar]
  25. Westerbeke F.H.M. Attaye I. Rios-Morales M. Nieuwdorp M. Glycaemic sugar metabolism and the gut microbiota: past, present and future. FEBS J. 2025 292 6 1421 1436 10.1111/febs.17293 39359099
    [Google Scholar]
  26. Xiong Y. Lu X. Li B. Xu S. Fu B. Sha Z. Tian R. Yao R. Li Q. Yan J. Guo D. Cong Z. Du Y. Lin X. Wu H. Bacteroides fragilis transplantation reverses reproductive senescence by transporting extracellular vesicles through the gut-ovary axis. Adv. Sci. (Weinh.) 2025 12 9 2409740 10.1002/advs.202409740 39805029
    [Google Scholar]
  27. Pribyl A.L. Hugenholtz P. Cooper M.A. A decade of advances in human gut microbiome-derived biotherapeutics. Nat. Microbiol. 2025 10 2 301 312 10.1038/s41564‑024‑01896‑3 39779879
    [Google Scholar]
  28. Tito Tadeo R.Y. Stensvold C.R. Pitfalls in gut single-cell eukaryote research. Trends Parasitol. 2025 41 2 91 101 10.1016/j.pt.2024.12.011 39814642
    [Google Scholar]
  29. Zhou X. Zhang Y. Wei L. Yang Y. Wang B. Liu C. Bai J. Wang C. in vitro fermentation characteristics of fucoidan and its regulatory effects on human gut microbiota and metabolites. Food Chem. 2025 465 Pt 1 141998 10.1016/j.foodchem.2024.141998 39549519
    [Google Scholar]
  30. Silva G.S. Nunes Moreira F.I. Rodrigues de Albuquerque T.M. Microencapsulated phenolic compounds from organic coffee husk: Impacts on human gut microbiota and in vitro prebiotic potential. Food Res. Int. 2025 201 115597 10.1016/j.foodres.2024.115597 39849730
    [Google Scholar]
  31. Beltrán-Velasco A.I. Clemente-Suárez V.J. Harnessing gut microbiota for biomimetic innovations in health and biotechnology. Biomimetics 2025 10 2 73 10.3390/biomimetics10020073 39997096
    [Google Scholar]
  32. Lima E.M.F. Soutelino M.E.M. Silva A.C.O. Pinto U.M. Todorov S.D. Rocha R.S. Current updates on Limosilactobacillus reuteri: Brief history, health benefits, antimicrobial properties, and challenging applications in dairy products. Dairy 2025 6 2 11 10.3390/dairy6020011
    [Google Scholar]
  33. Mukilan M. Probiotic strain Lactobacillus fermentum as a potential agent for the reversal of non-periodontal microorganisms induced cognitive dysfunctions. Res. J. Biotechnol. 2025 20 1
    [Google Scholar]
  34. Mafe A.N. Iruoghene Edo G. Akpoghelie P.O. Gaaz T.S. Yousif E. Zainulabdeen K. Isoje E.F. Igbuku U.A. Opiti R.A. Garba Y. Essaghah A.E.A. Ahmed D.S. Umar H. Probiotics and food bioactives: Unraveling their impact on gut microbiome, inflammation, and metabolic health. Probiotics Antimicrob. Proteins 2025 2 1 42 10.1007/s12602‑025‑10452‑2 39808399
    [Google Scholar]
  35. Shimokawa H. Sakakibara H. Ami Y. Hirano R. Kurihara S. The effect of culturing temperature on the growth of the most dominant bacterial species of human gut microbiota and harmful bacterial species. Biosci. Microbiota Food Health 2025 44 2 182 195 10.12938/bmfh.2024‑087 40171389
    [Google Scholar]
  36. Sivakumar N. Krishnamoorthy A. Ryali H. Arasaradnam R.P. Gut microbial targets in inflammatory bowel disease: Current position and future developments. Biomedicines 2025 13 3 716 10.3390/biomedicines13030716 40149692
