Skip to content
2000
Volume 26, Issue 15
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Double homeobox A pseudogene 9 (DUXAP9), also known as long intergenic non-coding RNA 1296 (LINC01296) and lymph node metastasis-associated transcript 1 (LNMAT1), is an emerging lncRNA encoded by a pseudogene. It has been reported to be upregulated in various tumor types and functions as an oncogenic factor. The high expression of DUXAP9 is closely related to clinical pathological features and poor prognosis in 16 types of malignant tumors. DUXAP9 is transcriptionally activated by YY-1 and Twist1 and functions as a guide or scaffold for biomolecular complexes and chromatin modifiers, or as a "decoy" for miRNAs, mRNAs, and proteins, thereby regulating gene expression. Moreover, the PI3K/AKT, NF-κB, MAPK/ERK, and Wnt/β- catenin signaling pathways are variously activated or inhibited by DUXAP9, subsequently influencing the biological behaviors of tumor cells, including proliferation, apoptosis, cell cycle arrest, migration, invasion, epithelial-mesenchymal transition (EMT), and drug resistance. This review summarizes recent research on DUXAP9 in oncology, offering insights into its expression characteristics, biological functions, molecular mechanisms, and clinical significance for cancer diagnosis, treatment, and prognosis.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501400842250903112123
2025-09-08
2026-01-28
Loading full text...

Full text loading...

References

  1. QiJ. LiM. WangL. HuY. LiuW. LongZ. ZhouZ. YinP. ZhouM. National and subnational trends in cancer burden in China, 2005–20: An analysis of national mortality surveillance data.Lancet Public Health2023812e943e95510.1016/S2468‑2667(23)00211‑638000889
    [Google Scholar]
  2. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  3. GaneshK. MassaguéJ. Targeting metastatic cancer.Nat. Med.2021271344410.1038/s41591‑020‑01195‑433442008
    [Google Scholar]
  4. LiuS.J. DangH.X. LimD.A. FengF.Y. MaherC.A. Long noncoding RNAs in cancer metastasis.Nat. Rev. Cancer202121744646010.1038/s41568‑021‑00353‑133953369
    [Google Scholar]
  5. AliT. GroteP. Beyond the RNA-dependent function of LncRNA genes.eLife20209e6058310.7554/eLife.6058333095159
    [Google Scholar]
  6. NojimaT. ProudfootN.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics.Nat. Rev. Mol. Cell Biol.202223638940610.1038/s41580‑021‑00447‑635079163
    [Google Scholar]
  7. ZhaoK. WangX. JinY. ZhuX. ZhouT. YuY. JiX. ChangY. LuoJ. NiX. GuoY. YuD. LncRNA ZNF674-AS1 drives cell growth and inhibits cisplatin-induced pyroptosis via up-regulating CA9 in neuroblastoma.Cell Death Dis.2024151510.1038/s41419‑023‑06394‑838177154
    [Google Scholar]
  8. YaoY. ChenX. WangX. LiH. ZhuY. LiX. XiaoZ. ZiT. QinX. ZhaoY. YangT. WangL. WuG. FangX. WuD. Glycolysis related lncRNA SNHG3 / miR-139-5p / PKM2 axis promotes castration-resistant prostate cancer (CRPC) development and enzalutamide resistance.Int. J. Biol. Macromol.2024260Pt 212963510.1016/j.ijbiomac.2024.12963538266860
    [Google Scholar]
  9. WuW. ZhangY. XuC. YangH. LiuS. HuangG. LncRNA LOXL1-AS1 promotes proliferation and invasion and inhibits apoptosis in retinoblastoma by regulating the MAPK signaling pathway.Mol. Cell. Biochem.202447941011102210.1007/s11010‑023‑04774‑437273040
    [Google Scholar]
  10. AlessioE. BonadioR.S. BusonL. ChemelloF. CagninS. A single cell but many different transcripts: A journey into the world of long non-coding RNAs.Int. J. Mol. Sci.202021130210.3390/ijms2101030231906285
    [Google Scholar]
  11. ChaoH. HuY. ZhaoL. XinS. NiQ. ZhangP. ChenM. Biogenesis, functions, interactions, and resources of non-coding RNAs in plants.Int. J. Mol. Sci.2022237369510.3390/ijms2307369535409060
    [Google Scholar]
  12. ZhouW. FengY. LinC. ChaoC.K. HeZ. ZhaoS. XueJ. ZhaoX.Y. CaoW. Yin Yang 1-induced long noncoding RNA DUXAP9 drives the progression of oral squamous cell carcinoma by blocking cdk1-mediated ezh2 degradation.Adv. Sci.20231025220754910.1002/advs.20220754937401236
