Skip to content
2000
image of RWRGDR: Random Walk and GraphSAGE-based Framework for Enhanced Drug Repositioning

Abstract

Introduction

Drug development is expensive and time-consuming. Advanced computational methods for mining drug-disease correlations are increasingly popular and gradually replacing traditional biological experiments. However, most existing techniques rely primarily on network information. They do not fully leverage integration details and rarely capitalize on drug-disease associations. This study proposes the RWRGDR framework, which uses Graph Neural Networks (GNN) for unsupervised feature learning to identify potential drug-disease interactions. The Random Walk with Restart (RWR) algorithm serves as a complementary mechanism to enhance prediction performance.

Methods

The GraphSAGE algorithm first encodes low-dimensional representations, leveraging GAT for multi-head attention to weight the significance of neighbors. The RWR algorithm then captures the global network perspective from a given target node, complementing the initial embeddings with global topological descriptors. This convex integration fuses local features and long-range dependencies, ultimately leading to superior downstream predictions.

Results

Our model, based on the Multilayer Perceptron (MLP) classifier, achieved outstanding performance, with Area Under the Curve (AUC) and Area Under the Precision-Recall Curve (AUPRC) values of 0.84 and 0.91, respectively. This performance is highly competitive, surpassing previous techniques. Case studies validate its practical applicability.

Discussion

Comprehensive network exploration facilitates an in-depth understanding of complex interactions and extracts meaningful insights required for optimized predictions. Despite a relatively lower AUC, our model outperformed prior methods in AUPRC, highlighting its ability to prioritize highly ranked minority positives.

Conclusion

RWRGDR represents a potentially reliable drug repositioning strategy, as demonstrated through case studies, indicating its practical significance, particularly for emerging conditions with no recognized treatments.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501402384251121115127
2026-01-02
2026-02-21
Loading full text...

Full text loading...

