Skip to content
2000
image of Tachykinin Receptors and Their Antagonists: Unraveling Their Role in Metabolic Disorders and Therapeutic Innovations

Abstract

Introduction

Metabolic disorders are major global health concerns with increasing prevalence worldwide. Experimental evidence suggests the role of tachykinins and their receptors in metabolic regulation, neuroendocrine control, and inflammatory responses. This review aims to explore the implications of tachykinin receptors and their antagonists in the management of metabolic disorders.

Methods

A comprehensive literature search was performed across major scientific databases to identify and analyze preclinical and clinical studies on tachykinin receptors and their antagonists in the context of metabolic disorders. The key mechanisms of action of drugs, important therapeutic outcomes, and challenges associated with drug development were covered.

Results

The reported experimental and clinical studies suggest that the antagonists of NK1R, NK2R, and NK3R could influence glucose metabolism, lipid homeostasis, and appetite regulation. While NK1R antagonists, such as aprepitant, demonstrated anti-inflammatory and neuroprotective effects, NK3R antagonists, including fezolinetant, showed promise in modulating energy balance and thermoregulation.

Discussion

These studies emphasized the emerging potential of tachykinin receptors and their antagonists in the management of metabolic dysfunctions. However, the challenges associated with its clinical translation, including receptor redundancy, limited biomarker-based patient stratification, and variations in receptor expression across species, are still relevant and need to be addressed to improve therapeutic outcomes.

Conclusion

Tachykinin receptor antagonists hold significant potential as therapeutic agents in the management of metabolic disorders. Further studies are warranted to overcome translational barriers, address safety issues, validate biomarkers, and refine receptor selectivity to achieve maximum therapeutic benefits.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501399586250903081350
2025-09-11
2025-09-14
Loading full text...

Full text loading...

