Skip to content
2000
Volume 26, Issue 15
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Introduction

Metabolic disorders are major global health concerns with increasing prevalence worldwide. Experimental evidence suggests the role of tachykinins and their receptors in metabolic regulation, neuroendocrine control, and inflammatory responses. This review aims to explore the implications of tachykinin receptors and their antagonists in the management of metabolic disorders.

Methods

A comprehensive literature search was performed across major scientific databases to identify and analyze preclinical and clinical studies on tachykinin receptors and their antagonists in the context of metabolic disorders. The key mechanisms of action of drugs, important therapeutic outcomes, and challenges associated with drug development were covered.

Results

The reported experimental and clinical studies suggest that the antagonists of NK1R, NK2R, and NK3R could influence glucose metabolism, lipid homeostasis, and appetite regulation. While NK1R antagonists, such as aprepitant, demonstrated anti-inflammatory and neuroprotective effects, NK3R antagonists, including fezolinetant, showed promise in modulating energy balance and thermoregulation.

Discussion

These studies emphasized the emerging potential of tachykinin receptors and their antagonists in the management of metabolic dysfunctions. However, the challenges associated with its clinical translation, including receptor redundancy, limited biomarker-based patient stratification, and variations in receptor expression across species, are still relevant and need to be addressed to improve therapeutic outcomes.

Conclusion

Tachykinin receptor antagonists hold significant potential as therapeutic agents in the management of metabolic disorders. Further studies are warranted to overcome translational barriers, address safety issues, validate biomarkers, and refine receptor selectivity to achieve maximum therapeutic benefits.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501399586250903081350
2025-09-11
2026-01-28
Loading full text...

Full text loading...

References

  1. PillonN.J. LoosR.J.F. MarshallS.M. ZierathJ.R. Metabolic consequences of obesity and type 2 diabetes: Balancing genes and environment for personalized care.Cell202118461530154410.1016/j.cell.2021.02.01233675692
    [Google Scholar]
  2. LinX. LiH. Obesity: Epidemiology, pathophysiology, and therapeutics.Front. Endocrinol. (Lausanne)20211270697810.3389/fendo.2021.70697834552557
    [Google Scholar]
  3. SteinhoffM.S. von MentzerB. GeppettiP. PothoulakisC. BunnettN.W. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease.Physiol. Rev.201494126530110.1152/physrev.00031.201324382888
    [Google Scholar]
  4. GaudreauG.A. PlourdeV. Role of tachykinin NK1, NK2 and NK3 receptors in the modulation of visceral hypersensitivity in the rat.Neurosci. Lett.20033512596210.1016/S0304‑3940(03)00414‑214583381
    [Google Scholar]
  5. HaddadA.N. LeyriaJ. LangeA.B. Identification of a tachykinin receptor and its implication in carbohydrate and lipid homeostasis in Rhodnius prolixus, a chagas disease vector.Gen. Comp. Endocrinol.202232011401010.1016/j.ygcen.2022.11401035231487
    [Google Scholar]
  6. KaragiannidesI. TorresD. TsengY.H. BoweC. CarvalhoE. EspinozaD. PothoulakisC. KokkotouE. Substance P as a novel anti-obesity target.Gastroenterology20081343747755.e110.1053/j.gastro.2007.12.03218325388
    [Google Scholar]
  7. NässelD.R. ZandawalaM. KawadaT. SatakeH. Tachykinins: Neuropeptides That are ancient, diverse, widespread and functionally pleiotropic.Front. Neurosci.201913126210.3389/fnins.2019.0126231824255
    [Google Scholar]
  8. MashaghiA. MarmalidouA. TehraniM. GraceP.M. PothoulakisC. DanaR. Neuropeptide substance P and the immune response.Cell. Mol. Life Sci.201673224249426410.1007/s00018‑016‑2293‑z27314883
    [Google Scholar]