References

  1. Chong C.R. Sullivan D.J. New uses for old drugs. Nature 2007 448 7154 645 646 10.1038/448645a 17687303
    [Google Scholar]
  2. Sreeraman S. Kannan M.P. Singh Kushwah R.B. Drug design and disease diagnosis: The potential of deep learning models in biology. Curr. Bioinform. 2023 18 3 208 220 10.2174/1574893618666230227105703
    [Google Scholar]
  3. DiMasi J.A. Grabowski H.G. Hansen R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 2016 47 20 33 10.1016/j.jhealeco.2016.01.012 26928437
    [Google Scholar]
  4. Yu Z. Huang F. Zhao X. Xiao W. Zhang W. Predicting drug–disease associations through layer attention graph convolutional network. Brief. Bioinform. 2021 22 4 bbaa243 10.1093/bib/bbaa243 33078832
    [Google Scholar]
  5. Yella J.K. Yaddanapudi S. Wang Y. Jegga A.G. Changing trends in computational drug repositioning. Pharmaceuticals 2018 11 2 57 10.3390/ph11020057 29874824
    [Google Scholar]
  6. Mahapatra M. Sahu C. Mohapatra S. Trends of artificial intelligence (AI) use in drug targets, discovery and development: Current status and future perspectives. Curr. Drug Targets. 2024 10.2174/0113894501322734241008163304
    [Google Scholar]
  7. Liu M. Li C. Chen R. Cao D. Zeng X. Geometric deep learning for drug discovery. Expert Syst. Appl. 2024 240 122498 10.1016/j.eswa.2023.122498
    [Google Scholar]
  8. Qi R Zou Q Trends and potential of machine learning and deep learning in drug study at single-cell level. Research 2023 6 0050 10.34133/research.0050 36930772
    [Google Scholar]
  9. Huang Z. Chen S. Yu L. Predicting new drug indications based on double variational autoencoders. Comput. Biol. Med. 2023 164 107261 10.1016/j.compbiomed.2023.107261 37487382
    [Google Scholar]
  10. Wei L. He W. Malik A. Su R. Cui L. Manavalan B. Computational prediction and interpretation of cell-specific replication origin sites from multiple eukaryotes by exploiting stacking framework. Brief. Bioinform. 2021 22 4 bbaa275 10.1093/bib/bbaa275 33152766
    [Google Scholar]
  11. Ashburn T.T. Thor K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004 3 8 673 683 10.1038/nrd1468 15286734
    [Google Scholar]
  12. Langedijk J. Mantel-Teeuwisse A.K. Slijkerman D.S. Schutjens M.H.D.B. Drug repositioning and repurposing: Terminology and definitions in literature. Drug Discov. Today 2015 20 8 1027 1034 10.1016/j.drudis.2015.05.001 25975957
    [Google Scholar]
  13. Chen Y. Wang J. Wang C. Zou Q. AutoEdge-CCP: A novel approach for predicting cancer-associated circRNAs and drugs based on automated edge embedding. PLOS Comput. Biol. 2024 20 1 e1011851 10.1371/journal.pcbi.1011851 38289973
    [Google Scholar]
  14. Fang Y. Xu F. Wei L. AFP-MFL: Accurate identification of antifungal peptides using multi-view feature learning. Brief. Bioinform. 2023 24 1 bbac606 10.1093/bib/bbac606 36631407
    [Google Scholar]
  15. Ma T. Lin X. Song B. Yu P.S. Zeng X. KG-MTL: Knowledge graph enhanced multi-task learning for molecular interaction. IEEE Trans. Knowl. Data Eng. 2022 35 1 12 10.1109/TKDE.2022.3188154
    [Google Scholar]
  16. Bandopadhyay R. Laha A. Sarkar A. Chakraborty P. Panja A.S. Efficacy screening of prospective anti-allergic drug candidates: An in silico study. Curr. Bioinform. 2023 18 2 143 153 10.2174/1574893618666221019092212
    [Google Scholar]
  17. Dou M. Tang J. Tiwari P. Ding Y. Guo F. Drug–drug interaction relation extraction based on deep learning: A review. ACM Comput. Surv. 2024 56 6 1 33 10.1145/3645089
    [Google Scholar]
  18. Ai C Yang H Ding Y Tang J Guo F Low rank matrix factorization algorithm based on multi-graph regularization for detecting drug-disease association. IEEE/ACM Trans Comput Biol Bioinform 2023 20 5 3033 43 10.1109/TCBB.2023.3274587
    [Google Scholar]
  19. Yıldırım M.A. Goh K.I. Cusick M.E. Barabási A.L. Vidal M. Drug—target network. Nat. Biotechnol. 2007 25 10 1119 1126 10.1038/nbt1338 17921997
    [Google Scholar]
  20. Bader S. Kühner S. Gavin A.C. Interaction networks for systems biology. FEBS Lett. 2008 582 8 1220 1224 10.1016/j.febslet.2008.02.015 18282471
    [Google Scholar]