References

  1. Pillon N.J. Loos R.J.F. Marshall S.M. Zierath J.R. Metabolic consequences of obesity and type 2 diabetes: Balancing genes and environment for personalized care. Cell 2021 184 6 1530 1544 10.1016/j.cell.2021.02.012 33675692
    [Google Scholar]
  2. Lin X. Li H. Obesity: Epidemiology, pathophysiology, and therapeutics. Front. Endocrinol. (Lausanne) 2021 12 706978 10.3389/fendo.2021.706978 34552557
    [Google Scholar]
  3. Steinhoff M.S. von Mentzer B. Geppetti P. Pothoulakis C. Bunnett N.W. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol. Rev. 2014 94 1 265 301 10.1152/physrev.00031.2013 24382888
    [Google Scholar]
  4. Gaudreau G.A. Plourde V. Role of tachykinin NK1, NK2 and NK3 receptors in the modulation of visceral hypersensitivity in the rat. Neurosci. Lett. 2003 351 2 59 62 10.1016/S0304‑3940(03)00414‑2 14583381
    [Google Scholar]
  5. Haddad A.N. Leyria J. Lange A.B. Identification of a tachykinin receptor and its implication in carbohydrate and lipid homeostasis in Rhodnius prolixus, a chagas disease vector. Gen. Comp. Endocrinol. 2022 320 114010 10.1016/j.ygcen.2022.114010 35231487
    [Google Scholar]
  6. Karagiannides I. Torres D. Tseng Y.H. Bowe C. Carvalho E. Espinoza D. Pothoulakis C. Kokkotou E. Substance P as a novel anti-obesity target. Gastroenterology 2008 134 3 747 755.e1 10.1053/j.gastro.2007.12.032 18325388
    [Google Scholar]
  7. Nässel D.R. Zandawala M. Kawada T. Satake H. Tachykinins: Neuropeptides That are ancient, diverse, widespread and functionally pleiotropic. Front. Neurosci. 2019 13 1262 10.3389/fnins.2019.01262 31824255
    [Google Scholar]
  8. Mashaghi A. Marmalidou A. Tehrani M. Grace P.M. Pothoulakis C. Dana R. Neuropeptide substance P and the immune response. Cell. Mol. Life Sci. 2016 73 22 4249 4264 10.1007/s00018‑016‑2293‑z 27314883
    [Google Scholar]
  9. Hodo T.W. de Aquino M.T.P. Shimamoto A. Shanker A. Critical neurotransmitters in the neuroimmune network. Front. Immunol. 2020 11 1869 10.3389/fimmu.2020.01869 32973771
    [Google Scholar]
  10. Zieglgänsberger W. Substance P and pain chronicity. Cell Tissue Res. 2019 375 1 227 241 10.1007/s00441‑018‑2922‑y 30284083
    [Google Scholar]
  11. Padmanaban V. Keller I. Seltzer E.S. Ostendorf B.N. Kerner Z. Tavazoie S.F. Neuronal substance P drives metastasis through an extracellular RNA–TLR7 axis. Nature 2024 633 8028 207 215 10.1038/s41586‑024‑07767‑5 39112700
    [Google Scholar]
  12. Campo A. Dufour S. Rousseau K. Tachykinins, new players in the control of reproduction and food intake: A comparative review in mammals and teleosts. Front. Endocrinol. (Lausanne) 2022 13 1056939 10.3389/fendo.2022.1056939 36589829
    [Google Scholar]
  13. Madsen J.J. Petersen J.E. Christensen D.P. Hansen J.B. Schwartz T.W. Frimurer T.M. Olsen O.H. Deciphering specificity and cross-reactivity in tachykinin NK1 and NK2 receptors. J. Biol. Chem. 2023 299 12 105438 10.1016/j.jbc.2023.105438 37944618
    [Google Scholar]
  14. Buck S.H. Burcher E. Shults C.W. Lovenberg W. O’Donohue T.L. Novel pharmacology of substance K-binding sites: A third type of tachykinin receptor. Science 1984 226 4677 987 989 10.1126/science.6095447 6095447
    [Google Scholar]
  15. Douglas S.D. Leeman S.E. Neurokinin-1 receptor: Functional significance in the immune system in reference to selected infections and inflammation. Ann. N. Y. Acad. Sci. 2011 1217 1 83 95 10.1111/j.1749‑6632.2010.05826.x 21091716
    [Google Scholar]
  16. Aziz F. Neurokinin-1 receptor antagonists for chemotherapy-induced nausea and vomiting. Ann. Palliat. Med. 2012 1 2 130 136 10.3978/j.issn.2224‑5820.2012.07.10 25841473