  9. HodoT.W. de AquinoM.T.P. ShimamotoA. ShankerA. Critical neurotransmitters in the neuroimmune network.Front. Immunol.202011186910.3389/fimmu.2020.0186932973771
    [Google Scholar]
  10. ZieglgänsbergerW. Substance P and pain chronicity.Cell Tissue Res.2019375122724110.1007/s00441‑018‑2922‑y30284083
    [Google Scholar]
  11. PadmanabanV. KellerI. SeltzerE.S. OstendorfB.N. KernerZ. TavazoieS.F. Neuronal substance P drives metastasis through an extracellular RNA–TLR7 axis.Nature2024633802820721510.1038/s41586‑024‑07767‑539112700
    [Google Scholar]
  12. CampoA. DufourS. RousseauK. Tachykinins, new players in the control of reproduction and food intake: A comparative review in mammals and teleosts.Front. Endocrinol. (Lausanne)202213105693910.3389/fendo.2022.105693936589829
    [Google Scholar]
  13. MadsenJ.J. PetersenJ.E. ChristensenD.P. HansenJ.B. SchwartzT.W. FrimurerT.M. OlsenO.H. Deciphering specificity and cross-reactivity in tachykinin NK1 and NK2 receptors.J. Biol. Chem.20232991210543810.1016/j.jbc.2023.10543837944618
    [Google Scholar]
  14. BuckS.H. BurcherE. ShultsC.W. LovenbergW. O’DonohueT.L. Novel pharmacology of substance K-binding sites: A third type of tachykinin receptor.Science1984226467798798910.1126/science.60954476095447
    [Google Scholar]
  15. DouglasS.D. LeemanS.E. Neurokinin-1 receptor: Functional significance in the immune system in reference to selected infections and inflammation.Ann. N. Y. Acad. Sci.201112171839510.1111/j.1749‑6632.2010.05826.x21091716
    [Google Scholar]
  16. AzizF. Neurokinin-1 receptor antagonists for chemotherapy-induced nausea and vomiting.Ann. Palliat. Med.20121213013610.3978/j.issn.2224‑5820.2012.07.1025841473
    [Google Scholar]
  17. IbrahimM.A. PellegriniM.V. PreussC.V. Antiemetic Neurokinin-1 Receptor Blockers.StatPearls.Treasure Island, FLStatPearls Publishing2025
    [Google Scholar]
  18. AbeM. IiharaH. AogiK. Fosnetupitant for the prevention of chemotherapy-induced nausea and vomiting: A short review and clinical perspective.Adv. Ther.20234051913192510.1007/s12325‑023‑02474‑536884027
    [Google Scholar]
  19. EbnerK. SartoriS. SingewaldN. Tachykinin receptors as therapeutic targets in stress-related disorders.Curr. Pharm. Des.200915141647167410.2174/13816120978816807419442179
    [Google Scholar]
  20. van RheeA.M. JacobsonK.A. Molecular architecture of G protein- coupled receptors.Drug Dev. Res.199637113810.1002/(SICI)1098‑2299(199601)37:1<1::AID‑DDR1>3.0.CO;2‑S21921973
    [Google Scholar]
  21. PatacchiniR. MaggiC.A. Tachykinin receptors and receptor subtypes.Arch. Int. Pharmacodyn. Ther.199532911611847639617
    [Google Scholar]
  22. MishraA. LalG. Neurokinin receptors and their implications in various autoimmune diseases.Curr. Res. Immunol.20212667810.1016/j.crimmu.2021.06.00135492389
    [Google Scholar]
  23. CostaS.K.P. YshiiL.M. PostonR.N. MuscaráM.N. BrainS.D. Pivotal role of endogenous tachykinins and the NK1 receptor in mediating leukocyte accumulation, in the absence of oedema formation, in response to TNFα in the cutaneous microvasculature.J. Neuroimmunol.20061711-29910910.1016/j.jneuroim.2005.09.00616269189
    [Google Scholar]
  24. EvangelistaS. Involvement of tachykinins in intestinal inflammation.Curr. Pharm. Des.200171193010.2174/138161201339844611172699
    [Google Scholar]
  25. GreenS.A. AlonA. IanusJ. McNaughtonK.S. TozziC.A. ReissT.F. Efficacy and safety of a neurokinin-1 receptor antagonist in postmenopausal women with overactive bladder with urge urinary incontinence.J. Urol.200617662535254010.1016/j.juro.2006.08.01817085151
    [Google Scholar]
  26. RenziD. PellegriniB. TonelliF. SurrentiC. CalabròA. Substance P (neurokinin-1) and neurokinin A (neurokinin-2) receptor gene and protein expression in the healthy and inflamed human intestine.Am. J. Pathol.200015751511152210.1016/S0002‑9440(10)64789‑X11073811
    [Google Scholar]
  27. SatheeshkumarP.S. MohanM.P. NK-1 receptor may have a role in perineural invasion in malignant salivary gland.Oral Oncol.2014508e4310.1016/j.oraloncology.2014.04.01424855957
    [Google Scholar]
  28. SchöppeJ. EhrenmannJ. KlenkC. RucktooaP. SchützM. DoréA.S. PlückthunA. Crystal structures of the human neurokinin 1 receptor in complex with clinically used antagonists.Nat. Commun.20191011710.1038/s41467‑018‑07939‑830604743
    [Google Scholar]
  29. Garcia-RecioS. GascónP. Biological and pharmacological aspects of the NK1-receptor.BioMed Res. Int.2015201511410.1155/2015/49570426421291
    [Google Scholar]
  30. MuñozM. PavónA. RossoM. SalinasM.V. PérezA. CarranzaA. González-OrtegaA. Immunolocalization of NK-1 receptor and Substance P in human normal placenta.Placenta201031764965110.1016/j.placenta.2010.03.01520430440
    [Google Scholar]
  31. VignaS.R. Phosphorylation and desensitization of neurokinin-1 receptor expressed in epithelial cells.J. Neurochem.19997351925193210.1046/j.1471‑4159.1999.01925.x10537050
    [Google Scholar]
  32. StaniszA.M. ScicchitanoR. DazinP. BienenstockJ. PayanD.G. Distribution of substance P receptors on murine spleen and Peyer’s patch T and B cells.J. Immunol.1987139374975410.4049/jimmunol.139.3.7492439591
    [Google Scholar]
  33. GruborB. Ramirez-RomeroR. GallupJ.M. BaileyT.B. AckermannM.R. Distribution of substance P receptor (neurokinin-1 receptor) in normal ovine lung and during the progression of bronchopneumonia in sheep.J. Histochem. Cytochem.200452112313010.1177/00221554040520011214688223
    [Google Scholar]
  34. GrahamG.J. StevensJ.M. PageN.M. GrantA.D. BrainS.D. LowryP.J. GibbinsJ.M. Tachykinins regulate the function of platelets.Blood200410441058106510.1182/blood‑2003‑11‑397915130944
    [Google Scholar]
  35. KandaN. WatanabeS. Substance P enhances the production of interferon-induced protein of 10 kDa by human keratinocytes in synergy with interferon-gamma.J. Invest. Dermatol.200211961290129710.1046/j.1523‑1747.2002.19626.x12485430
    [Google Scholar]
  36. MuñozM. CoveñasR. Neurokinin receptor antagonism: A patent review (2014-present). Expert Opin Ther Pat.202030752710.1080/13543776.2020.1769599
    [Google Scholar]
  37. LecciA. CapriatiA. MaggiC.A. Tachykinin NK2 receptor antagonists for the treatment of irritable bowel syndrome.Br. J. Pharmacol.200414181249126310.1038/sj.bjp.070575115037522
    [Google Scholar]
  38. ChandrashekaranI.R. RaoG.S. CowsikS.M. Molecular modeling of the peptide agonist-binding site in a neurokinin-2 receptor.J. Chem. Inf. Model.20094971734174010.1021/ci900055x19534508
    [Google Scholar]
  39. SunW. YuanQ. ZhangH. YangF. LingS. LuoY. LvP. Eric XuH. TianC. YinW. ShiP. Structural insights into the activation of neurokinin 2 receptor by neurokinin A.Cell Discov.2022817210.1038/s41421‑022‑00437‑835882833
    [Google Scholar]
  40. SassF. MaT. EkbergJ.H. KirigitiM. UreñaM.G. DolletL. BrownJ.M. BasseA.L. YacawychW.T. BurmH.B. AndersenM.K. NielsenT.S. TomlinsonA.J. DmytiyevaO. ChristensenD.P. BaderL. VoC.T. WangY. RauschD.M. KristensenC.K. Gestal-MatoM. In het PanhuisW. SjøbergK.A. KernodleS. PetersenJ.E. PavlovskyiA. SandhuM. MoltkeI. JørgensenM.E. AlbrechtsenA. GrarupN. BabuM.M. RensenP.C.N. KooijmanS. SeeleyR.J. WorthmannA. HeerenJ. PersT.H. HansenT. GustafssonM.B.F. Tang-ChristensenM. KilpeläinenT.O. MyersM.G.Jr KievitP. SchwartzT.W. HansenJ.B. Gerhart-HinesZ. NK2R control of energy expenditure and feeding to treat metabolic diseases.Nature20246358040987100010.1038/s41586‑024‑08207‑039537932
    [Google Scholar]
  41. QuartaraL. AltamuraM. EvangelistaS. MaggiC.A. Tachykinin receptor antagonists in clinical trials.Expert Opin. Investig. Drugs200918121843186410.1517/1354378090337953019938899
    [Google Scholar]
  42. IbrahimS.H. HirsovaP. MalhiH. GoresG.J. Animal models of nonalcoholic steatohepatitis: Eat, delete, and inflame.Dig. Dis. Sci.20166151325133610.1007/s10620‑015‑3977‑126626909
    [Google Scholar]
  43. FlessaC.M. Nasiri-AnsariN. KyrouI. LecaB.M. LianouM. ChatzigeorgiouA. KaltsasG. KassiE. RandevaH.S. Genetic and diet-induced animal models for non-alcoholic fatty liver disease (NAFLD) research.Int. J. Mol. Sci.202223241579110.3390/ijms23241579136555433
    [Google Scholar]
  44. RigbyM. O’DonnellR. RupniakN.M.J. Species differences in tachykinin receptor distribution: Further evidence that the substance P (NK 1 ) receptor predominates in human brain.J. Comp. Neurol.2005490433535310.1002/cne.2066416127708
    [Google Scholar]
  45. JohnsonM.B. YoungA.D. MarriottI. The therapeutic potential of targeting substance P/NK-1R interactions in inflammatory CNS disorders.Front. Cell. Neurosci.20171029610.3389/fncel.2016.0029628101005
    [Google Scholar]
  46. KaragiannidesI. PothoulakisC. Substance P, obesity, and gut inflammation.Curr. Opin. Endocrinol. Diabetes Obes.2009161475210.1097/MED.0b013e328321306c19104238
    [Google Scholar]
  47. YangY. ZhouW. XuX. GeX. WangF. ZhangG.Q. MiaoL. DengX. Aprepitant inhibits JNK and p38/MAPK to attenuate inflammation and suppresses inflammatory pain.Front. Pharmacol.20221281158410.3389/fphar.2021.81158435087409
    [Google Scholar]
  48. ZhaoX. BaiZ. LiC. ShengC. LiH. The NK-1R antagonist aprepitant prevents lps-induced oxidative stress and inflammation in RAW264.7 Macrophages.Drug Des. Devel. Ther.2020141943195210.2147/DDDT.S24409932546961
    [Google Scholar]
  49. DubonM.J. ByeonY. ParkK.S. Substance P enhances the activation of AMPK and cellular lipid accumulation in 3T3-L1 cells in response to high levels of glucose.Mol. Med. Rep.20151268048805410.3892/mmr.2015.445326499365
    [Google Scholar]
  50. KokabiF. EbrahimiS. MirzaviF. Ghiasi NooghabiN. HashemiS.F. HashemyS.I. The neuropeptide substance P/neurokinin-1 receptor system and diabetes: From mechanism to therapy.Biofactors202349353455910.1002/biof.193536651605
    [Google Scholar]
  51. KaragiannidesI. BakirtziK. KokkotouE. StavrakisD. MargolisK.G. ThomouT. GiorgadzeN. KirklandJ.L. PothoulakisC. Role of substance P in the regulation of glucose metabolism via insulin signaling-associated pathways.Endocrinology2011152124571458010.1210/en.2011‑117022009727
    [Google Scholar]
  52. ThorD. PrömelS. Beyond incretins: Targeting neurokinin receptors for obesity treatment.Signal Transduct. Target. Ther.20251012110.1038/s41392‑024‑02100‑y39809773
    [Google Scholar]
  53. MantyhP.W. Neurobiology of substance P and the NK1 receptor.J. Clin. Psychiatry200263Suppl. 1161012562137
    [Google Scholar]
  54. MaguireC.A. LeónS. CarrollR.S. KaiserU.B. NavarroV.M. Altered circadian feeding behavior and improvement of metabolic syndrome in obese Tac1-deficient mice.Int. J. Obes.201741121798180410.1038/ijo.2017.18528775376
    [Google Scholar]
  55. WangJ. GilbertE.R. ClineM.A. Hypothalamic mechanisms associated with neuropeptide K-induced anorexia in Japanese quail (Coturnix japonica).Comp. Biochem. Physiol. A Mol. Integr. Physiol.201923711053910.1016/j.cbpa.2019.11053931404649
    [Google Scholar]
  56. MorrisonS.F. MaddenC.J. TuponeD. Central control of brown adipose tissue thermogenesis.Front. Endocrinol. (Lausanne)201235510.3389/fendo.2012.0000522389645
    [Google Scholar]
  57. MorrisonS.F. MaddenC.J. Central nervous system regulation of brown adipose tissue.Compr. Physiol.2014441677171310.1002/j.2040‑4603.2014.tb00592.x25428857
    [Google Scholar]
  58. SaabJ. Santos-ZabalaM.L. LodaM. StackE.C. HollmannT.J. fatty acid synthase and acetyl-coa carboxylase are expressed in nodal metastatic melanoma but not in benign intracapsular nodal Nevi.Am. J. Dermatopathol.201840425926410.1097/DAD.000000000000093928654463
    [Google Scholar]
  59. WidiapradjaA. ManteufelE.J. DehlinH.M. PenaJ. GoldspinkP.H. SharmaA. KolbL.L. ImigJ.D. JanickiJ.S. LuB. LevickS.P. Regulation of cardiac mast cell maturation and function by the Neurokinin-1 receptor in the fibrotic heart.Sci. Rep.2019911100410.1038/s41598‑019‑47369‑031358823
    [Google Scholar]
  60. MoyesA.J. StanfordS.C. HosfordP.S. HobbsA.J. RamageA.G. Raised arterial blood pressure in neurokinin-1 receptor-deficient mice ( NK1R −/− ): evidence for a neural rather than a vascular mechanism.Exp. Physiol.2016101558859810.1113/EP08534726876733
    [Google Scholar]
  61. LiP.C. ShawC.F. KuoT.F. ChienC.T. Inducible nitric oxide synthase evoked nitric oxide counteracts capsaicin-induced airway smooth muscle contraction, but exacerbates plasma extravasation.Neurosci. Lett.2005378211712210.1016/j.neulet.2004.12.02015774269
    [Google Scholar]
  62. TurnerR.J. NimmoA.J. Evidence for the involvement of the tachykinin NK1 receptor in acute inflammation of the central nervous system.Receptors20232423225010.3390/receptors2040016
    [Google Scholar]
  63. HunyadyÁ. HajnaZ. GubányiT. ScheichB. KeményÁ. GasznerB. BorbélyÉ. HelyesZ. Hemokinin-1 is an important mediator of pain in mouse models of neuropathic and inflammatory mechanisms.Brain Res. Bull.201914716517310.1016/j.brainresbull.2019.01.01530664920
    [Google Scholar]
  64. LiuZ. ZhouJ. LiY. HuF. LuY. MaM. FengQ. ZhangJ. WangD. ZengJ. BaoJ. KimJ.Y. ChenZ.F. El MestikawyS. LuoM. Dorsal raphe neurons signal reward through 5-HT and glutamate.Neuron20148161360137410.1016/j.neuron.2014.02.01024656254
    [Google Scholar]
  65. SchollerD. ZablotskiY. MayA. Evaluation of substance P as a new stress parameter in horses in a stress model involving four different stress levels.Animals2023137114210.3390/ani1307114237048398
    [Google Scholar]
  66. Szereda-PrzestaszewskaM. KaczyńskaK. Serotonin and substance P: Synergy or competition in the control of breathing.Auton. Neurosci.202022510265810.1016/j.autneu.2020.10265832145695
    [Google Scholar]
  67. BlierP. GobbiG. HaddjeriN. SantarelliL. MathewG. HenR. Impact of substance P receptor antagonism on the serotonin and norepinephrine systems: Relevance to the antidepressant/anxiolytic response.J. Psychiatry Neurosci.200429320821815173897
    [Google Scholar]
  68. HarbuzM.S. JessopD.S. Stress and inflammatory disease: Widening roles for serotonin and substance P.Stress200141577010.3109/1025389010900114322432127
    [Google Scholar]
  69. NordiskA.S.N. Compounds and their use in the treatment of tachykinin receptor mediated conditions.CN Patent 116745310A2023
  70. Neurokin-2 receptors. Synapse by Pastsnap.2025Available from: https://synapse.patsnap.com/article/what-are-nk2r-antagonists-and-how-do-they-work
  71. GamanA. BucurM.C. KuoB. Review: Therapeutic advances in functional gastrointestinal disease: irritable bowel syndrome.Therap. Adv. Gastroenterol.20092316918110.1177/1756283X0810365619936327
    [Google Scholar]
  72. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  73. ChungK.F. BarnesP.J. Mediator Antagonists.Asthma and COPDAcademic Press200965566210.1016/B978‑0‑12‑374001‑4.00052‑3
    [Google Scholar]
  74. JungH.J. PrieferR. Tachykinin NK2 antagonist for treatments of various disease states.Auton. Neurosci.202123510286510.1016/j.autneu.2021.10286534358844
    [Google Scholar]
  75. NussdorferG.G. MalendowiczL.K. Role of tachykinins in the regulation of the hypothalamo-pituitary-adrenal axis.Peptides199819594996810.1016/S0196‑9781(98)00017‑59663462
    [Google Scholar]
  76. AmstaldenM. CoolenL.M. HemmerleA.M. BillingsH.J. ConnorsJ.M. GoodmanR.L. LehmanM.N. Neurokinin 3 receptor immunoreactivity in the septal region, preoptic area and hypothalamus of the female sheep: colocalisation in neurokinin B cells of the arcuate nucleus but not in gonadotrophin-releasing hormone neurones.J. Neuroendocrinol.201022111210.1111/j.1365‑2826.2009.01930.x19912479
    [Google Scholar]
  77. FlynnF.W. JensenD.D. ThakarA. XuX. FlynnS.W. ZhangZ. Neurokinin 3 receptor forms a complex with acetylated histone H3 and H4 in hypothalamic neurons following hyperosmotic challenge.Am. J. Physiol. Regul. Integr. Comp. Physiol.20113013R822R83110.1152/ajpregu.00254.201121697521
    [Google Scholar]
  78. SkorupskaiteK. GeorgeJ.T. VeldhuisJ.D. MillarR.P. AndersonR.A. Neurokinin 3 receptor antagonism reveals roles for neurokinin B in the regulation of gonadotropin secretion and hot flashes in postmenopausal women.Neuroendocrinology2018106214815710.1159/00047389328380486
    [Google Scholar]
  79. TaharaA. TakamatsuH. OhtakeA. Tanaka-AminoK. KakuS. Effects of neurokinin 3 receptor antagonist fezolinetant on hot flash- like symptoms in ovariectomized rats.Eur. J. Pharmacol.202190517420710.1016/j.ejphar.2021.17420734048742
    [Google Scholar]
  80. SkorupskaiteK. GeorgeJ.T. VeldhuisJ.D. MillarR.P. AndersonR.A. Neurokinin 3 receptor antagonism decreases gonadotropin and testosterone secretion in healthy men.Clin. Endocrinol. (Oxf.)201787674875610.1111/cen.1344528802064
    [Google Scholar]
  81. PragueJ.K. RobertsR.E. ComninosA.N. ClarkeS. JayasenaC.N. NashZ. DoyleC. PapadopoulouD.A. BloomS.R. MohideenP. PanayN. HunterM.S. VeldhuisJ.D. WebberL.C. HusonL. DhilloW.S. Neurokinin 3 receptor antagonism as a novel treatment for menopausal hot flushes: A phase 2, randomised, double-blind, placebo-controlled trial.Lancet2017389100811809182010.1016/S0140‑6736(17)30823‑128385352
    [Google Scholar]
  82. HaleyG.E. FlynnF.W. Blockade of NK3R signaling in the PVN decreases vasopressin and oxytocin release and c-Fos expression in the magnocellular neurons in response to hypotension.Am. J. Physiol. Regul. Integr. Comp. Physiol.20082954R1158R116710.1152/ajpregu.90402.200818650316
    [Google Scholar]
  83. SarauH.M. GriswoldD.E. BushB. PottsW. SandhuP. LundbergD. FoleyJ.J. SchmidtD.B. WebbE.F. MartinL.D. LegosJ.J. WhitmoreR.G. BaroneF.C. MedhurstA.D. LuttmannM.A. GiardinaG.A.M. HayD.W.P. Nonpeptide tachykinin receptor antagonists. II. Pharmacological and pharmacokinetic profile of SB-222200, a central nervous system penetrant, potent and selective NK-3 receptor antagonist.J. Pharmacol. Exp. Ther.2000295137338110.1016/S0022‑3565(24)38912‑810992004
    [Google Scholar]
  84. Sucquart i.e. NagarkarR. EdwardsM.C. Rodriguez ParisV. AflatounianA. BertoldoM.J. CampbellR.E. GilchristR.B. BeggD.P. HandelsmanD.J. PadmanabhanV. AndersonR.A. WaltersK.A. Neurokinin 3 receptor antagonism ameliorates key metabolic features in a hyperandrogenic PCOS mouse model.Endocrinology20211625bqab02010.1210/endocr/bqab02033522579
    [Google Scholar]
  85. ZhangL. FernandoT. LiuY. LiuY. ZhuX. LiM. ShiY. Neurokinin 3 receptor antagonist-induced adipocyte activation improves obesity and metabolism in PCOS-like mice.Life Sci.202231012107810.1016/j.lfs.2022.12107836252700
    [Google Scholar]
  86. CeciL. FrancisH. ZhouT. GiangT. YangZ. MengF. WuN. KennedyL. KyritsiK. MeadowsV. WuC. LiangpunsakulS. FranchittoA. SybengaA. EkserB. MancinelliR. OnoriP. GaudioE. GlaserS. AlpiniG. Knockout of the Tachykinin receptor 1 in the Mdr2−/− (Abcb4−/−) mouse model of primary sclerosing cholangitis reduces biliary damage and liver fibrosis.Am. J. Pathol.2020190112251226610.1016/j.ajpath.2020.07.00732712019
    [Google Scholar]
  87. FelipeC.D. HerreroJ.F. O’BrienJ.A. PalmerJ.A. DoyleC.A. SmithA.J.H. LairdJ.M.A. BelmonteC. CerveroF. HuntS.P. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P.Nature1998392667439439710.1038/329049537323
    [Google Scholar]
  88. QuartaraL. MaggiC.A. The tachykinin NK1 receptor. Part II: Distribution and pathophysiological roles.Neuropeptides199832114910.1016/S0143‑4179(98)90015‑49571643
    [Google Scholar]
  89. VannucchiM.G. EvangelistaS. Neurokinin receptors in the gastrointestinal muscle wall: cell distribution and possible roles.Biomol. Concepts20134322123110.1515/bmc‑2013‑000125436578
    [Google Scholar]
  90. KaragiannidesI. StavrakisD. BakirtziK. KokkotouE. PirtskhalavaT. Nayeb-HashemiH. BoweC. BugniJ.M. NuñoM. LuB. GerardN.P. LeemanS.E. KirklandJ.L. PothoulakisC. SubstanceP. Substance P (SP)-neurokinin-1 receptor (NK-1R) alters adipose tissue responses to high-fat diet and insulin action.Endocrinology201115262197220510.1210/en.2010‑134521467195
    [Google Scholar]
  91. OtaT. Chemokine systems link obesity to insulin resistance.Diabetes Metab. J.201337316517210.4093/dmj.2013.37.3.16523807918
    [Google Scholar]
  92. RasouliN. KernP.A. Adipocytokines and the metabolic complications of obesity.J. Clin. Endocrinol. Metab.20089311s64s7310.1210/jc.2008‑161318987272
    [Google Scholar]
  93. JinP. DengS. SherchanP. CuiY. HuangL. LiG. LianL. XieS. LenahanC. TravisZ.D. ZhangJ.H. GongY. TangJ. Neurokinin receptor 1 (NK1R) antagonist aprepitant enhances hematoma clearance by regulating microglial polarization via PKC/p38MAPK/NFκB pathway after experimental intracerebral hemorrhage in mice.Neurotherapeutics20211831922193810.1007/s13311‑021‑01077‑834244927
    [Google Scholar]
  94. Chowdari GurramP. SatarkerS. NampoothiriM. Recent advances in the molecular signaling pathways of Substance P in Alzheimer’s disease: Link to neuroinflammation associated with toll-like receptors.Biochem. Biophys. Res. Commun.202473315059710.1016/j.bbrc.2024.15059739197195
    [Google Scholar]
  95. BillingtonC.K. PennR.B. Signaling and regulation of G protein- coupled receptors in airway smooth muscle.Respir. Res.200341210.1186/rr19512648290
    [Google Scholar]
  96. ModiM. DhilloW.S. Neurokinin B and Neurokinin-3 receptor signaling: Promising developments in the management of menopausal hot flushes.Semin. Reprod. Med.201937312513010.1055/s‑0039‑340024131869840
    [Google Scholar]
  97. WongT.S. LiG. LiS. GaoW. ChenG. GanS. ZhangM. LiH. WuS. DuY. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders.Signal Transduct. Target. Ther.20238117710.1038/s41392‑023‑01427‑237137892
    [Google Scholar]
  98. HuZ. ChengY. ZhangH. ZhouC. HanB. ZhangY. HuangC. ChangJ. SongX. LiangJ. LiangH. BaiC. YuS. ChenJ. WangJ. PanH. ChitkaraD.K. HilleD.A. ZhangL. Aprepitant triple therapy for the prevention of chemotherapy-induced nausea and vomiting following high-dose cisplatin in Chinese patients: A randomized, double-blind, placebo-controlled phase III trial.Support. Care Cancer201422497998710.1007/s00520‑013‑2043‑924276953
    [Google Scholar]
  99. SchwartzbergL.S. ModianoM.R. RapoportB.L. ChasenM.R. GridelliC. UrbanL. PomaA. AroraS. NavariR.M. SchnadigI.D. Safety and efficacy of rolapitant for prevention of chemotherapy-induced nausea and vomiting after administration of moderately emetogenic chemotherapy or anthracycline and cyclophosphamide regimens in patients with cancer: A randomised, active-controlled, double-blind, phase 3 trial.Lancet Oncol.20151691071107810.1016/S1470‑2045(15)00034‑026272768
    [Google Scholar]
  100. WeinsteinC. JordanK. GreenS.A. CamachoE. KhananiS. Beckford-BrathwaiteE. VallejosW. LiangL.W. NogaS.J. RapoportB.L. Single-dose fosaprepitant for the prevention of chemotherapy-induced nausea and vomiting associated with moderately emetogenic chemotherapy: Results of a randomized, double-blind phase III trial.Ann. Oncol.201627117217810.1093/annonc/mdv48226449391
    [Google Scholar]
  101. A dose-ranging study of orvepitant in patients with chronic refractory cough.2022Available at: https://clinicaltrials.gov/study/NCT02993822.
  102. FariaV. ÅhsF. AppelL. LinnmanC. BaniM. BetticaP. PichE.M. FredriksonM. FurmarkT. FurmarkT. Amygdala-frontal couplings characterizing SSRI and placebo response in social anxiety disorder.Int. J. Neuropsychopharmacol.20141781149115710.1017/S146114571400035224666527
    [Google Scholar]
  103. GoldsteinD.J. WangO. GitterB.D. IyengarS. Dose-response study of the analgesic effect of lanepitant in patients with painful diabetic neuropathy.Clin. Neuropharmacol.2001241162210.1097/00002826‑200101000‑0000411290877
    [Google Scholar]
  104. YosipovitchG. StänderS. KerbyM.B. LarrickJ.W. PerlmanA.J. SchnipperE.F. ZhangX. TangJ.Y. LugerT. SteinhoffM. Serlopitant for the treatment of chronic pruritus: Results of a randomized, multicenter, placebo-controlled phase 2 clinical trial.J. Am. Acad. Dermatol.2018785882891.e1010.1016/j.jaad.2018.02.03029462657
    [Google Scholar]
  105. A 24-52-week Study to Evaluate the Long-term Efficacy and Safety of Saredutant in Patients With Depression (MAGENTA). 2016. Available at: https://clinicaltrials.gov/study/ NCT00336713.
  106. TackJ. SchumacherK. ToniniG. ScartoniS. CapriatiA. MaggiC.A. Iris-2 investigators The neurokinin-2 receptor antagonist ibodutant improves overall symptoms, abdominal pain and stool pattern in female patients in a phase II study of diarrhoea-predominant IBS.Gut20176681403141310.1136/gutjnl‑2015‑31068327196574
    [Google Scholar]
  107. AlbertJ.S. PottsW. Neurokinin-3 receptor antagonists in schizophrenia.Expert Opin Ther Pat.200616792510.1517/13543776.16.7.925
    [Google Scholar]
  108. LedermanS. OtteryF.D. CanoA. SantoroN. ShapiroM. StuteP. ThurstonR.C. EnglishM. FranklinC. LeeM. Neal-PerryG. Fezolinetant for treatment of moderate-to-severe vasomotor symptoms associated with menopause (SKYLIGHT 1): A phase 3 randomised controlled study.Lancet2023401103821091110210.1016/S0140‑6736(23)00085‑536924778
    [Google Scholar]
  109. HagerM. GoldsteinT. FitzV. OttJ. Elinzanetant, a new combined neurokinin-1/-3 receptor antagonist for the treatment of postmenopausal vasomotor symptoms.Expert Opin. Pharmacother.202425778378910.1080/14656566.2024.235813138869992
    [Google Scholar]
  110. OnagaT. Tachykinin: Recent developments and novel roles in health and disease.Biomol. Concepts20145322524310.1515/bmc‑2014‑000825372755
    [Google Scholar]
  111. BarreroJ.A. González-ClavijoA.M. Tachykinin/neurokinin 3 receptor antagonists: in silico ADME/T analysis of novel compounds for menopause hot flashes therapy.Rev. Colomb. Cienc. Quirn. Farm.202251110012210.15446/rcciquifa.v51n1.102679
    [Google Scholar]
  112. RobinsonP. RossoM. MuñozM. Neurokinin-1 receptor antagonists as a potential novel therapeutic option for osteosarcoma patients.J. Clin. Med.2023126213510.3390/jcm1206213536983138
    [Google Scholar]
  113. HauserA.S. ChavaliS. MasuhoI. JahnL.J. MartemyanovK.A. GloriamD.E. BabuM.M. Pharmacogenomics of GPCR drug targets.Cell20181721-24154.e1910.1016/j.cell.2017.11.03329249361
    [Google Scholar]
  114. HauserA.S. AttwoodM.M. Rask-AndersenM. SchiöthH.B. GloriamD.E. Trends in GPCR drug discovery: New agents, targets and indications.Nat. Rev. Drug Discov.2017161282984210.1038/nrd.2017.17829075003
    [Google Scholar]
  115. AddisP. BaliU. BaronF. CampbellA. HarborneS. JaggerL. MilneG. PearceM. RosethorneE.M. SatchellR. SwiftD. YoungB. UnittJ.F. Key aspects of modern GPCR drug discovery.SLAS Discov.202429112210.1016/j.slasd.2023.08.00737625784
    [Google Scholar]
  116. McCoyR.G. HerrinJ. SwarnaK.S. DengY. KentD.M. RossJ.S. UmpierrezG.E. GalindoR.J. CrownW.H. BorahB.J. MontoriV.M. BritoJ.P. NeumillerJ.J. MickelsonM.M. PolleyE.C. Effectiveness of glucose-lowering medications on cardiovascular outcomes in patients with type 2 diabetes at moderate cardiovascular risk.Nat. Cardiovasc. Res.20243443144010.1038/s44161‑024‑00453‑938846711
    [Google Scholar]
  117. HsiaD.S. GroveO. CefaluW.T. An update on sodium-glucose co- transporter-2 inhibitors for the treatment of diabetes mellitus.Curr. Opin. Endocrinol. Diabetes Obes.2017241737910.1097/MED.000000000000031127898586
    [Google Scholar]
  118. PaddaI.S. MahtaniA.U. ParmarM. Sodium-Glucose Transport Protein 2 (SGLT2) inhibitors.StatPearls.Treasure Island, FLStatPearls Publishing2025
    [Google Scholar]
  119. ChristopoulosA. Advances in G protein-coupled receptor allostery: From function to structure.Mol. Pharmacol.201486546347810.1124/mol.114.09434225061106
    [Google Scholar]
  120. FosterD.J. ConnP.J. Allosteric modulation of GPCRs: New insights and potential utility for treatment of schizophrenia and other CNS disorders.Neuron201794343144610.1016/j.neuron.2017.03.01628472649
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501399586250903081350
Loading
/content/journals/cdt/10.2174/0113894501399586250903081350
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antagonists; diabetes; metabolic disorders; neurokinin; obesity; Tachykinin receptors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test