  21. Ding Y. Tang J. Guo F. Zou Q. Identification of drug–target interactions via multiple kernel-based triple collaborative matrix factorization. Brief. Bioinform. 2022 23 2 bbab582 10.1093/bib/bbab582 35134117
    [Google Scholar]
  22. Su R. Hu J. Zou Q. Manavalan B. Wei L. Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Brief. Bioinform. 2020 21 2 408 420 10.1093/bib/bby124 30649170
    [Google Scholar]
  23. Liu D. Li G. Zuo Y. Function determinants of TET proteins: The arrangements of sequence motifs with specific codes. Brief. Bioinform. 2019 20 5 1826 1835 10.1093/bib/bby053 29947743
    [Google Scholar]
  24. Zhang J. Bajari R. Andric D. The international cancer genome consortium data portal. Nat. Biotechnol. 2019 37 4 367 369 10.1038/s41587‑019‑0055‑9 30877282
    [Google Scholar]
  25. Tomczak K. Czerwińska P. Wiznerowicz M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. 2015 19 1A A68 A77 10.5114/wo.2014.47136
    [Google Scholar]
  26. Berger M.F. Mardis E.R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 2018 15 6 353 365 10.1038/s41571‑018‑0002‑6 29599476
    [Google Scholar]
  27. Tran B. Dancey J.E. Kamel-Reid S. Cancer genomics: Technology, discovery, and translation. J. Clin. Oncol. 2012 30 6 647 660 10.1200/JCO.2011.39.2316 22271477
    [Google Scholar]
  28. Wang H. Zhang Z. Li H. A cost-effective machine learning-based method for preeclampsia risk assessment and driver genes discovery. Cell Biosci. 2023 13 1 41 10.1186/s13578‑023‑00991‑y 36849879
    [Google Scholar]
  29. Hamet P. Tremblay J. Artificial intelligence in medicine. Metabolism 2017 69 S36 S40 10.1016/j.metabol.2017.01.011 28126242
    [Google Scholar]
  30. Rajpurkar P. Chen E. Banerjee O. Topol E.J. AI in health and medicine. Nat. Med. 2022 28 1 31 38 10.1038/s41591‑021‑01614‑0 35058619
    [Google Scholar]
  31. Jussupow E. Spohrer K. Heinzl A. Gawlitza J. Augmenting Medical diagnosis decisions? An investigation into physicians’ decision-making process with artificial intelligence. Inf. Syst. Res. 2021 32 3 713 735 10.1287/isre.2020.0980
    [Google Scholar]
  32. Li H.L. Pang Y.H. Liu B. BioSeq-BLM: A platform for analyzing DNA, RNA and protein sequences based on biological language models. Nucleic Acids Res. 2021 49 22 e129 e9 10.1093/nar/gkab829 34581805
    [Google Scholar]
  33. Guo X. Huang Z. Ju F. Zhao C. Yu L. Highly accurate estimation of cell type abundance in bulk tissues based on single‐cell reference and domain adaptive matching. Adv. Sci. (Weinh.) 2024 11 7 2306329 10.1002/advs.202306329 38072669
    [Google Scholar]
  34. Liu T. Huang J. Luo D. Cm-siRPred: Predicting chemically modified siRNA efficiency based on multi-view learning strategy. Int. J. Biol. Macromol. 2024 264 Pt 2 130638 10.1016/j.ijbiomac.2024.130638 38460652
    [Google Scholar]
  35. Xu Y. Liu T. Yang Y. ACVPred: Enhanced prediction of anti-coronavirus peptides by transfer learning combined with data augmentation. Future Gener. Comput. Syst. 2024 160 305 315 10.1016/j.future.2024.06.008
    [Google Scholar]
  36. Dai W. Liu X. Gao Y. Matrix factorization-based prediction of novel drug indications by integrating genomic space. Comput. Math. Methods Med. 2015 2015 1 9 10.1155/2015/275045 26078775
    [Google Scholar]
  37. Ceddia G. Pinoli P. Ceri S. Masseroli M. Matrix Factorization-based Technique for Drug Repurposing Predictions. IEEE J. Biomed. Health Inform. 2020 24 11 3162 3172 10.1109/JBHI.2020.2991763 32365039
    [Google Scholar]
  38. Yang M. Luo H. Li Y. Wang J. Drug repositioning based on bounded nuclear norm regularization. Bioinformatics 2019 35 14 i455 i463 10.1093/bioinformatics/btz331 31510658
    [Google Scholar]
  39. Abdelkader G.A. Kim J.D. Advances in protein-ligand binding affinity prediction via deep learning: A comprehensive study of datasets, data preprocessing techniques, and model architectures. Curr. Drug Targets 2024 25 15 1041 1065 10.2174/0113894501330963240905083020 39318214
    [Google Scholar]
  40. Zulfiqar H. Guo Z. Ahmad R.M. Deep-STP: A deep learning-based approach to predict snake toxin proteins by using word embeddings. Front. Med. (Lausanne) 2024 10 1291352 10.3389/fmed.2023.1291352 38298505
    [Google Scholar]
  41. Liu T. Qiao H. Wang Z. CodLncScape provides a self‐enriching framework for the systematic collection and exploration of coding LncRNAs. Adv. Sci. (Weinh.) 2024 11 22 2400009 10.1002/advs.202400009 38602457
    [Google Scholar]
  42. Zeng X. Zhu S. Liu X. Zhou Y. Nussinov R. Cheng F. deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics 2019 35 24 5191 5198 10.1093/bioinformatics/btz418 31116390
    [Google Scholar]
  43. Sadeghi SS Keyvanpour MR An analytical review of computational drug repurposing. IEEE/ACM Trans Comput Biol Bioinform 2021 18 2 472 88 10.1109/TCBB.2019.2933825
    [Google Scholar]
  44. Aittokallio T. Schwikowski B. Graph-based methods for analysing networks in cell biology. Brief. Bioinform. 2006 7 3 243 255 10.1093/bib/bbl022 16880171
    [Google Scholar]
  45. Sadeghi S. Lu J. Ngom A. An integrative heterogeneous graph neural network–based method for multi-labeled drug repurposing. Front. Pharmacol. 2022 13 908549 10.3389/fphar.2022.908549 35873597
    [Google Scholar]
  46. Liu B. Gao X. Zhang H. BioSeq-analysis2.0: An updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches. Nucleic Acids Res. 2019 47 20 e127 e7 10.1093/nar/gkz740 31504851
    [Google Scholar]
  47. Almusallam N. Ali F. Masmoudi A. Ghazalah S.A. Alsini R. Yafoz A. An omics-driven computational model for angiogenic protein prediction: Advancing therapeutic strategies with Ens-deep-AGP. Int. J. Biol. Macromol. 2024 282 Pt 1 136475 10.1016/j.ijbiomac.2024.136475 39423981
    [Google Scholar]
  48. Zhao B.W. You Z.H. Wong L. Zhang P. Li H.Y. Wang L. MGRL: Predicting drug-disease associations based on multi-graph representation learning. Front. Genet. 2021 12 657182 10.3389/fgene.2021.657182 34054920
    [Google Scholar]
  49. Wang Z Zhou M Arnold C Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing. Bioinformatics 2020 36 i525 33 (Suppl. 1). 10.1093/bioinformatics/btaa437 32657387
    [Google Scholar]
  50. Yang X Niu Z Liu Y Song B Lu W Zeng L. Modality-DTA: Multimodality fusion strategy for drug–target affinity prediction. IEEE/ACM Trans Comput Biol Bioinform 2023 20 2 1200 10 10.1109/TCBB.2022.3205282
    [Google Scholar]
  51. Wishart D.S. Knox C. Guo A.C. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006 34 90001 D668 D672 10.1093/nar/gkj067 16381955
    [Google Scholar]
  52. Hamosh A. Scott A.F. Amberger J.S. Bocchini C.A. McKusick V.A. Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2004 33 Database issue D514 D517 10.1093/nar/gki033 15608251
    [Google Scholar]
  53. Steinbeck C. Han Y. Kuhn S. Horlacher O. Luttmann E. Willighagen E. The chemistry development kit (CDK): An open-source java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci. 2003 43 2 493 500 10.1021/ci025584y 12653513
    [Google Scholar]
  54. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Model. 1988
    [Google Scholar]
  55. Charoenkwan P. Schaduangrat N. Phan L.T. Manavalan B. Shoombuatong W. M3S-ALG: Improved and robust prediction of allergenicity of chemical compounds by using a novel multi-step stacking strategy. Future Gener. Comput. Syst. 2025 162 107455 10.1016/j.future.2024.07.033
    [Google Scholar]
  56. Schaduangrat N. Anuwongcharoen N. Charoenkwan P. Shoombuatong W. DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists. J. Cheminform. 2023 15 1 50 10.1186/s13321‑023‑00721‑z 37149650
    [Google Scholar]
  57. Schaduangrat N. Homdee N. Shoombuatong W. StackER: a novel SMILES-based stacked approach for the accelerated and efficient discovery of ERα and ERβ antagonists. Sci. Rep. 2023 13 1 22994 10.1038/s41598‑023‑50393‑w 38151513
    [Google Scholar]
  58. van Driel M.A. Bruggeman J. Vriend G. Brunner H.G. Leunissen J.A.M. A text-mining analysis of the human phenome. Eur. J. Hum. Genet. 2006 14 5 535 542 10.1038/sj.ejhg.5201585 16493445
    [Google Scholar]
  59. Momanyi B.M. Zhou Y.W. Grace-Mercure B.K. SAGESDA: Multi-GraphSAGE networks for predicting SnoRNA-disease associations. Curr Res Struct Biol 2024 7 100122 10.1016/j.crstbi.2023.100122 38188542
    [Google Scholar]
  60. Momanyi B.M. Temesgen S.A. Wang T.Y. iGATTLDA: Integrative graph attention and transformer‐based model for predicting lncRNA‐Disease associations. IET Syst. Biol. 2024 18 5 172 182 10.1049/syb2.12098 39308027
    [Google Scholar]
  61. Li H Long C Hong Y Luo L Zuo Y. Characterizing Cellular Differentiation Potency and Waddington Landscape via Energy Indicator. Research 2023 6 0118 10.34133/research.0118 37223479
    [Google Scholar]
  62. Almusallam N. Ali F. Kumar H. Alkhalifah T. Alturise F. Almuhaimeed A. Multi-headed ensemble residual CNN: A powerful tool for fibroblast growth factor prediction. Results Eng 2024 24 103348 10.1016/j.rineng.2024.103348
    [Google Scholar]
  63. Hamilton W.L. Ying R. Leskovec J. Inductive representation learning on large graphs. arXiv:170602216 2017 10.48550/arXiv.1706.02216
    [Google Scholar]
  64. Ali F. Khalid M. Masmoudi A. Alghamdi W. Yafoz A. Alsini R. VEGF-ERCNN: A deep learning-based model for prediction of vascular endothelial growth factor using ensemble residual CNN. J. Comput. Sci. 2024 83 102448 10.1016/j.jocs.2024.102448
    [Google Scholar]
  65. Arif M. Musleh S. Fida H. Alam T. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation. Sci. Rep. 2024 14 1 16992 10.1038/s41598‑024‑67433‑8 39043738
    [Google Scholar]
  66. Arif M. Musleh S. Ghulam A. Fida H. Alqahtani Y. Alam T. StackDPPred: Multiclass prediction of defensin peptides using stacked ensemble learning with optimized features. Methods 2024 230 129 139 10.1016/j.ymeth.2024.08.001 39173785
    [Google Scholar]
  67. Zouari S. Ali F. Masmoudi A. Deep‐GB: A novel deep learning model for globular protein prediction using CNN‐BiLSTM architecture and enhanced PSSM with trisection strategy. IET Syst. Biol. 2024 18 6 208 217 10.1049/syb2.12108 39514139
    [Google Scholar]
  68. Musleh S. Arif M. Alajez N.M. Alam T. Unified mRNA subcellular localization predictor based on machine learning techniques. BMC Genomics 2024 25 1 151 10.1186/s12864‑024‑10077‑9 38326777
    [Google Scholar]
  69. Zhang H.Q. Arif M. Thafar M.A. PMPred-AE: a computational model for the detection and interpretation of pathological myopia based on artificial intelligence. Front. Med. (Lausanne) 2025 12 1529335 10.3389/fmed.2025.1529335 40182849
    [Google Scholar]
  70. Manavalan B. Lee J. FRTpred: A novel approach for accurate prediction of protein folding rate and type. Comput. Biol. Med. 2022 149 105911 10.1016/j.compbiomed.2022.105911 36096036
    [Google Scholar]
  71. Pham N.T. Rakkiyapan R. Park J. Malik A. Manavalan B. H2Opred: a robust and efficient hybrid deep learning model for predicting 2′-O-methylation sites in human RNA. Brief. Bioinform. 2023 25 1 bbad476 10.1093/bib/bbad476 38180830
    [Google Scholar]
  72. Meng Y. Wang Y. Xu J. Drug repositioning based on weighted local information augmented graph neural network. Brief. Bioinform. 2023 25 1 bbad431 10.1093/bib/bbad431 38019732
    [Google Scholar]
  73. Pham N.T. Phan L.T. Seo J. Advancing the accuracy of SARS-CoV-2 phosphorylation site detection via meta-learning approach. Brief. Bioinform. 2023 25 1 bbad433 10.1093/bib/bbad433 38058187
    [Google Scholar]
  74. Davis A.P. Murphy C.G. Johnson R. The Comparative Toxicogenomics Database: update 2013. Nucleic Acids Res. 2013 41 D1 D1104 D1114 10.1093/nar/gks994 23093600
    [Google Scholar]
  75. Ikebe S Harada T Hashimoto T Prevention and treatment of malignant syndrome in Parkinson’s disease: A consensus statement of the malignant syndrome research group. Parkinsonism Relat Disord 2003 9 47 9 (Suppl. 1). 10.1016/S1353‑8020(02)00123‑2 12735915
    [Google Scholar]
  76. Warner C.B. Ottman A.A. Brown J.N. The role of atomoxetine for parkinson disease–related executive dysfunction. J. Clin. Psychopharmacol. 2018 38 6 627 631 10.1097/JCP.0000000000000963 30346335
    [Google Scholar]
  77. Ye Z. Altena E. Nombela C. Improving response inhibition in Parkinson’s disease with atomoxetine. Biol. Psychiatry 2015 77 8 740 748 10.1016/j.biopsych.2014.01.024 24655598
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501402384251121115127
Loading
/content/journals/cdt/10.2174/0113894501402384251121115127
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test