    [Google Scholar]
  37. Li J. Liu L. Zhong X. Yang R. Mechanisms of intestinal flora in colorectal cancer. Postgrad. Med. J. 2025 1200 101 944 948 10.1093/postmj/qgaf026 40042622
    [Google Scholar]
  38. Rondinella D. Raoul P.C. Valeriani E. Venturini I. Cintoni M. Severino A. Galli F.S. Mora V. Mele M.C. Cammarota G. Gasbarrini A. Rinninella E. Ianiro G. The detrimental impact of ultra-processed foods on the human gut microbiome and gut barrier. Nutrients 2025 17 5 859 10.3390/nu17050859 40077728
    [Google Scholar]
  39. Mukherjee S. Chopra A. Karmakar S. Bhat S.G. Periodontitis increases the risk of gastrointestinal dysfunction: an update on the plausible pathogenic molecular mechanisms. Crit. Rev. Microbiol. 2025 51 1 187 217 10.1080/1040841X.2024.2339260 38602474
    [Google Scholar]
  40. Kumar S. Mukherjee R. Gaur P. Leal É. Lyu X. Ahmad S. Puri P. Chang C.M. Raj V.S. Pandey R.P. Unveiling roles of beneficial gut bacteria and optimal diets for health. Front. Microbiol. 2025 16 1527755 10.3389/fmicb.2025.1527755 40041870
    [Google Scholar]
  41. Liu Y. Li Z. Lee S.C. Chen S. Li F. Akkermansia muciniphila: Promises and pitfallsfor next-generation beneficial microorganisms. Arch. Microbiol. 2025 207 4 76 10.1007/s00203‑025‑04263‑w 40032707
    [Google Scholar]
  42. Sapkota H. Dasgupta S. Roy B. Pathan E.K. Human commensal bacteria: Next-generation pro- and post-biotics for anticancer therapy. Front. Biosci. (Elite Ed.) 2025 17 1 26809 10.31083/FBE26809 40150985
    [Google Scholar]
  43. Caille A. Connan C. Lyon Belgy N. Borezée E. Cherbuy C. Meunier N. Meslier V. Positive nutritional selection of adults with healthy lifestyle and high daily fiber consumption for the isolation of beneficial intestinal bacteria: The iTARGET cohort study protocol. MethodsX 2025 14 103268 10.1016/j.mex.2025.103268 40224142
    [Google Scholar]
  44. Drago L. De La Motte L.R. Deflorio L. Sansico D.F. Salvatici M. Micaglio E. Biazzo M. Giarritiello F. Systematic review of bidirectional interaction between gut microbiome, miRNAs, and human pathologies. Front. Microbiol. 2025 16 1540943 10.3389/fmicb.2025.1540943 39973938
    [Google Scholar]
  45. Kaltenpoth M. Flórez L.V. Vigneron A. Dirksen P. Engl T. Origin and function of beneficial bacterial symbioses in insects. Nat. Rev. Microbiol. 2025 2 1 17 10.1038/s41579‑025‑01164‑z 40148601
    [Google Scholar]
  46. Galvez-Jiron F. Tang X. Gasaly N. Poncelet D. Wandersleben T. Drusch S. Acevedo F. de Vos P. Pectin-based encapsulation systems for the protection of beneficial bacterial species and impact on intestinal barrier function in vitro. Food Hydrocoll. 2025 160 110765 10.1016/j.foodhyd.2024.110765
    [Google Scholar]
  47. Szparaga A. Research on the incorporation of beneficial bacteria actions on the brain-gut axis (Psychoprobiotics) into low-moisture food matrices to improve the functionality of cereal bars. Food Bioprod. Process. 2025 18 6151 6159 10.1007/s11947‑025‑03814‑9
    [Google Scholar]
  48. Zhang T. Chang M. Hou X. Yan M. Zhang S. Song W. Sheng Q. Yuan Y. Yue T. Apple polyphenols prevent patulin-induced intestinal damage by modulating the gut microbiota and metabolism of the gut-liver axis. Food Chem. 2025 463 Pt 1 141049 10.1016/j.foodchem.2024.141049 39260178