    [Google Scholar]
  17. Ibrahim M.A. Pellegrini M.V. Preuss C.V. Antiemetic Neurokinin-1 Receptor Blockers. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  18. Abe M. Iihara H. Aogi K. Fosnetupitant for the prevention of chemotherapy-induced nausea and vomiting: A short review and clinical perspective. Adv. Ther. 2023 40 5 1913 1925 10.1007/s12325‑023‑02474‑5 36884027
    [Google Scholar]
  19. Ebner K. Sartori S. Singewald N. Tachykinin receptors as therapeutic targets in stress-related disorders. Curr. Pharm. Des. 2009 15 14 1647 1674 10.2174/138161209788168074 19442179
    [Google Scholar]
  20. van Rhee A.M. Jacobson K.A. Molecular architecture of G protein- coupled receptors. Drug Dev. Res. 1996 37 1 1 38 10.1002/(SICI)1098‑2299(199601)37:1<1::AID‑DDR1>3.0.CO;2‑S 21921973
    [Google Scholar]
  21. Patacchini R. Maggi C.A. Tachykinin receptors and receptor subtypes. Arch. Int. Pharmacodyn. Ther. 1995 329 1 161 184 7639617
    [Google Scholar]
  22. Mishra A. Lal G. Neurokinin receptors and their implications in various autoimmune diseases. Curr. Res. Immunol. 2021 2 66 78 10.1016/j.crimmu.2021.06.001 35492389
    [Google Scholar]
  23. Costa S.K.P. Yshii L.M. Poston R.N. Muscará M.N. Brain S.D. Pivotal role of endogenous tachykinins and the NK1 receptor in mediating leukocyte accumulation, in the absence of oedema formation, in response to TNFα in the cutaneous microvasculature. J. Neuroimmunol. 2006 171 1-2 99 109 10.1016/j.jneuroim.2005.09.006 16269189
    [Google Scholar]
  24. Evangelista S. Involvement of tachykinins in intestinal inflammation. Curr. Pharm. Des. 2001 7 1 19 30 10.2174/1381612013398446 11172699
    [Google Scholar]
  25. Green S.A. Alon A. Ianus J. McNaughton K.S. Tozzi C.A. Reiss T.F. Efficacy and safety of a neurokinin-1 receptor antagonist in postmenopausal women with overactive bladder with urge urinary incontinence. J. Urol. 2006 176 6 2535 2540 10.1016/j.juro.2006.08.018 17085151
    [Google Scholar]
  26. Renzi D. Pellegrini B. Tonelli F. Surrenti C. Calabrò A. Substance P (neurokinin-1) and neurokinin A (neurokinin-2) receptor gene and protein expression in the healthy and inflamed human intestine. Am. J. Pathol. 2000 157 5 1511 1522 10.1016/S0002‑9440(10)64789‑X 11073811
    [Google Scholar]
  27. Satheeshkumar P.S. Mohan M.P. NK-1 receptor may have a role in perineural invasion in malignant salivary gland. Oral Oncol. 2014 50 8 e43 10.1016/j.oraloncology.2014.04.014 24855957
    [Google Scholar]
  28. Schöppe J. Ehrenmann J. Klenk C. Rucktooa P. Schütz M. Doré A.S. Plückthun A. Crystal structures of the human neurokinin 1 receptor in complex with clinically used antagonists. Nat. Commun. 2019 10 1 17 10.1038/s41467‑018‑07939‑8 30604743
    [Google Scholar]
  29. Garcia-Recio S. Gascón P. Biological and pharmacological aspects of the NK1-receptor. BioMed Res. Int. 2015 2015 1 14 10.1155/2015/495704 26421291
    [Google Scholar]
  30. Muñoz M. Pavón A. Rosso M. Salinas M.V. Pérez A. Carranza A. González-Ortega A. Immunolocalization of NK-1 receptor and Substance P in human normal placenta. Placenta 2010 31 7 649 651 10.1016/j.placenta.2010.03.015 20430440
    [Google Scholar]
  31. Vigna S.R. Phosphorylation and desensitization of neurokinin-1 receptor expressed in epithelial cells. J. Neurochem. 1999 73 5 1925 1932 10.1046/j.1471‑4159.1999.01925.x 10537050
    [Google Scholar]
  32. Stanisz A.M. Scicchitano R. Dazin P. Bienenstock J. Payan D.G. Distribution of substance P receptors on murine spleen and Peyer’s patch T and B cells. J. Immunol. 1987 139 3 749 754 10.4049/jimmunol.139.3.749 2439591
    [Google Scholar]
  33. Grubor B. Ramirez-Romero R. Gallup J.M. Bailey T.B. Ackermann M.R. Distribution of substance P receptor (neurokinin-1 receptor) in normal ovine lung and during the progression of bronchopneumonia in sheep. J. Histochem. Cytochem. 2004 52 1 123 130 10.1177/002215540405200112 14688223
    [Google Scholar]
  34. Graham G.J. Stevens J.M. Page N.M. Grant A.D. Brain S.D. Lowry P.J. Gibbins J.M. Tachykinins regulate the function of platelets. Blood 2004 104 4 1058 1065 10.1182/blood‑2003‑11‑3979 15130944
    [Google Scholar]
  35. Kanda N. Watanabe S. Substance P enhances the production of interferon-induced protein of 10 kDa by human keratinocytes in synergy with interferon-gamma. J. Invest. Dermatol. 2002 119 6 1290 1297 10.1046/j.1523‑1747.2002.19626.x 12485430
    [Google Scholar]
  36. Muñoz M. Coveñas R. Neurokinin receptor antagonism: A patent review (2014-present). Expert Opin Ther Pat. 2020 30 7 527 10.1080/13543776.2020.1769599
    [Google Scholar]
  37. Lecci A. Capriati A. Maggi C.A. Tachykinin NK2 receptor antagonists for the treatment of irritable bowel syndrome. Br. J. Pharmacol. 2004 141 8 1249 1263 10.1038/sj.bjp.0705751 15037522
    [Google Scholar]
  38. Chandrashekaran I.R. Rao G.S. Cowsik S.M. Molecular modeling of the peptide agonist-binding site in a neurokinin-2 receptor. J. Chem. Inf. Model. 2009 49 7 1734 1740 10.1021/ci900055x 19534508
    [Google Scholar]
  39. Sun W. Yuan Q. Zhang H. Yang F. Ling S. Luo Y. Lv P. Eric Xu H. Tian C. Yin W. Shi P. Structural insights into the activation of neurokinin 2 receptor by neurokinin A. Cell Discov. 2022 8 1 72 10.1038/s41421‑022‑00437‑8 35882833
    [Google Scholar]
  40. Sass F. Ma T. Ekberg J.H. Kirigiti M. Ureña M.G. Dollet L. Brown J.M. Basse A.L. Yacawych W.T. Burm H.B. Andersen M.K. Nielsen T.S. Tomlinson A.J. Dmytiyeva O. Christensen D.P. Bader L. Vo C.T. Wang Y. Rausch D.M. Kristensen C.K. Gestal-Mato M. In het Panhuis W. Sjøberg K.A. Kernodle S. Petersen J.E. Pavlovskyi A. Sandhu M. Moltke I. Jørgensen M.E. Albrechtsen A. Grarup N. Babu M.M. Rensen P.C.N. Kooijman S. Seeley R.J. Worthmann A. Heeren J. Pers T.H. Hansen T. Gustafsson M.B.F. Tang-Christensen M. Kilpeläinen T.O. Myers M.G. Jr Kievit P. Schwartz T.W. Hansen J.B. Gerhart-Hines Z. NK2R control of energy expenditure and feeding to treat metabolic diseases. Nature 2024 635 8040 987 1000 10.1038/s41586‑024‑08207‑0 39537932
    [Google Scholar]
  41. Quartara L. Altamura M. Evangelista S. Maggi C.A. Tachykinin receptor antagonists in clinical trials. Expert Opin. Investig. Drugs 2009 18 12 1843 1864 10.1517/13543780903379530 19938899
    [Google Scholar]
  42. Ibrahim S.H. Hirsova P. Malhi H. Gores G.J. Animal models of nonalcoholic steatohepatitis: Eat, delete, and inflame. Dig. Dis. Sci. 2016 61 5 1325 1336 10.1007/s10620‑015‑3977‑1 26626909
    [Google Scholar]
  43. Flessa C.M. Nasiri-Ansari N. Kyrou I. Leca B.M. Lianou M. Chatzigeorgiou A. Kaltsas G. Kassi E. Randeva H.S. Genetic and diet-induced animal models for non-alcoholic fatty liver disease (NAFLD) research. Int. J. Mol. Sci. 2022 23 24 15791 10.3390/ijms232415791 36555433
    [Google Scholar]
  44. Rigby M. O’Donnell R. Rupniak N.M.J. Species differences in tachykinin receptor distribution: Further evidence that the substance P (NK 1 ) receptor predominates in human brain. J. Comp. Neurol. 2005 490 4 335 353 10.1002/cne.20664 16127708
    [Google Scholar]
  45. Johnson M.B. Young A.D. Marriott I. The therapeutic potential of targeting substance P/NK-1R interactions in inflammatory CNS disorders. Front. Cell. Neurosci. 2017 10 296 10.3389/fncel.2016.00296 28101005
    [Google Scholar]
  46. Karagiannides I. Pothoulakis C. Substance P, obesity, and gut inflammation. Curr. Opin. Endocrinol. Diabetes Obes. 2009 16 1 47 52 10.1097/MED.0b013e328321306c 19104238
    [Google Scholar]
  47. Yang Y. Zhou W. Xu X. Ge X. Wang F. Zhang G.Q. Miao L. Deng X. Aprepitant inhibits JNK and p38/MAPK to attenuate inflammation and suppresses inflammatory pain. Front. Pharmacol. 2022 12 811584 10.3389/fphar.2021.811584 35087409
    [Google Scholar]
  48. Zhao X. Bai Z. Li C. Sheng C. Li H. The NK-1R antagonist aprepitant prevents lps-induced oxidative stress and inflammation in RAW264.7 Macrophages. Drug Des. Devel. Ther. 2020 14 1943 1952 10.2147/DDDT.S244099 32546961
    [Google Scholar]
  49. Dubon M.J. Byeon Y. Park K.S. Substance P enhances the activation of AMPK and cellular lipid accumulation in 3T3-L1 cells in response to high levels of glucose. Mol. Med. Rep. 2015 12 6 8048 8054 10.3892/mmr.2015.4453 26499365
    [Google Scholar]
  50. Kokabi F. Ebrahimi S. Mirzavi F. Ghiasi Nooghabi N. Hashemi S.F. Hashemy S.I. The neuropeptide substance P/neurokinin-1 receptor system and diabetes: From mechanism to therapy. Biofactors 2023 49 3 534 559 10.1002/biof.1935 36651605
    [Google Scholar]
  51. Karagiannides I. Bakirtzi K. Kokkotou E. Stavrakis D. Margolis K.G. Thomou T. Giorgadze N. Kirkland J.L. Pothoulakis C. Role of substance P in the regulation of glucose metabolism via insulin signaling-associated pathways. Endocrinology 2011 152 12 4571 4580 10.1210/en.2011‑1170 22009727
    [Google Scholar]
  52. Thor D. Prömel S. Beyond incretins: Targeting neurokinin receptors for obesity treatment. Signal Transduct. Target. Ther. 2025 10 1 21 10.1038/s41392‑024‑02100‑y 39809773
    [Google Scholar]
  53. Mantyh P.W. Neurobiology of substance P and the NK1 receptor. J. Clin. Psychiatry 2002 63 Suppl. 11 6 10 12562137
    [Google Scholar]
  54. Maguire C.A. León S. Carroll R.S. Kaiser U.B. Navarro V.M. Altered circadian feeding behavior and improvement of metabolic syndrome in obese Tac1-deficient mice. Int. J. Obes. 2017 41 12 1798 1804 10.1038/ijo.2017.185 28775376
    [Google Scholar]
  55. Wang J. Gilbert E.R. Cline M.A. Hypothalamic mechanisms associated with neuropeptide K-induced anorexia in Japanese quail (Coturnix japonica). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2019 237 110539 10.1016/j.cbpa.2019.110539 31404649
    [Google Scholar]
  56. Morrison S.F. Madden C.J. Tupone D. Central control of brown adipose tissue thermogenesis. Front. Endocrinol. (Lausanne) 2012 3 5 5 10.3389/fendo.2012.00005 22389645
    [Google Scholar]
  57. Morrison S.F. Madden C.J. Central nervous system regulation of brown adipose tissue. Compr. Physiol. 2014 4 4 1677 1713 10.1002/j.2040‑4603.2014.tb00592.x 25428857
    [Google Scholar]
  58. Saab J. Santos-Zabala M.L. Loda M. Stack E.C. Hollmann T.J. fatty acid synthase and acetyl-coa carboxylase are expressed in nodal metastatic melanoma but not in benign intracapsular nodal Nevi. Am. J. Dermatopathol. 2018 40 4 259 264 10.1097/DAD.0000000000000939 28654463
    [Google Scholar]
  59. Widiapradja A. Manteufel E.J. Dehlin H.M. Pena J. Goldspink P.H. Sharma A. Kolb L.L. Imig J.D. Janicki J.S. Lu B. Levick S.P. Regulation of cardiac mast cell maturation and function by the Neurokinin-1 receptor in the fibrotic heart. Sci. Rep. 2019 9 1 11004 10.1038/s41598‑019‑47369‑0 31358823
    [Google Scholar]
  60. Moyes A.J. Stanford S.C. Hosford P.S. Hobbs A.J. Ramage A.G. Raised arterial blood pressure in neurokinin-1 receptor-deficient mice ( NK1R −/− ): evidence for a neural rather than a vascular mechanism. Exp. Physiol. 2016 101 5 588 598 10.1113/EP085347 26876733
    [Google Scholar]
  61. Li P.C. Shaw C.F. Kuo T.F. Chien C.T. Inducible nitric oxide synthase evoked nitric oxide counteracts capsaicin-induced airway smooth muscle contraction, but exacerbates plasma extravasation. Neurosci. Lett. 2005 378 2 117 122 10.1016/j.neulet.2004.12.020 15774269
    [Google Scholar]
  62. Turner R.J. Nimmo A.J. Evidence for the involvement of the tachykinin NK1 receptor in acute inflammation of the central nervous system. Receptors 2023 2 4 232 250 10.3390/receptors2040016
    [Google Scholar]
  63. Hunyady Á. Hajna Z. Gubányi T. Scheich B. Kemény Á. Gaszner B. Borbély É. Helyes Z. Hemokinin-1 is an important mediator of pain in mouse models of neuropathic and inflammatory mechanisms. Brain Res. Bull. 2019 147 165 173 10.1016/j.brainresbull.2019.01.015 30664920
    [Google Scholar]
  64. Liu Z. Zhou J. Li Y. Hu F. Lu Y. Ma M. Feng Q. Zhang J. Wang D. Zeng J. Bao J. Kim J.Y. Chen Z.F. El Mestikawy S. Luo M. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 2014 81 6 1360 1374 10.1016/j.neuron.2014.02.010 24656254
    [Google Scholar]
  65. Scholler D. Zablotski Y. May A. Evaluation of substance P as a new stress parameter in horses in a stress model involving four different stress levels. Animals 2023 13 7 1142 10.3390/ani13071142 37048398
    [Google Scholar]
  66. Szereda-Przestaszewska M. Kaczyńska K. Serotonin and substance P: Synergy or competition in the control of breathing. Auton. Neurosci. 2020 225 102658 10.1016/j.autneu.2020.102658 32145695
    [Google Scholar]
  67. Blier P. Gobbi G. Haddjeri N. Santarelli L. Mathew G. Hen R. Impact of substance P receptor antagonism on the serotonin and norepinephrine systems: Relevance to the antidepressant/anxiolytic response. J. Psychiatry Neurosci. 2004 29 3 208 218 15173897
    [Google Scholar]
  68. Harbuz M.S. Jessop D.S. Stress and inflammatory disease: Widening roles for serotonin and substance P. Stress 2001 4 1 57 70 10.3109/10253890109001143 22432127
    [Google Scholar]
  69. Nordisk A.S.N. Compounds and their use in the treatment of tachykinin receptor mediated conditions. CN Patent 116745310A 2023
  70. Neurokin-2 receptors. Synapse by Pastsnap. 2025 Available from: https://synapse.patsnap.com/article/what-are-nk2r-antagonists-and-how-do-they-work
  71. Gaman A. Bucur M.C. Kuo B. Review: Therapeutic advances in functional gastrointestinal disease: irritable bowel syndrome. Therap. Adv. Gastroenterol. 2009 2 3 169 181 10.1177/1756283X08103656 19936327
    [Google Scholar]
  72. Chen L. Deng H. Cui H. Fang J. Zuo Z. Deng J. Li Y. Wang X. Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018 9 6 7204 7218 10.18632/oncotarget.23208 29467962
    [Google Scholar]
  73. Chung K.F. Barnes P.J. Mediator Antagonists. Asthma and COPD Academic Press 2009 655 662 10.1016/B978‑0‑12‑374001‑4.00052‑3
    [Google Scholar]
  74. Jung H.J. Priefer R. Tachykinin NK2 antagonist for treatments of various disease states. Auton. Neurosci. 2021 235 102865 10.1016/j.autneu.2021.102865 34358844
    [Google Scholar]
  75. Nussdorfer G.G. Malendowicz L.K. Role of tachykinins in the regulation of the hypothalamo-pituitary-adrenal axis. Peptides 1998 19 5 949 968 10.1016/S0196‑9781(98)00017‑5 9663462
    [Google Scholar]
  76. Amstalden M. Coolen L.M. