Skip to content
2000
image of Unraveling the Pivotal Role of LncRNA DUXAP9 in Cancer: Current Progress and Future Perspectives

Abstract

Double homeobox A pseudogene 9 (DUXAP9), also known as long intergenic non-coding RNA 1296 (LINC01296) and lymph node metastasis-associated transcript 1 (LNMAT1), is an emerging lncRNA encoded by a pseudogene. It has been reported to be upregulated in various tumor types and functions as an oncogenic factor. The high expression of DUXAP9 is closely related to clinical pathological features and poor prognosis in 16 types of malignant tumors. DUXAP9 is transcriptionally activated by YY-1 and Twist1 and functions as a guide or scaffold for biomolecular complexes and chromatin modifiers, or as a "decoy" for miRNAs, mRNAs, and proteins, thereby regulating gene expression. Moreover, the PI3K/AKT, NF-κB, MAPK/ERK, and Wnt/β- catenin signaling pathways are variously activated or inhibited by DUXAP9, subsequently influencing the biological behaviors of tumor cells, including proliferation, apoptosis, cell cycle arrest, migration, invasion, epithelial-mesenchymal transition (EMT), and drug resistance. This review summarizes recent research on DUXAP9 in oncology, offering insights into its expression characteristics, biological functions, molecular mechanisms, and clinical significance for cancer diagnosis, treatment, and prognosis.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501400842250903112123
2025-09-11
2025-09-14
Loading full text...

Full text loading...

References

  1. Qi J. Li M. Wang L. Hu Y. Liu W. Long Z. Zhou Z. Yin P. Zhou M. National and subnational trends in cancer burden in China, 2005–20: An analysis of national mortality surveillance data. Lancet Public Health 2023 8 12 e943 e955 10.1016/S2468‑2667(23)00211‑6 38000889
    [Google Scholar]
  2. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  3. Ganesh K. Massagué J. Targeting metastatic cancer. Nat. Med. 2021 27 1 34 44 10.1038/s41591‑020‑01195‑4 33442008
    [Google Scholar]
  4. Liu S.J. Dang H.X. Lim D.A. Feng F.Y. Maher C.A. Long noncoding RNAs in cancer metastasis. Nat. Rev. Cancer 2021 21 7 446 460 10.1038/s41568‑021‑00353‑1 33953369
    [Google Scholar]
  5. Ali T. Grote P. Beyond the RNA-dependent function of LncRNA genes. eLife 2020 9 e60583 10.7554/eLife.60583 33095159
    [Google Scholar]
  6. Nojima T. Proudfoot N.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol. 2022 23 6 389 406 10.1038/s41580‑021‑00447‑6 35079163
    [Google Scholar]
  7. Zhao K. Wang X. Jin Y. Zhu X. Zhou T. Yu Y. Ji X. Chang Y. Luo J. Ni X. Guo Y. Yu D. LncRNA ZNF674-AS1 drives cell growth and inhibits cisplatin-induced pyroptosis via up-regulating CA9 in neuroblastoma. Cell Death Dis. 2024 15 1 5 10.1038/s41419‑023‑06394‑8 38177154
    [Google Scholar]
  8. Yao Y. Chen X. Wang X. Li H. Zhu Y. Li X. Xiao Z. Zi T. Qin X. Zhao Y. Yang T. Wang L. Wu G. Fang X. Wu D. Glycolysis related lncRNA SNHG3 / miR-139-5p / PKM2 axis promotes castration-resistant prostate cancer (CRPC) development and enzalutamide resistance. Int. J. Biol. Macromol. 2024 260 Pt 2 129635 10.1016/j.ijbiomac.2024.129635 38266860
    [Google Scholar]
  9. Wu W. Zhang Y. Xu C. Yang H. Liu S. Huang G. LncRNA LOXL1-AS1 promotes proliferation and invasion and inhibits apoptosis in retinoblastoma by regulating the MAPK signaling pathway. Mol. Cell. Biochem. 2024 479 4 1011 1022 10.1007/s11010‑023‑04774‑4 37273040
    [Google Scholar]
  10. Alessio E. Bonadio R.S. Buson L. Chemello F. Cagnin S. A single cell but many different transcripts: A journey into the world of long non-coding RNAs. Int. J. Mol. Sci. 2020 21 1 302 10.3390/ijms21010302 31906285
    [Google Scholar]
  11. Chao H. Hu Y. Zhao L. Xin S. Ni Q. Zhang P. Chen M. Biogenesis, functions, interactions, and resources of non-coding RNAs in plants. Int. J. Mol. Sci. 2022 23 7 3695 10.3390/ijms23073695 35409060
    [Google Scholar]
  12. Zhou W. Feng Y. Lin C. Chao C.K. He Z. Zhao S. Xue J. Zhao X.Y. Cao W. Yin Yang 1-induced long noncoding RNA DUXAP9 drives the progression of oral squamous cell carcinoma by blocking cdk1-mediated ezh2 degradation. Adv. Sci. 2023 10 25 2207549 10.1002/advs.202207549 37401236
    [Google Scholar]
  13. Xu L. Wei B. Hui H. Sun Y. Liu Y. Yu X. Dai J. Positive feedback loop of lncRNA LINC01296/miR-598/Twist1 promotes non-small cell lung cancer tumorigenesis. J. Cell. Physiol. 2019 234 4 4563 4571 10.1002/jcp.27235 30240003
    [Google Scholar]
  14. Tan L. Tang Y. Li H. Li P. Ye Y. Cen J. Gui C. Luo J. Cao J. Wei J. N6-methyladenosine modification of lncrna duxap9 promotes renal cancer cells proliferation and motility by activating the pi3k/akt signaling pathway. Front. Oncol. 2021 11 641833 10.3389/fonc.2021.641833 34168980
    [Google Scholar]
  15. Liu M. Zhang S. Zhou H. Hu X. Li J. Fu B. Wei M. Huang H. Wu H. The interplay between non-coding RNAs and alternative splicing: from regulatory mechanism to therapeutic implications in cancer. Theranostics 2023 13 8 2616 2631 10.7150/thno.83920 37215575
    [Google Scholar]
  16. Booth H.A.F. Holland P.W.H. Annotation, nomenclature and evolution of four novel homeobox genes expressed in the human germ line. Gene 2007 387 1-2 7 14 10.1016/j.gene.2006.07.034 17005330
    [Google Scholar]
  17. Abate-Shen C. Deregulated homeobox gene expression in cancer: Cause or consequence? Nat. Rev. Cancer 2002 2 10 777 785 10.1038/nrc907 12360280
    [Google Scholar]
  18. Kumar S. Kumar V. Li W. Kim J. Ventx family and its functional similarities with nanog: Involvement in embryonic development and cancer progression. Int. J. Mol. Sci. 2022 23 5 2741 10.3390/ijms23052741 35269883
    [Google Scholar]
  19. Qiu J. Yan J. Long non-coding RNA LINC01296 is a potential prognostic biomarker in patients with colorectal cancer. Tumour Biol. 2015 36 9 7175 7183 10.1007/s13277‑015‑3448‑5 25894381
    [Google Scholar]
  20. Lonsdale J. Thomas J. Salvatore M. Phillips R. Lo E. Shad S. Hasz R. Walters G. Garcia F. Young N. Foster B. Moser M. Karasik E. Gillard B. Ramsey K. Sullivan S. Bridge J. Magazine H. Syron J. Fleming J. Siminoff L. Traino H. Mosavel M. Barker L. Jewell S. Rohrer D. Maxim D. Filkins D. Harbach P. Cortadillo E. Berghuis B. Turner L. Hudson E. Feenstra K. Sobin L. Robb J. Branton P. Korzeniewski G. Shive C. Tabor D. Qi L. Groch K. Nampally S. Buia S. Zimmerman A. Smith A. Burges R. Robinson K. Valentino K. Bradbury D. Cosentino M. Diaz-Mayoral N. Kennedy M. Engel T. Williams P. Erickson K. Ardlie K. Winckler W. Getz G. DeLuca D. MacArthur D. Kellis M. Thomson A. Young T. Gelfand E. Donovan M. Meng Y. Grant G. Mash D. Marcus Y. Basile M. Liu J. Zhu J. Tu Z. Cox N.J. Nicolae D.L. Gamazon E.R. Im H.K. Konkashbaev A. Pritchard J. Stevens M. Flutre T. Wen X. Dermitzakis E.T. Lappalainen T. Guigo R. Monlong J. Sammeth M. Koller D. Battle A. Mostafavi S. McCarthy M. Rivas M. Maller J. Rusyn I. Nobel A. Wright F. Shabalin A. Feolo M. Sharopova N. Sturcke A. Paschal J. Anderson J.M. Wilder E.L. Derr L.K. Green E.D. Struewing J.P. Temple G. Volpi S. Boyer J.T. Thomson E.J. Guyer M.S. Ng C. Abdallah A. Colantuoni D. Insel T.R. Koester S.E. Little A.R. Bender P.K. Lehner T. Yao Y. Compton C.C. Vaught J.B. Sawyer S. Lockhart N.C. Demchok J. Moore H.F. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013 45 6 580 585 10.1038/ng.2653 23715323
    [Google Scholar]
  21. Tang Z. Kang B. Li C. Chen T. Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 47 W1 W556 W560 10.1093/nar/gkz430 31114875
    [Google Scholar]
  22. Rumpold H. Niedersüß-Beke D. Heiler C. Falch D. Wundsam H.V. Metz-Gercek S. Piringer G. Thaler J. Prediction of mortality in metastatic colorectal cancer in a real-life population: a multicenter explorative analysis. BMC Cancer 2020 20 1 1149 10.1186/s12885‑020‑07656‑w 33238958
    [Google Scholar]
  23. Shin A.E. Giancotti F.G. Rustgi A.K. Metastatic colorectal cancer: Mechanisms and emerging therapeutics. Trends Pharmacol. Sci. 2023 44 4 222 236 10.1016/j.tips.2023.01.003 36828759
    [Google Scholar]