    [Google Scholar]
  49. Xu M. Xiao H. Zou X. Pan L. Song Q. Hou L. Zeng Y. Han Y. Zhou Z. Mechanisms of levan in ameliorating hyperuricemia: Insight into levan on serum metabolites, gut microbiota, and function in hyperuricemia rats. Carbohydr. Polym. 2025 347 122665 10.1016/j.carbpol.2024.122665 39486924
    [Google Scholar]
  50. Rishabh Bansal S. Goel A. Gupta S. Malik D. Bansal N. Unravelling the crosstalk between estrogen deficiency and gut-biota dysbiosis in the development of diabetes mellitus. Curr. Diabetes Rev. 2024 20 10 69 79 10.2174/0115733998275953231129094057
    [Google Scholar]
  51. Cart C. Pauling L. Neurogastroenterology & the Gut-Brain Axis. Practitioner 2025
    [Google Scholar]
  52. Petrut S.M. Bragaru A.M. Munteanu A.E. Moldovan A.D. Moldovan C.A. Rusu E. Gut over mind: Exploring the powerful gut–brain axis. Nutrients 2025 17 5 842 10.3390/nu17050842 40077713
    [Google Scholar]
  53. Doenyas C. Clarke G. Cserjési R. Gut–brain axis and neuropsychiatric health: recent advances. Sci. Rep. 2025 15 1 3415 10.1038/s41598‑025‑86858‑3 39870727
    [Google Scholar]
  54. Cart C. Pauling L. The Impact of Stress on Gut Health. Nutr. Cancer 2025 https://www.ifm.org/articles/gut-stress-changes-gut-function
    [Google Scholar]
  55. Chen Y. Ho C.T. Zhang X. The regulatory mechanism of intermittent fasting and probiotics on cognitive function by the microbiota-gut-brain axis. J. Food Sci. 2025 90 3 e70132 10.1111/1750‑3841.70132 40091756
    [Google Scholar]
  56. Ettienne E.B. Rose K. Disorders of gut-brain interaction are a new challenge of our increasingly complex society, with worldwide repercussions. World J. Clin. Pediatr. 2025 14 2 103608 10.5409/wjcp.v14.i2.103608 40491739
    [Google Scholar]
  57. Dhanawat M. Malik G. Wilson K. Gupta S. Gupta N. Sardana S. The gut microbiota-brain axis: A new frontier in alzheimer’s disease pathology. CNS Neurol. Disord. Drug Targets 2025 24 1 7 20 10.2174/0118715273302508240613114103 38967078
    [Google Scholar]
  58. Oyovwi M.O. Udi O.A. The gut-brain axis and neuroinflammation in traumatic brain injury. Mol. Neurobiol. 2025 62 4 4576 4590 10.1007/s12035‑024‑04585‑8 39466574
    [Google Scholar]
  59. Kyei-Baffour V.O. Vijaya A.K. Burokas A. Daliri E.B.M. Psychobiotics and the gut-brain axis: advances in metabolite quantification and their implications for mental health. Crit. Rev. Food Sci. Nutr. 2025 30 65 7085 7104 10.1080/10408398.2025.2459341 39907087
    [Google Scholar]
  60. Masihipour B. Mansour-Ghanaei F. Maroufizadeh S. Hassanipour S. Asgharnezhad M. Isanazar A. The association of depression and anxiety disorders with gastrointestinal symptoms among nurses. Caspian J. Neurolog. Sci. 2025 11 1 28 10.32598/CJNS.11.40.366.2
    [Google Scholar]
  61. Yang Z. Zhang Y. Ran S. Zhang J. Tian F. Shi H. Wei S. Li X. Li X. Gao Y. Jia G. Lin H. Chen Z. Zhang Z. A Multi-omics study of neurodamage induced by growth-stage real-time air pollution exposure in mice via the microbiome–gut–brain axis. Toxics 2025 13 4 260 10.3390/toxics13040260 40278577