    [Google Scholar]
  13. XuL. WeiB. HuiH. SunY. LiuY. YuX. DaiJ. Positive feedback loop of lncRNA LINC01296/miR-598/Twist1 promotes non-small cell lung cancer tumorigenesis.J. Cell. Physiol.201923444563457110.1002/jcp.2723530240003
    [Google Scholar]
  14. TanL. TangY. LiH. LiP. YeY. CenJ. GuiC. LuoJ. CaoJ. WeiJ. N6-methyladenosine modification of lncrna duxap9 promotes renal cancer cells proliferation and motility by activating the pi3k/akt signaling pathway.Front. Oncol.20211164183310.3389/fonc.2021.64183334168980
    [Google Scholar]
  15. LiuM. ZhangS. ZhouH. HuX. LiJ. FuB. WeiM. HuangH. WuH. The interplay between non-coding RNAs and alternative splicing: from regulatory mechanism to therapeutic implications in cancer.Theranostics20231382616263110.7150/thno.8392037215575
    [Google Scholar]
  16. BoothH.A.F. HollandP.W.H. Annotation, nomenclature and evolution of four novel homeobox genes expressed in the human germ line.Gene20073871-271410.1016/j.gene.2006.07.03417005330
    [Google Scholar]
  17. Abate-ShenC. Deregulated homeobox gene expression in cancer: Cause or consequence?Nat. Rev. Cancer200221077778510.1038/nrc90712360280
    [Google Scholar]
  18. KumarS. KumarV. LiW. KimJ. Ventx family and its functional similarities with nanog: Involvement in embryonic development and cancer progression.Int. J. Mol. Sci.2022235274110.3390/ijms2305274135269883
    [Google Scholar]
  19. QiuJ. YanJ. Long non-coding RNA LINC01296 is a potential prognostic biomarker in patients with colorectal cancer.Tumour Biol.20153697175718310.1007/s13277‑015‑3448‑525894381
    [Google Scholar]
  20. LonsdaleJ. ThomasJ. SalvatoreM. PhillipsR. LoE. ShadS. HaszR. WaltersG. GarciaF. YoungN. FosterB. MoserM. KarasikE. GillardB. RamseyK. SullivanS. BridgeJ. MagazineH. SyronJ. FlemingJ. SiminoffL. TrainoH. MosavelM. BarkerL. JewellS. RohrerD. MaximD. FilkinsD. HarbachP. CortadilloE. BerghuisB. TurnerL. HudsonE. FeenstraK. SobinL. RobbJ. BrantonP. KorzeniewskiG. ShiveC. TaborD. QiL. GrochK. NampallyS. BuiaS. ZimmermanA. SmithA. BurgesR. RobinsonK. ValentinoK. BradburyD. CosentinoM. Diaz-MayoralN. KennedyM. EngelT. WilliamsP. EricksonK. ArdlieK. WincklerW. GetzG. DeLucaD. MacArthurD. KellisM. ThomsonA. YoungT. GelfandE. DonovanM. MengY. GrantG. MashD. MarcusY. BasileM. LiuJ. ZhuJ. TuZ. CoxN.J. NicolaeD.L. GamazonE.R. ImH.K. KonkashbaevA. PritchardJ. StevensM. FlutreT. WenX. DermitzakisE.T. LappalainenT. GuigoR. MonlongJ. SammethM. KollerD. BattleA. MostafaviS. McCarthyM. RivasM. MallerJ. RusynI. NobelA. WrightF. ShabalinA. FeoloM. SharopovaN. SturckeA. PaschalJ. AndersonJ.M. WilderE.L. DerrL.K. GreenE.D. StruewingJ.P. TempleG. VolpiS. BoyerJ.T. ThomsonE.J. GuyerM.S. NgC. AbdallahA. ColantuoniD. InselT.R. KoesterS.E. LittleA.R. BenderP.K. LehnerT. YaoY. ComptonC.C. VaughtJ.B. SawyerS. LockhartN.C. DemchokJ. MooreH.F. The Genotype-Tissue Expression (GTEx) project.Nat. Genet.201345658058510.1038/ng.265323715323
    [Google Scholar]
  21. TangZ. KangB. LiC. ChenT. ZhangZ. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis.Nucleic Acids Res.201947W1W556W56010.1093/nar/gkz43031114875
    [Google Scholar]
  22. RumpoldH. Niedersüß-BekeD. HeilerC. FalchD. WundsamH.V. Metz-GercekS. PiringerG. ThalerJ. Prediction of mortality in metastatic colorectal cancer in a real-life population: a multicenter explorative analysis.BMC Cancer2020201114910.1186/s12885‑020‑07656‑w33238958
    [Google Scholar]
  23. ShinA.E. GiancottiF.G. RustgiA.K. Metastatic colorectal cancer: Mechanisms and emerging therapeutics.Trends Pharmacol. Sci.202344422223610.1016/j.tips.2023.01.00336828759
    [Google Scholar]
  24. YuanZ. YuX. NiB. ChenD. YangZ. HuangJ. WangJ. ChenD. WangL. Overexpression of long non-coding RNA-CTD903 inhibits colorectal cancer invasion and migration by repressing Wnt/β-catenin signaling and predicts favorable prognosis.Int. J. Oncol.20164862675268510.3892/ijo.2016.344727035092