  24. Yuan Z. Yu X. Ni B. Chen D. Yang Z. Huang J. Wang J. Chen D. Wang L. Overexpression of long non-coding RNA-CTD903 inhibits colorectal cancer invasion and migration by repressing Wnt/β-catenin signaling and predicts favorable prognosis. Int. J. Oncol. 2016 48 6 2675 2685 10.3892/ijo.2016.3447 27035092
    [Google Scholar]
  25. Liu B. Pan S. Xiao Y. Liu Q. Xu J. Jia L. LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway. J. Exp. Clin. Cancer Res. 2018 37 1 316 10.1186/s13046‑018‑0994‑x 30547804
    [Google Scholar]
  26. Xu J. Zhang Z. Shen D. Zhang T. Zhang J. De W. Long noncoding RNA LINC01296 plays an oncogenic role in colorectal cancer by suppressing p15 expression. J. Int. Med. Res. 2021 49 5 03000605211004414 10.1177/03000605211004414 33983053
    [Google Scholar]
  27. Vodenkova S. Buchler T. Cervena K. Veskrnova V. Vodicka P. Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther. 2020 206 107447 10.1016/j.pharmthera.2019.107447 31756363
    [Google Scholar]
  28. Topaz O. Shurman D.L. Bergman R. Indelman M. Ratajczak P. Mizrachi M. Khamaysi Z. Behar D. Petronius D. Friedman V. Zelikovic I. Raimer S. Metzker A. Richard G. Sprecher E. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat. Genet. 2004 36 6 579 581 10.1038/ng1358 15133511
    [Google Scholar]
  29. Kaur P. Shankar E. Gupta S. EZH2-mediated development of therapeutic resistance in cancer. Cancer Lett. 2024 586 216706 10.1016/j.canlet.2024.216706 38331087
    [Google Scholar]
  30. Krimpenfort P. IJpenberg A. Song J.Y. van der Valk M. Nawijn M. Zevenhoven J. Berns A. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 2007 448 7156 943 946 10.1038/nature06084 17713536
    [Google Scholar]
  31. Johnson D.E. Burtness B. Leemans C.R. Lui V.W.Y. Bauman J.E. Grandis J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020 6 1 92 10.1038/s41572‑020‑00224‑3 33243986
    [Google Scholar]
  32. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  33. Wu J. Chen H. Li J. Li X. Cao J. Qi M. Long non-coding RNA LINC01296 acts as a migration and invasion promoter in head and neck squamous cell carcinoma and predicts poor prognosis. Bioengineered 2021 12 1 5607 5619 10.1080/21655979.2021.1967033 34515611
    [Google Scholar]
  34. Zhao X. Leng D. Wang H. Jin H. Wu Y. Qin Z. Wu D. Wei X. An acid-responsive iron-based nanocomposite for OSCC treatment. J. Dent. Res. 2024 103 6 612 621 10.1177/00220345241238154 38684484
    [Google Scholar]
  35. Feng L. Houck J.R. Lohavanichbutr P. Chen C. Transcriptome analysis reveals differentially expressed lncRNAs between oral squamous cell carcinoma and healthy oral mucosa. Oncotarget 2017 8 19 31521 31531 10.18632/oncotarget.16358 28415559
    [Google Scholar]
  36. Zhang S. Wang X. Wang D. Long non-coding RNA LINC01296 promotes progression of oral squamous cell carcinoma through activating the MAPK/ERK signaling pathway via the miR-485-5p/PAK4 axis. Arch. Med. Sci. 2019 18 3 786 799 10.5114/aoms.2019.86805 35591837
    [Google Scholar]
  37. Zhang Y. Wang A. Zhang X. Wang X. Zhang J. Ma J. lncRNA LINC01296 promotes oral squamous cell carcinoma development by binding with SRSF1. BioMed Res. Int. 2021 2021 1 6661520 10.1155/2021/6661520 34195277
    [Google Scholar]
  38. Yang K. Li L. Chen Y. Man S. Yang L. Yang Y. Hei N. Zhao J. The role of long non-coding RNA LINC01296 in oral squamous cell carcinoma: A study based on bioinformatics analysis and in vitro validation. J. Cancer 2022 13 3 775 783 10.7150/jca.60417 35154446
    [Google Scholar]
  39. Liang K.Y. Chun-Yu Ho D. Yang H.P. Hsieh P.L. Fang C.Y. Tsai L.L. Chao S.C. Liu C.M. Yu C.C. LINC01296 promotes cancer stemness traits in oral carcinomas by sponging miR-143. J. Dent. Sci. 2023 18 2 814 821 10.1016/j.jds.2023.01.008 37021272
    [Google Scholar]
  40. Yuan Y. Zhang H. Li D. Li Y. Lin F. Wang Y. Song H. Liu X. Li F. Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett. 2022 545 215813 10.1016/j.canlet.2022.215813 35798086
    [Google Scholar]
  41. Lei C. Du F. Sun L. Li T. Li T. Min Y. Nie A. Wang X. Geng L. Lu Y. Zhao X. Shi Y. Fan D. miR-143 and miR-145 inhibit gastric cancer cell migration and metastasis by suppressing MYO6. Cell Death Dis. 2017 8 10 e3101 10.1038/cddis.2017.493 29022908
    [Google Scholar]
  42. Bufalino A. Cervigne N.K. de Oliveira C.E. Fonseca F.P. Rodrigues P.C. Macedo C.C.S. Sobral L.M. Miguel M.C. Lopes M.A. Leme A.F.P. Lambert D.W. Salo T.A. Kowalski L.P. Graner E. Coletta R.D. Low miR-143/miR-145 cluster levels induce activin a overexpression in oral squamous cell carcinomas, which contributes to poor prognosis. PLoS One 2015 10 8 e0136599 10.1371/journal.pone.0136599 26317418
    [Google Scholar]
  43. Wojtyś W. Oroń M. How driver oncogenes shape and are shaped by alternative splicing mechanisms in tumors. Cancers 2023 15 11 2918 10.3390/cancers15112918 37296881
    [Google Scholar]
  44. An L. Li M. Jia Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol. Cancer 2023 22 1 140 10.1186/s12943‑023‑01839‑2 37598158
    [Google Scholar]
  45. Wang L. Meng D. Wang Y. Hu J. Long non-coding RNA LINC01296 promotes esophageal squamous cell carcinoma cell proliferation and invasion by epigenetic suppression of KLF2. Am. J. Cancer Res. 2018 8 10 2020 2029 30416853
    [Google Scholar]
  46. Wang B. Liang T. Li J. Long noncoding RNA LINC01296 is associated with poor prognosis in ESCC and promotes ESCC cell proliferation, migration and invasion. Eur. Rev. Med. Pharmacol. Sci. 2018 22 14 4524 4531 30058683
    [Google Scholar]
  47. Taghehchian N. Maharati A. Akhlaghipour I. Zangouei A.S. Moghbeli M. PRC2 mediated KLF2 down regulation: A therapeutic and diagnostic axis during tumor progression. Cancer Cell Int. 2023 23 1 233 10.1186/s12935‑023‑03086‑3 37807067
    [Google Scholar]
  48. Liu J. Yuan Q. Guo H. Guan H. Hong Z. Shang D. Deciphering drug resistance in gastric cancer: Potential mechanisms and future perspectives. Biomed. Pharmacother. 2024 173 116310 10.1016/j.biopha.2024.116310 38394851
    [Google Scholar]
  49. Qin Q.H. Yin Z.Q. Li Y. Wang B.G. Zhang M.F. Long intergenic noncoding RNA 01296 aggravates gastric cancer cells progress through miR-122/MMP-9. Biomed. Pharmacother. 2018 97 450 457 10.1016/j.biopha.2017.10.066 29091895
    [Google Scholar]
  50. Mondal S. Adhikari N. Banerjee S. Amin S.A. Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020 194 112260 10.1016/j.ejmech.2020.112260 32224379
    [Google Scholar]
  51. Wei H. Ren H. Precision treatment of pancreatic ductal adenocarcinoma. Cancer Lett. 2024 585 216636 10.1016/j.canlet.2024.216636 38278471
    [Google Scholar]
  52. Yuan Q. Zhang Y. Feng L. Jiang Y. Upregulated long noncoding RNA LINC01296 indicates a dismal prognosis for pancreatic ductal adenocarcinoma and promotes cell metastatic properties by affecting EMT. J. Cell. Biochem. 2019 120 1 552 561 10.1002/jcb.27411 30203487
    [Google Scholar]
  53. Yang X. Yang C. Zhang S. Geng H. Zhu A.X. Bernards R. Qin W. Fan J. Wang C. Gao Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024 42 2 180 197 10.1016/j.ccell.2024.01.007 38350421
    [Google Scholar]
  54. Zhu Q. Liu J. Tang J. Guo D.L. Li Y. Duan R. Overexpression of long non-coding RNAs DUXAP9 and DUXAP10 is associated with prognosis in patients with hepatocellular carcinoma after hepatectomy. Int. J. Clin. Exp. Pathol. 2018 11 3 1407 1414 31938237
    [Google Scholar]
  55. Wan Y. Li M. Huang P. LINC01296 promotes proliferation, migration, and invasion of HCC cells by targeting miR-122-5P and modulating EMT activity. OncoTargets Ther. 2019 12 2193 2203 10.2147/OTT.S197338 30988624
    [Google Scholar]
  56. Zhang L. Hu J. Hao M. Bu L. Long noncoding RNA Linc01296 promotes hepatocellular carcinoma development through regulation of the miR-26a/PTEN axis. Biol. Chem. 2020 401 3 407 416 10.1515/hsz‑2019‑0231 31318685
    [Google Scholar]
  57. Álvarez-Garcia V. Tawil Y. Wise H.M. Leslie N.R. Mechanisms of PTEN loss in cancer: It’s all about diversity. Semin. Cancer Biol. 2019 59 66 79 10.1016/j.semcancer.2019.02.001 30738865
    [Google Scholar]
  58. Zeitels L.R. Acharya A. Shi G. Chivukula D. Chivukula R.R. Anandam J.L. Abdelnaby A.A. Balch G.C. Mansour J.C. Yopp A.C. Richardson J.A. Mendell J.T. Tumor suppression by miR-26 overrides potential oncogenic activity in intestinal tumorigenesis. Genes Dev. 2014 28 23 2585 2590 10.1101/gad.250951.114 25395662
    [Google Scholar]
  59. Zeng X. Hu Z. Ke X. Tang H. Wu B. Wei X. Liu Z. Long noncoding RNA DLX6-AS1 promotes renal cell carcinoma progression via miR-26a/PTEN axis. Cell Cycle 2017 16 22 2212 2219 10.1080/15384101.2017.1361072 28881158
    [Google Scholar]
  60. Li J. An G. Zhang M. Ma Q. Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells. Biochem. Biophys. Res. Commun. 2016 477 4 743 748 10.1016/j.bbrc.2016.06.129 27363339
    [Google Scholar]
  61. Saw P.E. Liu Q. Wong P.P. Song E. Cancer stem cell mimicry for immune evasion and therapeutic resistance. Cell Stem Cell 2024 31 8 1101 1112 10.1016/j.stem.2024.06.003 38925125
    [Google Scholar]
  62. Xia S. Pan Y. Liang Y. Xu J. Cai X. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine 2020 51 102610 10.1016/j.ebiom.2019.102610 31918403
    [Google Scholar]
  63. Zeng R. Wang C. Wang W. Wang S. Long non-coding RNA DUXAP9 promotes hepatocellular carcinoma cell stemness via directly interacting with sox9. Environ. Toxicol. 2021 36 9 1793 1801 10.1002/tox.23300 34086387
    [Google Scholar]
  64. Panda M. Tripathi S.K. Biswal B.K. SOX9: An emerging driving factor from cancer progression to drug resistance. Biochim. Biophys. Acta Rev. Cancer 2021 1875 2 188517 10.1016/j.bbcan.2021.188517 33524528
    [Google Scholar]
  65. Cantallops Vilà P. Ravichandra A. Agirre Lizaso A. Perugorria M.J. Affò S. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology 2024 79 4 941 958 37018128
    [Google Scholar]
  66. Zhang D. Li H. Xie J. Jiang D. Cao L. Yang X. Xue P. Jiang X. Long noncoding RNA LINC01296 promotes tumor growth and progression by sponging miR-5095 in human cholangiocarcinoma. Int. J. Oncol. 2018 52 6 1777 1786 10.3892/ijo.2018.4362 29620172
    [Google Scholar]
  67. Nishio Y. Kato K. Oishi H. Takahashi Y. Saitoh S. MYCN in human development and diseases. Front. Oncol. 2024 14 1417607 10.3389/fonc.2024.1417607 38884091
    [Google Scholar]
  68. Kennedy P.T. Zannoupa D. Son M.H. Dahal L.N. Woolley J.F. Neuroblastoma: An ongoing cold front for cancer immunotherapy. J. Immunother. Cancer 2023 11 11 e007798 10.1136/jitc‑2023‑007798 37993280
    [Google Scholar]
  69. Wang J. Wang Z. Yao W. Dong K. Zheng S. Li K. The association between lncRNA LINC01296 and the clinical characteristics in neuroblastoma. J. Pediatr. Surg. 2019 54 12 2589 2594 10.1016/j.jpedsurg.2019.08.032 31522796
    [Google Scholar]
  70. Wang J. Wang Z. Lin W. Han Q. Yan H. Yao W. Dong R. Jia D. Dong K. Li K. LINC01296 promotes neuroblastoma tumorigenesis via the NCL-SOX11 regulatory complex. Mol. Ther. Oncolytics 2022 24 834 848 10.1016/j.omto.2022.02.007 35317520
    [Google Scholar]
  71. Thongchot S. Aksonnam K. Thuwajit P. Yenchitsomanus P.T. Thuwajit C. Nucleolin‑based targeting strategies in cancer treatment: Focus on cancer immunotherapy (Review). Int. J. Mol. Med. 2023 52 3 81 10.3892/ijmm.2023.5284 37477132
    [Google Scholar]
  72. Tsang S.M. Oliemuller E. Howard B.A. Regulatory roles for SOX11 in development, stem cells and cancer. Semin. Cancer Biol. 2020 67 Pt 1 3 11 10.1016/j.semcancer.2020.06.015 32574812
    [Google Scholar]
  73. Xiao H. Li Y. Zhang Y. Wang P. Long noncoding RNA LINC01296 regulates the cell proliferation, migration and invasion in neuroblastoma. Metab. Brain Dis. 2022 37 4 1247 1258 10.1007/s11011‑022‑00935‑4 35305236
    [Google Scholar]
  74. Chiang D.C. Yap B.K. TRIM25, TRIM28 and TRIM59 and their protein partners in cancer signaling crosstalk: Potential novel therapeutic targets for cancer. Curr. Issues Mol. Biol. 2024 46 10 10745 10761 10.3390/cimb46100638 39451518
    [Google Scholar]
  75. Nagano T. Tachihara M. Nishimura Y. Molecular mechanisms and targeted therapies including immunotherapy for non-small cell lung cancer. Curr. Cancer Drug Targets 2019 19 8 595 630 10.2174/1568009619666181210114559 30526458
    [Google Scholar]
  76. Zhu T. An S. Choy M.T. Zhou J. Wu S. Liu S. Liu B. Yao Z. Zhu X. Wu J. He Z. LncRNA DUXAP9-206 directly binds with Cbl-b to augment EGFR signaling and promotes non-small cell lung cancer progression. J. Cell. Mol. Med. 2019 23 3 1852 1864 10.1111/jcmm.14085 30515972
    [Google Scholar]
  77. Hu X. Duan L. Liu H. Zhang L. Long noncoding RNA LINC01296 induces non-small cell lung cancer growth and progression through sponging miR-5095. Am. J. Transl. Res. 2019 11 2 895 903 30899389
    [Google Scholar]
  78. Sun Z. Shao B. Liu Z. Dang Q. Guo Y. Chen C. Guo Y. Chen Z. Liu J. Hu S. Yuan W. Zhou Q. LINC01296/miR-141-3p/ZEB1-ZEB2 axis promotes tumor metastasis via enhancing epithelial-mesenchymal transition process. J. Cancer 2021 12 9 2723 2734 10.7150/jca.55626 33854632
    [Google Scholar]
  79. Li Y. Zhang H. Guo J. Li W. Wang X. Zhang C. Sun Q. Ma Z. Downregulation of LINC01296 suppresses non-small-cell lung cancer via targeting miR-143-3p/ATG2B. Acta Biochim. Biophys. Sin. 2021 53 12 1681 1690 10.1093/abbs/gmab149 34695177
    [Google Scholar]
  80. Zhu L. Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 2019 24 1 40 10.1186/s11658‑019‑0164‑y 31223315
    [Google Scholar]
  81. Augustin R.C. Bao R. Luke J.J. Targeting Cbl-b in cancer immunotherapy. J. Immunother. Cancer 2023 11 2 e006007 10.1136/jitc‑2022‑006007 36750253
    [Google Scholar]
  82. Chen Y.W. Wang L. Panian J. Dhanji S. Derweesh I. Rose B. Bagrodia A. McKay R.R. Treatment landscape of renal cell carcinoma. Curr. Treat. Options Oncol. 2023 24 12 1889 1916 10.1007/s11864‑023‑01161‑5 38153686
    [Google Scholar]
  83. Chen J. Lou W. Ding B. Wang X. Overexpressed pseudogenes, DUXAP8 and DUXAP9, promote growth of renal cell carcinoma and serve as unfavorable prognostic biomarkers. Aging 2019 11 15 5666 5688 10.18632/aging.102152 31409759
    [Google Scholar]
  84. Haruehanroengra P. Zheng Y.Y. Zhou Y. Huang Y. Sheng J. RNA modifications and cancer. RNA Biol. 2020 17 11 1560 1575 10.1080/15476286.2020.1722449 31994439
    [Google Scholar]
  85. Li F. Zheng Z. Chen W. Li D. Zhang H. Zhu Y. Mo Q. Zhao X. Fan Q. Deng F. Han C. Tan W. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist. Updat. 2023 68 100938 10.1016/j.drup.2023.100938 36774746
    [Google Scholar]
  86. Seitz A.K. Christensen L.L. Christensen E. Faarkrog K. Ostenfeld M.S. Hedegaard J. Nordentoft I. Nielsen M.M. Palmfeldt J. Thomson M. Jensen M.T.S. Nawroth R. Maurer T. Ørntoft T.F. Jensen J.B. Damgaard C.K. Dyrskjøt L. Profiling of long non-coding RNAs identifies LINC00958 and LINC01296 as candidate oncogenes in bladder cancer. Sci. Rep. 2017 7 1 395 10.1038/s41598‑017‑00327‑0 28341852
    [Google Scholar]
  87. Wang X. Wang L. Gong Y. Liu Z. Qin Y. Chen J. Li N. Long noncoding RNA LINC01296 promotes cancer-cell proliferation and metastasis in urothelial carcinoma of the bladder. OncoTargets Ther. 2018 12 75 85 10.2147/OTT.S192809 30588032
    [Google Scholar]
  88. Xiang X. Wang J. Lu D. Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct. Target. Ther. 2021 6 1 75 10.1038/s41392‑021‑00484‑9 33619259
    [Google Scholar]
  89. Chen C. He W. Huang J. Wang B. Li H. Cai Q. Su F. Bi J. Liu H. Zhang B. Jiang N. Zhong G. Zhao Y. Dong W. Lin T. LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat. Commun. 2018 9 1 3826 10.1038/s41467‑018‑06152‑x 30237493
    [Google Scholar]
  90. Gu J. Chen Z. Chen X. Wang Z. Heterogeneous nuclear ribonucleoprotein (hnRNPL) in cancer. Clin. Chim. Acta 2020 507 286 294 10.1016/j.cca.2020.04.040 32376323
    [Google Scholar]
  91. Skotheim R.I. Bogaard M. Carm K.T. Axcrona U. Axcrona K. Prostate cancer: Molecular aspects, consequences, and opportunities of the multifocal nature. Biochim. Biophys. Acta Rev. Cancer 2024 1879 2 189080 10.1016/j.bbcan.2024.189080 38272101
    [Google Scholar]
  92. Wu J. Cheng G. Zhang C. Zheng Y. Xu H. Yang H. Hua L. Long noncoding RNA LINC01296 is associated with poor prognosis in prostate cancer and promotes cancer-cell proliferation and metastasis. OncoTargets Ther. 2017 10 1843 1852 10.2147/OTT.S129928 28392705
    [Google Scholar]
  93. Cavalluzzi M.M. Viale M. Rotondo N.P. Ferraro V. Lentini G. Drug repositioning for ovarian cancer treatment: An update. Anticancer. Agents Med. Chem. 2024 24 8 637 647 10.2174/0118715206282904240122063914 38367265
    [Google Scholar]
  94. Xu H. Zheng J.F. Hou C.Z. Li Y. Liu P.S. Up-regulation of long intergenic noncoding RNA 01296 in ovarian cancer impacts invasion, apoptosis and cell cycle distribution via regulating EMT. Cell. Signal. 2019 62 109341 10.1016/j.cellsig.2019.06.006 31176022
    [Google Scholar]
  95. Xu H. Mao H.L. Zhao X.R. Li Y. Liu P.S. MiR-29c-3p, a target miRNA of LINC01296, accelerates tumor malignancy: therapeutic potential of a LINC01296/miR-29c-3p axis in ovarian cancer. J. Ovarian Res. 2020 13 1 31 10.1186/s13048‑020‑00631‑w 32192508
    [Google Scholar]
  96. Jiang M. Xiao Y. Liu D. Luo N. Gao Q. Guan Y. Overexpression of long noncoding RNA LINC01296 indicates an unfavorable prognosis and promotes tumorigenesis in breast cancer. Gene 2018 675 217 224 10.1016/j.gene.2018.07.004 29981416
    [Google Scholar]
  97. Yu X. Pang L. Yang T. Liu P. lncRNA LINC01296 regulates the proliferation, metastasis and cell cycle of osteosarcoma through cyclin�D1. Oncol. Rep. 2018 40 5 2507 2514 10.3892/or.2018.6674 30226542
    [Google Scholar]
  98. Mou K. Zhang X. Mu X. Ge R. Han D. Zhou Y. Wang L. LNMAT1 promotes invasion-metastasis cascade in malignant melanoma by epigenetically suppressing CADM1 expression. Front. Oncol. 2019 9 569 10.3389/fonc.2019.00569 31334110
    [Google Scholar]
  99. Wang K. Luo Q. Zhang Y. Xie X. Cheng W. Yao Q. Chen Y. Ren H. Li J. Pan Z. LINC01296 promotes proliferation of cutaneous malignant melanoma by regulating miR-324-3p/MAPK1 axis. Aging 2022 15 8 2877 2890 10.18632/aging.204413 36462499
    [Google Scholar]
  100. Sawada Y. Mashima E. Saito-Sasaki N. Nakamura M. The role of cell adhesion molecule 1 (CADM1) in cutaneous malignancies. Int. J. Mol. Sci. 2020 21 24 9732 10.3390/ijms21249732 33419290
    [Google Scholar]
  101. Lavoie H. Gagnon J. Therrien M. ERK signalling: A master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 2020 21 10 607 632 10.1038/s41580‑020‑0255‑7 32576977
    [Google Scholar]
  102. Zhang X. Xu X. Song J. Xu Y. Qian H. Jin J. Liang Z. Non-coding RNAs’ function in cancer development, diagnosis and therapy. Biomed. Pharmacother. 2023 167 115527 10.1016/j.biopha.2023.115527 37751642
    [Google Scholar]
  103. Shimada H. Noie T. Ohashi M. Oba K. Takahashi Y. Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the Task Force of the Japanese Gastric Cancer Association. Gastric Cancer 2014 17 1 26 33 10.1007/s10120‑013‑0259‑5 23572188
    [Google Scholar]
  104. Guo T. Tang X.H. Gao X.Y. Zhou Y. Jin B. Deng Z.Q. Hu Y. Xing X.F. Li Z.Y. Ji J.F. A liquid biopsy signature of circulating exosome-derived mRNAs, miRNAs and lncRNAs predict therapeutic efficacy to neoadjuvant chemotherapy in patients with advanced gastric cancer. Mol. Cancer 2022 21 1 216 10.1186/s12943‑022‑01684‑9 36510184
    [Google Scholar]
  105. Guo X. Peng Y. Song Q. Wei J. Wang X. Ru Y. Xu S. Cheng X. Li X. Wu D. Chen L. Wei B. Lv X. Ji G. A liquid biopsy signature for the early detection of gastric cancer in patients. Gastroenterology 2023 165 2 402 413.e13 10.1053/j.gastro.2023.02.044 36894035
    [Google Scholar]
  106. Rezaee D. Saadatpour F. Akbari N. Zoghi A. Najafi S. Beyranvand P. Zamani-Rarani F. Rashidi M.A. Bagheri-Mohammadi S. Bakhtiari M. The role of microRNAs in the pathophysiology of human central nervous system: A focus on neurodegenerative diseases. Ageing Res. Rev. 2023 92 102090 10.1016/j.arr.2023.102090 37832609
    [Google Scholar]
  107. Zhang Q. Wu S. Tertiary lymphoid structures are critical for cancer prognosis and therapeutic response. Front. Immunol. 2023 13 1063711 10.3389/fimmu.2022.1063711 36713409
    [Google Scholar]
  108. Cheng C. Wang Q. Zhu M. Liu K. Zhang Z. Integrated analysis reveals potential long non-coding RNA biomarkers and their potential biological functions for disease free survival in gastric cancer patients. Cancer Cell Int. 2019 19 1 123 10.1186/s12935‑019‑0846‑6 31080364
    [Google Scholar]
  109. Liu W. Li Y. Zhang Y. Shen X. Su Z. Chen L. Cai W. Wang F. Ju S. Circulatinglong non-coding RNA FEZF1-AS1 and AFAP1-AS1 serve as potential diagnostic biomarkers for gastric cancer. Pathol. Res. Pract. 2020 216 1 152757 10.1016/j.prp.2019.152757 31785996
    [Google Scholar]
  110. Lia T. Shao Y. Regmi P. Li X. Development and validation of pyroptosis-related lncRNAs prediction model for bladder cancer. Biosci. Rep. 2022 42 1 BSR20212253 10.1042/BSR20212253 35024796
    [Google Scholar]
  111. Tan H. Zhang S. Zhang J. Zhu L. Chen Y. Yang H. Chen Y. An Y. Liu B. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Theranostics 2020 10 19 8880 8902 10.7150/thno.47548 32754285
    [Google Scholar]
  112. Hosseini S.A. Haddadi M.H. Fathizadeh H. Nemati F. Aznaveh H.M. Taraj F. Aghabozorgizadeh A. Gandomkar G. Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed. Pharmacother. 2023 163 114407 10.1016/j.biopha.2023.114407 37100014
    [Google Scholar]
  113. Rao D.D. Vorhies J.S. Senzer N. Nemunaitis J. siRNA vs. shRNA: Similarities and differences. Adv. Drug Deliv. Rev. 2009 61 9 746 759 10.1016/j.addr.2009.04.004 19389436
    [Google Scholar]
  114. Bennett C.F. Swayze E.E. RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 2010 50 1 259 293 10.1146/annurev.pharmtox.010909.105654 20055705
    [Google Scholar]
  115. Lennox K.A. Behlke M.A. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res. 2016 44 2 863 877 10.1093/nar/gkv1206 26578588
    [Google Scholar]
  116. Wiedenheft B. Sternberg S.H. Doudna J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012 482 7385 331 338 10.1038/nature10886 22337052
    [Google Scholar]
  117. Bassett A.R. Akhtar A. Barlow D.P. Bird A.P. Brockdorff N. Duboule D. Ephrussi A. Ferguson-Smith A.C. Gingeras T.R. Haerty W. Higgs D.R. Miska E.A. Ponting C.P. Considerations when investigating lncRNA function in vivo. eLife 2014 3 e03058 10.7554/eLife.03058 25124674
    [Google Scholar]
  118. Li Z. Gao Y. Li L. Xie S. Curcumin inhibits papillary thyroid cancer cell proliferation by regulating lncRNA LINC00691. Anal. Cell. Pathol. 2022 2022 1 10 10.1155/2022/5946670 35256924
    [Google Scholar]
  119. Pedram Fatemi R. Salah-Uddin S. Modarresi F. Khoury N. Wahlestedt C. Faghihi M.A. Screening for small-molecule modulators of long noncoding rna-protein interactions using alphascreen. SLAS Discov. 2015 20 9 1132 1141 10.1177/1087057115594187 26173710
    [Google Scholar]
  120. Mishra S. Verma S.S. Rai V. Awasthee N. Chava S. Hui K.M. Kumar A.P. Challagundla K.B. Sethi G. Gupta S.C. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell. Mol. Life Sci. 2019 76 10 1947 1966 10.1007/s00018‑019‑03053‑0 30879091
    [Google Scholar]
  121. Chen Y. Li Z. Chen X. Zhang S. Long non-coding RNAs: From disease code to drug role. Acta Pharm. Sin. B 2021 11 2 340 354 10.1016/j.apsb.2020.10.001 33643816
    [Google Scholar]
  122. Davodabadi F. Sajjadi S.F. Sarhadi M. Mirghasemi S. Nadali Hezaveh M. Khosravi S. Kamali Andani M. Cordani M. Basiri M. Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur. J. Pharmacol. 2023 958 176013 10.1016/j.ejphar.2023.176013 37633322
    [Google Scholar]
  123. Tabasi M. Maghami P. Amiri-Tehranizadeh Z. Reza Saberi M. Chamani J. New perspective of the ternary complex of nano-curcumin with β-lactoglobulin in the presence of α-lactalbumin: Spectroscopic and molecular dynamic investigations. J. Mol. Liq. 2023 392 123472 10.1016/j.molliq.2023.123472
    [Google Scholar]
  124. Jiang H. Shi X. Ye G. Xu Y. Xu J. Lu J. Lu W. Up-regulated long non-coding RNA DUXAP8 promotes cell growth through repressing Krüppel-like factor 2 expression in human hepatocellular carcinoma. OncoTargets Ther. 2019 12 7429 7436 10.2147/OTT.S214336 31571902
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501400842250903112123
Loading
/content/journals/cdt/10.2174/0113894501400842250903112123
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: LncRNA ; DUXAP9 ; Cancer ; molecular mechanism ; clinical application ; LINC01296
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test