    [Google Scholar]
  62. Yao J. Editorial: The role of gut microbiota-gut-brain axis in inflammatory bowel disease. Front Med 2025; 12:1569664. 10.3389/fmed.2025.1569664 40098934
  63. Slykerman R.F. Davies N. Vlckova K. O’Riordan K.J. Bassett S.A. Dekker J. Schellekens H. Hyland N.P. Clarke G. Patterson E. Precision psychobiotics for gut–brain axis health: Advancing the discovery pipelines to deliver mechanistic pathways and proven health efficacy. Microb. Biotechnol. 2025 18 1 e70079 10.1111/1751‑7915.70079 39815671
    [Google Scholar]
  64. Yassin L.K. Nakhal M.M. Alderei A. Almehairbi A. Mydeen A.B. Akour A. Hamad M.I.K. Exploring the microbiota-gut-brain axis: Impact on brain structure and function. Front. Neuroanat. 2025 19 1504065 10.3389/fnana.2025.1504065 40012737
    [Google Scholar]
  65. Menozzi E. Schapira A.H. Borghammer P. The gut-brain axis in parkinson disease: Emerging concepts and therapeutic implications. Mov Disord Clin Pract. 2025 12 7 904 10.1002/mdc3.70029
    [Google Scholar]
  66. Ohara T.E. Hsiao E.Y. Microbiota–neuroepithelial signalling across the gut–brain axis. Nat. Rev. Microbiol. 2025 23 6 371 384 10.1038/s41579‑024‑01136‑9 39743581
    [Google Scholar]
  67. Patel R.A. Panche A.N. Harke S.N. Gut microbiome-gut brain axis-depression: interconnection. World J. Biol. Psychiatry 2025 26 1 1 36 10.1080/15622975.2024.2436854 39713871
    [Google Scholar]
  68. Manoj G. Bautista C. Nurses’ perception on the gut-brain axis and its implications on mental health. Thesis Dominican University of California 2025
    [Google Scholar]
  69. Santos J. Maran P.L. Rodríguez-Urrutia A. Stress, microbiota, and the gut-brain axis in mental and digestive health. Med. Clin. (Barc.) 2025 164 6 295 304 10.1016/j.medcli.2024.11.023
    [Google Scholar]
  70. Guo B. Zhang J. Zhang W. Chen F. Liu B. Gut microbiota-derived short chain fatty acids act as mediators of the gut–brain axis targeting age-related neurodegenerative disorders: a narrative review. Crit. Rev. Food Sci. Nutr. 2025 65 2 265 286 10.1080/10408398.2023.2272769 37897083
    [Google Scholar]
  71. Lin D. Howard A. Raihane A.S. Di Napoli M. Cáceres E. Ortiz M. Davis J. Abdelrahman A.N. Divani A.A. Traumatic brain injury and gut microbiome: The role of the gut-brain axis in neurodegenerative processes. Curr. Neurol. Neurosci. Rep. 2025 25 1 23 10.1007/s11910‑025‑01410‑0 40087204
    [Google Scholar]
  72. Kverka M. Stepan J.J. Associations among estrogens, the gut microbiome and osteoporosis. Curr. Osteoporos. Rep. 2025 23 1 2 10.1007/s11914‑024‑00896‑w 39585466
    [Google Scholar]
  73. Li B. Xiong Y. Guo D. Deng G. Wu H. The gut-reproductive axis: Bridging microbiota balances to reproductive health and fetal development. Int. Immunopharmacol. 2025 144 113627 10.1016/j.intimp.2024.113627 39579544
    [Google Scholar]
  74. Ahmad F. Ahmed S.H. Choucair F. Chouliaras S. Awwad J. Terranegra A. Medicine S. A disturbed communication between hypothalamic-pituitary-ovary axis and gut microbiota in female infertility: is diet to blame? J. Transl. Med. 2025 23 1 92 10.1186/s12967‑025‑06117‑x 39838491
    [Google Scholar]
  75. Harris S.C. Bajaj J.S. Interaction of the gut-liver-brain axis and the sterolbiome with sexual dysfunction in patients with cirrhosis. Gut Microbes 2025 17 1 2446390 10.1080/19490976.2024.2446390 39764615
    [Google Scholar]
  76. Schipper H.M. Sex hormones and diseases of the nervous system. Brain Medicine. 2025 10.61373/bm025w.0008
    [Google Scholar]
  77. Sarnoff R.P. Hreinsson J.P. Kim J. Sperber A.D. Palsson O.S. Bangdiwala S.I. Chang L. Sex differences, menses-related symptoms and menopause in disorders of gut–brain interaction. Neurogastroenterol. Motil. 2025 37 2 e14977 10.1111/nmo.14977 39748465
    [Google Scholar]
  78. Cart C. Pauling L. Sex Hormones and the Gut Microbiome. Practitioner 2025 https://www.ifm.org/articles/sex-hormones-and-the gut-microbiome
    [Google Scholar]
  79. Bertollo A.G. Santos C.F. Bagatini M.D. Ignácio Z.M. Hypothalamus-pituitary-adrenal and gut-brain axes in biological interaction pathway of the depression. Front. Neurosci. 2025 19 1541075 10.3389/fnins.2025.1541075 39981404
    [Google Scholar]
  80. Dong Y. Yang S. Zhang S. Zhao Y. Li X. Han M. Gai Z. Zou K. Modulatory impact of Bifidobacterium longum subsp. longum BL21 on the gut–brain–ovary axis in polycystic ovary syndrome: Insights into metabolic regulation, inflammation mitigation, and neuroprotection. MSphere 2025 10 2 e00887-24 10.1128/msphere.00887‑24 39898662
    [Google Scholar]
  81. Sharma A. Kapur S. Kancharla P. Yang T. Sex differences in gut microbiota, hypertension, and cardiovascular risk. Eur. J. Pharmacol. 2025 987 177183 10.1016/j.ejphar.2024.177183 39647571
    [Google Scholar]
  82. Cart C. Pauling L. Sex Hormones & the Female Brain: A focus on mood disorders. Practitioner 2025
    [Google Scholar]
  83. Pasam T. Padhy H.P. Dandekar M.P. Lactobacillus Helveticus improves controlled cortical Impact Injury-generated neurological aberrations by remodeling of gut-brain Axis Mediators. Neurochem. Res. 2025 50 1 3 10.1007/s11064‑024‑04251‑4 39541016
    [Google Scholar]
  84. Yang X. Hu D. Cheng R. Bao Q. Jiang H. Zhao B. Zhang Y. Unlocking the neuroprotective secrets of natural products: A focus on the gut-brain axis. Phytochem. Rev. 2025 1 44 10.1007/s11101‑025‑10081‑1
    [Google Scholar]
  85. Kościuszko Z. Sobiński A. Czerwonka M. Kurza K. Agnieszka Kulczycka-Rowicka Podolec J. Ciraolo S. Walczak A. Lesiczka-Fedoryj K. Wojda J. The influence of Hypothalamic-Pituitary-Adrenal (HPA) axis dysregulation on postpartum mental disorders - literature review and new perspectives. Quality in Sport 2025 38 58218 58218 10.12775/QS.2025.38.58218
    [Google Scholar]
  86. Gupta G. Gut Microbiome and Environmental Toxicants. CRC Press 2025 10.1201/9781003489221
    [Google Scholar]
  87. Zhang R. Ding N. Feng X. Liao W. The gut microbiome, immune modulation, and cognitive decline: insights on the gut-brain axis. Front. Immunol. 2025 16 1529958 10.3389/fimmu.2025.1529958 39911400
    [Google Scholar]
  88. Edward S.M. Cunningham S.A. Dunlop A.L. Corwin E.J. The maternal gut microbiome during pregnancy. MCN Am. J. Matern. Child Nurs. 2017 42 6 310 317 10.1097/NMC.0000000000000372 28787280
    [Google Scholar]
  89. Boutriq S. González-González A. Plaza-Andrades I. Laborda-Illanes A. Sánchez-Alcoholado L. Peralta-Linero J. Domínguez-Recio M.E. Bermejo-Pérez M.J. Lavado-Valenzuela R. Alba E. Queipo-Ortuño M.I. Gut and endometrial microbiome dysbiosis: A new emergent risk factor for endometrial cancer. J. Pers. Med. 2021 11 7 659 10.3390/jpm11070659 34357126
    [Google Scholar]
  90. Qi X. Yun C. Pang Y. Qiao J. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes 2021 13 1 1894070 10.1080/19490976.2021.1894070 33722164
    [Google Scholar]
  91. Krog M.C. Hugerth L.W. Fransson E. Bashir Z. Nyboe Andersen A. Edfeldt G. Engstrand L. Schuppe-Koistinen I. Nielsen H.S. The healthy female microbiome across body sites: effect of hormonal contraceptives and the menstrual cycle. Hum. Reprod. 2022 37 7 1525 1543 10.1093/humrep/deac094 35553675
    [Google Scholar]
  92. Ma Y. Liu T. Li X. Kong A. Xiao R. Xie R. Gao J. Wang Z. Cai Y. Zou J. Yang L. Wang L. Zhao J. Xu H. Margaret W. Xu X. Gustafsson J.A. Fan X. Estrogen receptor β deficiency impairs gut microbiota: a possible mechanism of IBD-induced anxiety like behavior. Microbiome 2022 10 1 160 10.1186/s40168‑022‑01356‑2 36175956
    [Google Scholar]
  93. Sobstyl M. Brecht P. Sobstyl A. Mertowska P. Grywalska E. The role of microbiota in the immunopathogenesis of endometrial cancer. Int. J. Mol. Sci. 2022 23 10 5756 10.3390/ijms23105756 35628566
    [Google Scholar]
  94. Zhao H. Wang Q. Hu L. Xing S. Gong H. Liu Z. Qin P. Xu J. Du J. Ai W. Dynamic alteration of the gut microbiota associated with obesity and intestinal inflammation in ovariectomy C57BL/6 mice. Int. J. Endocrinol. 2022 2022: 6600158.10.1155/2022/6600158 35103060
    [Google Scholar]
  95. Yang M. Wen S. Zhang J. Peng J. Shen X. Xu L. Systematic review and meta-analysis: Changes of gut microbiota before and after menopause. Dis. Markers 2022 2022 3767373 10.1155/2022/3767373
    [Google Scholar]
  96. Liu L. Fu Q. Li T. Shao K. Zhu X. Cong Y. Zhao X. Gut microbiota and butyrate contribute to nonalcoholic fatty liver disease in premenopause due to estrogen deficiency. PLoS One 2022 17 2 e0262855 10.1371/journal.pone.0262855 35108315
    [Google Scholar]
  97. Ibrahim A. Hugerth L.W. Hases L. Saxena A. Seifert M. Thomas Q. Gustafsson J.Å. Engstrand L. Williams C. Colitis-induced colorectal cancer and intestinal epithelial estrogen receptor beta impact gut microbiota diversity. Int. J. Cancer 2019 144 12 3086 3098 10.1002/ijc.32037 30515752
    [Google Scholar]
  98. Guo X. Zhong K. Zhang J. Hui L. Zou L. Xue H. Guo J. Zheng S. Huang D. Tan M. Gut microbiota can affect bone quality by regulating serum estrogen levels. Am. J. Transl. Res. 2022 14 9 6043 6055 36247294
    [Google Scholar]
  99. Huang F. Liu X. Xu S. Hu S. Wang S. Shi D. Wang K. Wang Z. Lin Q. Li S. Zhao S. Jin K. Wang C. Chen L. Wang F. Prevotella histicola mitigated estrogen deficiency-induced depression via gut microbiota-dependent modulation of inflammation in ovariectomized mice. Front. Nutr. 2022 8 805465 10.3389/fnut.2021.805465 35155523
    [Google Scholar]
  100. Lei H. Liu J. Deng J. Zou P. Zou Z. Li Z. Li H. Luo L. Tan Z. Behavior, hormone, and gut microbiota change by YYNS intervention in an OVX mouse model. Front. Cell. Infect. Microbiol. 2024 14 1445741 10.3389/fcimb.2024.1445741 39575307
    [Google Scholar]
  101. Tian X. Wang G. Teng F. Xue X. Pan J. Mao Q. Guo D. Song X. Ma K. Zhi Zi Chi decoction (Gardeniae fructus and semen Sojae Praeparatum ) attenuates anxious depression via modulating microbiota–gut–brain axis in corticosterone combined with chronic restraint stress -induced mice. CNS Neurosci. Ther. 2024 30 4 e14519 10.1111/cns.14519 37905694
    [Google Scholar]
  102. Lambert M.N.T. Thybo C.B. Lykkeboe S. Rasmussen L.M. Frette X. Christensen L.P. Jeppesen P.B. Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: A randomized controlled trial. Am. J. Clin. Nutr. 2017 106 3 909 920 10.3945/ajcn.117.153353 28768651
    [Google Scholar]
  103. Plaza-Díaz J. Álvarez-Mercado A.I. Ruiz-Marín C.M. Reina-Pérez I. Pérez-Alonso A.J. Sánchez-Andujar M.B. Torné P. Gallart-Aragón T. Sánchez-Barrón M.T. Reyes Lartategui S. García F. Chueca N. Moreno-Delgado A. Torres-Martínez K. Sáez-Lara M.J. Robles-Sánchez C. Fernández M.F. Fontana L. Association of breast and gut microbiota dysbiosis and the risk of breast cancer: A case-control clinical study. BMC Cancer 2019 19 1 495 10.1186/s12885‑019‑5660‑y 31126257
    [Google Scholar]
  104. Lorenzo J. From the gut to bone: Connecting the gut microbiota with Th17 T lymphocytes and postmenopausal osteoporosis. J. Clin. Invest. 2021 131 5 e146619 10.1172/JCI146619 33645543
    [Google Scholar]
  105. Siddiqui R. Makhlouf Z. Alharbi A.M. Alfahemi H. Khan N.A. The gut microbiome and female health. Biology 2022 11 11 1683 10.3390/biology11111683 36421397
    [Google Scholar]
  106. Murphy K.M. Watkins M.M. Finger J.W. Jr Kelley M.D. Elsey R.M. Warner D.A. Mendonça M.T. Xenobiotic estradiol-17ß alters gut microbiota of hatchling American alligators ( Alligator mississippiensis ). Environ. Microbiol. 2022 24 12 6336 6347 10.1111/1462‑2920.16222 36164972
    [Google Scholar]
  107. Sekikawa A. Wharton W. Butts B. Veliky C.V. Garfein J. Li J. Goon S. Fort A. Li M. Hughes T.M. Potential protective mechanisms of S-equol, a metabolite of soy isoflavone by the gut microbiome, on cognitive decline and dementia. Int. J. Mol. Sci. 2022 23 19 11921 10.3390/ijms231911921 36233223
    [Google Scholar]
  108. Notaristefano G. Ponziani F.R. Ranalli M. Diterlizzi A. Policriti M.A. Stella L. Del Zompo F. Fianchi F. Picca A. Petito V. Del Chierico F. Scanu M. Toto F. Putignani L. Marzetti E. Ferrarese D. Mele M.C. Merola A. Tropea A. Gasbarrini A. Scambia G. Lanzone A. Apa R. Functional hypothalamic amenorrhea: Gut microbiota composition and the effects of exogenous estrogen administration. Am. J. Physiol. Endocrinol. Metab. 2024 326 2 E166 E177 10.1152/ajpendo.00281.2023 38019083
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501406082251019170714
Loading
/content/journals/cdt/10.2174/0113894501406082251019170714
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test