    [Google Scholar]
  25. LiuB. PanS. XiaoY. LiuQ. XuJ. JiaL. LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway.J. Exp. Clin. Cancer Res.201837131610.1186/s13046‑018‑0994‑x30547804
    [Google Scholar]
  26. XuJ. ZhangZ. ShenD. ZhangT. ZhangJ. DeW. Long noncoding RNA LINC01296 plays an oncogenic role in colorectal cancer by suppressing p15 expression.J. Int. Med. Res.20214950300060521100441410.1177/0300060521100441433983053
    [Google Scholar]
  27. VodenkovaS. BuchlerT. CervenaK. VeskrnovaV. VodickaP. VymetalkovaV. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future.Pharmacol. Ther.202020610744710.1016/j.pharmthera.2019.10744731756363
    [Google Scholar]
  28. TopazO. ShurmanD.L. BergmanR. IndelmanM. RatajczakP. MizrachiM. KhamaysiZ. BeharD. PetroniusD. FriedmanV. ZelikovicI. RaimerS. MetzkerA. RichardG. SprecherE. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis.Nat. Genet.200436657958110.1038/ng135815133511
    [Google Scholar]
  29. KaurP. ShankarE. GuptaS. EZH2-mediated development of therapeutic resistance in cancer.Cancer Lett.202458621670610.1016/j.canlet.2024.21670638331087
    [Google Scholar]
  30. KrimpenfortP. IJpenbergA. SongJ.Y. van der ValkM. NawijnM. ZevenhovenJ. BernsA. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a.Nature2007448715694394610.1038/nature0608417713536
    [Google Scholar]
  31. JohnsonD.E. BurtnessB. LeemansC.R. LuiV.W.Y. BaumanJ.E. GrandisJ.R. Head and neck squamous cell carcinoma.Nat. Rev. Dis. Primers2020619210.1038/s41572‑020‑00224‑333243986
    [Google Scholar]
  32. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  33. WuJ. ChenH. LiJ. LiX. CaoJ. QiM. Long non-coding RNA LINC01296 acts as a migration and invasion promoter in head and neck squamous cell carcinoma and predicts poor prognosis.Bioengineered20211215607561910.1080/21655979.2021.196703334515611
    [Google Scholar]
  34. ZhaoX. LengD. WangH. JinH. WuY. QinZ. WuD. WeiX. An acid-responsive iron-based nanocomposite for OSCC treatment.J. Dent. Res.2024103661262110.1177/0022034524123815438684484
    [Google Scholar]
  35. FengL. HouckJ.R. LohavanichbutrP. ChenC. Transcriptome analysis reveals differentially expressed lncRNAs between oral squamous cell carcinoma and healthy oral mucosa.Oncotarget2017819315213153110.18632/oncotarget.1635828415559
    [Google Scholar]
  36. ZhangS. WangX. WangD. Long non-coding RNA LINC01296 promotes progression of oral squamous cell carcinoma through activating the MAPK/ERK signaling pathway via the miR-485-5p/PAK4 axis.Arch. Med. Sci.201918378679910.5114/aoms.2019.8680535591837
    [Google Scholar]
  37. ZhangY. WangA. ZhangX. WangX. ZhangJ. MaJ. lncRNA LINC01296 promotes oral squamous cell carcinoma development by binding with SRSF1.BioMed Res. Int.202120211666152010.1155/2021/666152034195277
    [Google Scholar]
  38. YangK. LiL. ChenY. ManS. YangL. YangY. HeiN. ZhaoJ. The role of long non-coding RNA LINC01296 in oral squamous cell carcinoma: A study based on bioinformatics analysis and in vitro validation.J. Cancer202213377578310.7150/jca.6041735154446
    [Google Scholar]
  39. LiangK.Y. Chun-Yu HoD. YangH.P. HsiehP.L. FangC.Y. TsaiL.L. ChaoS.C. LiuC.M. YuC.C. LINC01296 promotes cancer stemness traits in oral carcinomas by sponging miR-143.J. Dent. Sci.202318281482110.1016/j.jds.2023.01.00837021272
    [Google Scholar]
  40. YuanY. ZhangH. LiD. LiY. LinF. WangY. SongH. LiuX. LiF. ZhangJ. PAK4 in cancer development: Emerging player and therapeutic opportunities.Cancer Lett.202254521581310.1016/j.canlet.2022.21581335798086
    [Google Scholar]
  41. LeiC. DuF. SunL. LiT. LiT. MinY. NieA. WangX. GengL. LuY. ZhaoX. ShiY. FanD. miR-143 and miR-145 inhibit gastric cancer cell migration and metastasis by suppressing MYO6.Cell Death Dis.2017810e310110.1038/cddis.2017.49329022908
    [Google Scholar]
  42. BufalinoA. CervigneN.K. de OliveiraC.E. FonsecaF.P. RodriguesP.C. MacedoC.C.S. SobralL.M. MiguelM.C. LopesM.A. LemeA.F.P. LambertD.W. SaloT.A. KowalskiL.P. GranerE. ColettaR.D. Low miR-143/miR-145 cluster levels induce activin a overexpression in oral squamous cell carcinomas, which contributes to poor prognosis.PLoS One2015108e013659910.1371/journal.pone.013659926317418
    [Google Scholar]
  43. WojtyśW. OrońM. How driver oncogenes shape and are shaped by alternative splicing mechanisms in tumors.Cancers20231511291810.3390/cancers1511291837296881
    [Google Scholar]
  44. AnL. LiM. JiaQ. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma.Mol. Cancer202322114010.1186/s12943‑023‑01839‑237598158
    [Google Scholar]
  45. WangL. MengD. WangY. HuJ. Long non-coding RNA LINC01296 promotes esophageal squamous cell carcinoma cell proliferation and invasion by epigenetic suppression of KLF2.Am. J. Cancer Res.20188102020202930416853
    [Google Scholar]
  46. WangB. LiangT. LiJ. Long noncoding RNA LINC01296 is associated with poor prognosis in ESCC and promotes ESCC cell proliferation, migration and invasion.Eur. Rev. Med. Pharmacol. Sci.201822144524453130058683
    [Google Scholar]
  47. TaghehchianN. MaharatiA. AkhlaghipourI. ZangoueiA.S. MoghbeliM. PRC2 mediated KLF2 down regulation: A therapeutic and diagnostic axis during tumor progression.Cancer Cell Int.202323123310.1186/s12935‑023‑03086‑337807067
    [Google Scholar]
  48. LiuJ. YuanQ. GuoH. GuanH. HongZ. ShangD. Deciphering drug resistance in gastric cancer: Potential mechanisms and future perspectives.Biomed. Pharmacother.202417311631010.1016/j.biopha.2024.11631038394851
    [Google Scholar]
  49. QinQ.H. YinZ.Q. LiY. WangB.G. ZhangM.F. Long intergenic noncoding RNA 01296 aggravates gastric cancer cells progress through miR-122/MMP-9.Biomed. Pharmacother.20189745045710.1016/j.biopha.2017.10.06629091895
    [Google Scholar]
  50. MondalS. AdhikariN. BanerjeeS. AminS.A. JhaT. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview.Eur. J. Med. Chem.202019411226010.1016/j.ejmech.2020.11226032224379
    [Google Scholar]
  51. WeiH. RenH. Precision treatment of pancreatic ductal adenocarcinoma.Cancer Lett.202458521663610.1016/j.canlet.2024.21663638278471
    [Google Scholar]
  52. YuanQ. ZhangY. FengL. JiangY. Upregulated long noncoding RNA LINC01296 indicates a dismal prognosis for pancreatic ductal adenocarcinoma and promotes cell metastatic properties by affecting EMT.J. Cell. Biochem.2019120155256110.1002/jcb.2741130203487
    [Google Scholar]
  53. YangX. YangC. ZhangS. GengH. ZhuA.X. BernardsR. QinW. FanJ. WangC. GaoQ. Precision treatment in advanced hepatocellular carcinoma.Cancer Cell202442218019710.1016/j.ccell.2024.01.00738350421
    [Google Scholar]
  54. ZhuQ. LiuJ. TangJ. GuoD.L. LiY. DuanR. Overexpression of long non-coding RNAs DUXAP9 and DUXAP10 is associated with prognosis in patients with hepatocellular carcinoma after hepatectomy.Int. J. Clin. Exp. Pathol.20181131407141431938237
    [Google Scholar]
  55. WanY. LiM. HuangP. LINC01296 promotes proliferation, migration, and invasion of HCC cells by targeting miR-122-5P and modulating EMT activity.OncoTargets Ther.2019122193220310.2147/OTT.S19733830988624
    [Google Scholar]
  56. ZhangL. HuJ. HaoM. BuL. Long noncoding RNA Linc01296 promotes hepatocellular carcinoma development through regulation of the miR-26a/PTEN axis.Biol. Chem.2020401340741610.1515/hsz‑2019‑023131318685
    [Google Scholar]
  57. Álvarez-GarciaV. TawilY. WiseH.M. LeslieN.R. Mechanisms of PTEN loss in cancer: It’s all about diversity.Semin. Cancer Biol.201959667910.1016/j.semcancer.2019.02.00130738865
    [Google Scholar]
  58. ZeitelsL.R. AcharyaA. ShiG. ChivukulaD. ChivukulaR.R. AnandamJ.L. AbdelnabyA.A. BalchG.C. MansourJ.C. YoppA.C. RichardsonJ.A. MendellJ.T. Tumor suppression by miR-26 overrides potential oncogenic activity in intestinal tumorigenesis.Genes Dev.201428232585259010.1101/gad.250951.11425395662
    [Google Scholar]
  59. ZengX. HuZ. KeX. TangH. WuB. WeiX. LiuZ. Long noncoding RNA DLX6-AS1 promotes renal cell carcinoma progression via miR-26a/PTEN axis.Cell Cycle201716222212221910.1080/15384101.2017.136107228881158
    [Google Scholar]
  60. LiJ. AnG. ZhangM. MaQ. Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells.Biochem. Biophys. Res. Commun.2016477474374810.1016/j.bbrc.2016.06.12927363339
    [Google Scholar]
  61. SawP.E. LiuQ. WongP.P. SongE. Cancer stem cell mimicry for immune evasion and therapeutic resistance.Cell Stem Cell20243181101111210.1016/j.stem.2024.06.00338925125
    [Google Scholar]
  62. XiaS. PanY. LiangY. XuJ. CaiX. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma.EBioMedicine20205110261010.1016/j.ebiom.2019.10261031918403
    [Google Scholar]
  63. ZengR. WangC. WangW. WangS. Long non-coding RNA DUXAP9 promotes hepatocellular carcinoma cell stemness via directly interacting with sox9.Environ. Toxicol.20213691793180110.1002/tox.2330034086387
    [Google Scholar]
  64. PandaM. TripathiS.K. BiswalB.K. SOX9: An emerging driving factor from cancer progression to drug resistance.Biochim. Biophys. Acta Rev. Cancer20211875218851710.1016/j.bbcan.2021.18851733524528
    [Google Scholar]
  65. Cantallops VilàP. RavichandraA. Agirre LizasoA. PerugorriaM.J. AffòS. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma.Hepatology202479494195837018128
    [Google Scholar]
  66. ZhangD. LiH. XieJ. JiangD. CaoL. YangX. XueP. JiangX. Long noncoding RNA LINC01296 promotes tumor growth and progression by sponging miR-5095 in human cholangiocarcinoma.Int. J. Oncol.20185261777178610.3892/ijo.2018.436229620172
    [Google Scholar]
  67. NishioY. KatoK. OishiH. TakahashiY. SaitohS. MYCN in human development and diseases.Front. Oncol.202414141760710.3389/fonc.2024.141760738884091
    [Google Scholar]
  68. KennedyP.T. ZannoupaD. SonM.H. DahalL.N. WoolleyJ.F. Neuroblastoma: An ongoing cold front for cancer immunotherapy.J. Immunother. Cancer20231111e00779810.1136/jitc‑2023‑00779837993280
    [Google Scholar]
  69. WangJ. WangZ. YaoW. DongK. ZhengS. LiK. The association between lncRNA LINC01296 and the clinical characteristics in neuroblastoma.J. Pediatr. Surg.201954122589259410.1016/j.jpedsurg.2019.08.03231522796
    [Google Scholar]
  70. WangJ. WangZ. LinW. HanQ. YanH. YaoW. DongR. JiaD. DongK. LiK. LINC01296 promotes neuroblastoma tumorigenesis via the NCL-SOX11 regulatory complex.Mol. Ther. Oncolytics20222483484810.1016/j.omto.2022.02.00735317520
    [Google Scholar]
  71. ThongchotS. AksonnamK. ThuwajitP. YenchitsomanusP.T. ThuwajitC. Nucleolin-based targeting strategies in cancer treatment: Focus on cancer immunotherapy (Review).Int. J. Mol. Med.20235238110.3892/ijmm.2023.528437477132
    [Google Scholar]
  72. TsangS.M. OliemullerE. HowardB.A. Regulatory roles for SOX11 in development, stem cells and cancer.Semin. Cancer Biol.202067Pt 131110.1016/j.semcancer.2020.06.01532574812
    [Google Scholar]
  73. XiaoH. LiY. ZhangY. WangP. Long noncoding RNA LINC01296 regulates the cell proliferation, migration and invasion in neuroblastoma.Metab. Brain Dis.20223741247125810.1007/s11011‑022‑00935‑435305236
    [Google Scholar]
  74. ChiangD.C. YapB.K. TRIM25, TRIM28 and TRIM59 and their protein partners in cancer signaling crosstalk: Potential novel therapeutic targets for cancer.Curr. Issues Mol. Biol.20244610107451076110.3390/cimb4610063839451518
    [Google Scholar]
  75. NaganoT. TachiharaM. NishimuraY. Molecular mechanisms and targeted therapies including immunotherapy for non-small cell lung cancer.Curr. Cancer Drug Targets201919859563010.2174/156800961966618121011455930526458
    [Google Scholar]
  76. ZhuT. AnS. ChoyM.T. ZhouJ. WuS. LiuS. LiuB. YaoZ. ZhuX. WuJ. HeZ. LncRNA DUXAP9-206 directly binds with Cbl-b to augment EGFR signaling and promotes non-small cell lung cancer progression.J. Cell. Mol. Med.20192331852186410.1111/jcmm.1408530515972
    [Google Scholar]
  77. HuX. DuanL. LiuH. ZhangL. Long noncoding RNA LINC01296 induces non-small cell lung cancer growth and progression through sponging miR-5095.Am. J. Transl. Res.201911289590330899389
    [Google Scholar]
  78. SunZ. ShaoB. LiuZ. DangQ. GuoY. ChenC. GuoY. ChenZ. LiuJ. HuS. YuanW. ZhouQ. LINC01296/miR-141-3p/ZEB1-ZEB2 axis promotes tumor metastasis via enhancing epithelial-mesenchymal transition process.J. Cancer20211292723273410.7150/jca.5562633854632
    [Google Scholar]
  79. LiY. ZhangH. GuoJ. LiW. WangX. ZhangC. SunQ. MaZ. Downregulation of LINC01296 suppresses non-small-cell lung cancer via targeting miR-143-3p/ATG2B.Acta Biochim. Biophys. Sin.202153121681169010.1093/abbs/gmab14934695177
    [Google Scholar]
  80. ZhuL. ChenL. Progress in research on paclitaxel and tumor immunotherapy.Cell. Mol. Biol. Lett.20192414010.1186/s11658‑019‑0164‑y31223315
    [Google Scholar]
  81. AugustinR.C. BaoR. LukeJ.J. Targeting Cbl-b in cancer immunotherapy.J. Immunother. Cancer2023112e00600710.1136/jitc‑2022‑00600736750253
    [Google Scholar]
  82. ChenY.W. WangL. PanianJ. DhanjiS. DerweeshI. RoseB. BagrodiaA. McKayR.R. Treatment landscape of renal cell carcinoma.Curr. Treat. Options Oncol.202324121889191610.1007/s11864‑023‑01161‑538153686
    [Google Scholar]
  83. ChenJ. LouW. DingB. WangX. Overexpressed pseudogenes, DUXAP8 and DUXAP9, promote growth of renal cell carcinoma and serve as unfavorable prognostic biomarkers.Aging201911155666568810.18632/aging.10215231409759
    [Google Scholar]
  84. HaruehanroengraP. ZhengY.Y. ZhouY. HuangY. ShengJ. RNA modifications and cancer.RNA Biol.202017111560157510.1080/15476286.2020.172244931994439
    [Google Scholar]
  85. LiF. ZhengZ. ChenW. LiD. ZhangH. ZhuY. MoQ. ZhaoX. FanQ. DengF. HanC. TanW. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms.Drug Resist. Updat.20236810093810.1016/j.drup.2023.10093836774746
    [Google Scholar]
  86. SeitzA.K. ChristensenL.L. ChristensenE. FaarkrogK. OstenfeldM.S. HedegaardJ. NordentoftI. NielsenM.M. PalmfeldtJ. ThomsonM. JensenM.T.S. NawrothR. MaurerT. ØrntoftT.F. JensenJ.B. DamgaardC.K. DyrskjøtL. Profiling of long non-coding RNAs identifies LINC00958 and LINC01296 as candidate oncogenes in bladder cancer.Sci. Rep.20177139510.1038/s41598‑017‑00327‑028341852
    [Google Scholar]
  87. WangX. WangL. GongY. LiuZ. QinY. ChenJ. LiN. Long noncoding RNA LINC01296 promotes cancer-cell proliferation and metastasis in urothelial carcinoma of the bladder.OncoTargets Ther.201812758510.2147/OTT.S19280930588032
    [Google Scholar]
  88. XiangX. WangJ. LuD. XuX. Targeting tumor-associated macrophages to synergize tumor immunotherapy.Signal Transduct. Target. Ther.2021617510.1038/s41392‑021‑00484‑933619259
    [Google Scholar]
  89. ChenC. HeW. HuangJ. WangB. LiH. CaiQ. SuF. BiJ. LiuH. ZhangB. JiangN. ZhongG. ZhaoY. DongW. LinT. LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment.Nat. Commun.201891382610.1038/s41467‑018‑06152‑x30237493
    [Google Scholar]
  90. GuJ. ChenZ. ChenX. WangZ. Heterogeneous nuclear ribonucleoprotein (hnRNPL) in cancer.Clin. Chim. Acta202050728629410.1016/j.cca.2020.04.04032376323
    [Google Scholar]
  91. SkotheimR.I. BogaardM. CarmK.T. AxcronaU. AxcronaK. Prostate cancer: Molecular aspects, consequences, and opportunities of the multifocal nature.Biochim. Biophys. Acta Rev. Cancer20241879218908010.1016/j.bbcan.2024.18908038272101
    [Google Scholar]
  92. WuJ. ChengG. ZhangC. ZhengY. XuH. YangH. HuaL. Long noncoding RNA LINC01296 is associated with poor prognosis in prostate cancer and promotes cancer-cell proliferation and metastasis.OncoTargets Ther.2017101843185210.2147/OTT.S12992828392705
    [Google Scholar]
  93. CavalluzziM.M. VialeM. RotondoN.P. FerraroV. LentiniG. Drug repositioning for ovarian cancer treatment: An update.Anticancer. Agents Med. Chem.202424863764710.2174/011871520628290424012206391438367265
    [Google Scholar]
  94. XuH. ZhengJ.F. HouC.Z. LiY. LiuP.S. Up-regulation of long intergenic noncoding RNA 01296 in ovarian cancer impacts invasion, apoptosis and cell cycle distribution via regulating EMT.Cell. Signal.20196210934110.1016/j.cellsig.2019.06.00631176022
    [Google Scholar]
  95. XuH. MaoH.L. ZhaoX.R. LiY. LiuP.S. MiR-29c-3p, a target miRNA of LINC01296, accelerates tumor malignancy: therapeutic potential of a LINC01296/miR-29c-3p axis in ovarian cancer.J. Ovarian Res.20201313110.1186/s13048‑020‑00631‑w32192508
    [Google Scholar]
  96. JiangM. XiaoY. LiuD. LuoN. GaoQ. GuanY. Overexpression of long noncoding RNA LINC01296 indicates an unfavorable prognosis and promotes tumorigenesis in breast cancer.Gene201867521722410.1016/j.gene.2018.07.00429981416
    [Google Scholar]
  97. YuX. PangL. YangT. LiuP. lncRNA LINC01296 regulates the proliferation, metastasis and cell cycle of osteosarcoma through cyclin�D1.Oncol. Rep.20184052507251410.3892/or.2018.667430226542
    [Google Scholar]
  98. MouK. ZhangX. MuX. GeR. HanD. ZhouY. WangL. LNMAT1 promotes invasion-metastasis cascade in malignant melanoma by epigenetically suppressing CADM1 expression.Front. Oncol.2019956910.3389/fonc.2019.0056931334110
    [Google Scholar]
  99. WangK. LuoQ. ZhangY. XieX. ChengW. YaoQ. ChenY. RenH. LiJ. PanZ. LINC01296 promotes proliferation of cutaneous malignant melanoma by regulating miR-324-3p/MAPK1 axis.Aging20221582877289010.18632/aging.20441336462499
    [Google Scholar]
  100. SawadaY. MashimaE. Saito-SasakiN. NakamuraM. The role of cell adhesion molecule 1 (CADM1) in cutaneous malignancies.Int. J. Mol. Sci.20202124973210.3390/ijms2124973233419290
    [Google Scholar]
  101. LavoieH. GagnonJ. TherrienM. ERK signalling: A master regulator of cell behaviour, life and fate.Nat. Rev. Mol. Cell Biol.2020211060763210.1038/s41580‑020‑0255‑732576977
    [Google Scholar]
  102. ZhangX. XuX. SongJ. XuY. QianH. JinJ. LiangZ. Non-coding RNAs’ function in cancer development, diagnosis and therapy.Biomed. Pharmacother.202316711552710.1016/j.biopha.2023.11552737751642
    [Google Scholar]
  103. ShimadaH. NoieT. OhashiM. ObaK. TakahashiY. Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the Task Force of the Japanese Gastric Cancer Association.Gastric Cancer2014171263310.1007/s10120‑013‑0259‑523572188
    [Google Scholar]
  104. GuoT. TangX.H. GaoX.Y. ZhouY. JinB. DengZ.Q. HuY. XingX.F. LiZ.Y. JiJ.F. A liquid biopsy signature of circulating exosome-derived mRNAs, miRNAs and lncRNAs predict therapeutic efficacy to neoadjuvant chemotherapy in patients with advanced gastric cancer.Mol. Cancer202221121610.1186/s12943‑022‑01684‑936510184
    [Google Scholar]
  105. GuoX. PengY. SongQ. WeiJ. WangX. RuY. XuS. ChengX. LiX. WuD. ChenL. WeiB. LvX. JiG. A liquid biopsy signature for the early detection of gastric cancer in patients.Gastroenterology20231652402413.e1310.1053/j.gastro.2023.02.04436894035
    [Google Scholar]
  106. RezaeeD. SaadatpourF. AkbariN. ZoghiA. NajafiS. BeyranvandP. Zamani-RaraniF. RashidiM.A. Bagheri-MohammadiS. BakhtiariM. The role of microRNAs in the pathophysiology of human central nervous system: A focus on neurodegenerative diseases.Ageing Res. Rev.20239210209010.1016/j.arr.2023.10209037832609
    [Google Scholar]
  107. ZhangQ. WuS. Tertiary lymphoid structures are critical for cancer prognosis and therapeutic response.Front. Immunol.202313106371110.3389/fimmu.2022.106371136713409
    [Google Scholar]
  108. ChengC. WangQ. ZhuM. LiuK. ZhangZ. Integrated analysis reveals potential long non-coding RNA biomarkers and their potential biological functions for disease free survival in gastric cancer patients.Cancer Cell Int.201919112310.1186/s12935‑019‑0846‑631080364
    [Google Scholar]
  109. LiuW. LiY. ZhangY. ShenX. SuZ. ChenL. CaiW. WangF. JuS. Circulatinglong non-coding RNA FEZF1-AS1 and AFAP1-AS1 serve as potential diagnostic biomarkers for gastric cancer.Pathol. Res. Pract.2020216115275710.1016/j.prp.2019.15275731785996
    [Google Scholar]
  110. LiaT. ShaoY. RegmiP. LiX. Development and validation of pyroptosis-related lncRNAs prediction model for bladder cancer.Biosci. Rep.2022421BSR2021225310.1042/BSR2021225335024796
    [Google Scholar]
  111. TanH. ZhangS. ZhangJ. ZhuL. ChenY. YangH. ChenY. AnY. LiuB. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications.Theranostics202010198880890210.7150/thno.4754832754285
    [Google Scholar]
  112. HosseiniS.A. HaddadiM.H. FathizadehH. NematiF. AznavehH.M. TarajF. AghabozorgizadehA. GandomkarG. BazazzadehE. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications.Biomed. Pharmacother.202316311440710.1016/j.biopha.2023.11440737100014
    [Google Scholar]
  113. RaoD.D. VorhiesJ.S. SenzerN. NemunaitisJ. siRNA vs. shRNA: Similarities and differences.Adv. Drug Deliv. Rev.200961974675910.1016/j.addr.2009.04.00419389436
    [Google Scholar]
  114. BennettC.F. SwayzeE.E. RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform.Annu. Rev. Pharmacol. Toxicol.201050125929310.1146/annurev.pharmtox.010909.10565420055705
    [Google Scholar]
  115. LennoxK.A. BehlkeM.A. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides.Nucleic Acids Res.201644286387710.1093/nar/gkv120626578588
    [Google Scholar]
  116. WiedenheftB. SternbergS.H. DoudnaJ.A. RNA-guided genetic silencing systems in bacteria and archaea.Nature2012482738533133810.1038/nature1088622337052
    [Google Scholar]
  117. BassettA.R. AkhtarA. BarlowD.P. BirdA.P. BrockdorffN. DubouleD. EphrussiA. Ferguson-SmithA.C. GingerasT.R. HaertyW. HiggsD.R. MiskaE.A. PontingC.P. Considerations when investigating lncRNA function in vivo. eLife20143e0305810.7554/eLife.0305825124674
    [Google Scholar]
  118. LiZ. GaoY. LiL. XieS. Curcumin inhibits papillary thyroid cancer cell proliferation by regulating lncRNA LINC00691.Anal. Cell. Pathol.2022202211010.1155/2022/594667035256924
    [Google Scholar]
  119. Pedram FatemiR. Salah-UddinS. ModarresiF. KhouryN. WahlestedtC. FaghihiM.A. Screening for small-molecule modulators of long noncoding rna-protein interactions using alphascreen.SLAS Discov.20152091132114110.1177/108705711559418726173710
    [Google Scholar]
  120. MishraS. VermaS.S. RaiV. AwastheeN. ChavaS. HuiK.M. KumarA.P. ChallagundlaK.B. SethiG. GuptaS.C. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases.Cell. Mol. Life Sci.201976101947196610.1007/s00018‑019‑03053‑030879091
    [Google Scholar]
  121. ChenY. LiZ. ChenX. ZhangS. Long non-coding RNAs: From disease code to drug role.Acta Pharm. Sin. B202111234035410.1016/j.apsb.2020.10.00133643816
    [Google Scholar]
  122. DavodabadiF. SajjadiS.F. SarhadiM. MirghasemiS. Nadali HezavehM. KhosraviS. Kamali AndaniM. CordaniM. BasiriM. GhavamiS. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery.Eur. J. Pharmacol.202395817601310.1016/j.ejphar.2023.17601337633322
    [Google Scholar]
  123. TabasiM. MaghamiP. Amiri-TehranizadehZ. Reza SaberiM. ChamaniJ. New perspective of the ternary complex of nano-curcumin with β-lactoglobulin in the presence of α-lactalbumin: Spectroscopic and molecular dynamic investigations.J. Mol. Liq.202339212347210.1016/j.molliq.2023.123472
    [Google Scholar]
  124. JiangH. ShiX. YeG. XuY. XuJ. LuJ. LuW. Up-regulated long non-coding RNA DUXAP8 promotes cell growth through repressing Krüppel-like factor 2 expression in human hepatocellular carcinoma.OncoTargets Ther.2019127429743610.2147/OTT.S21433631571902
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501400842250903112123
Loading
/content/journals/cdt/10.2174/0113894501400842250903112123
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; clinical application; DUXAP9; LINC01296; LncRNA; molecular mechanism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test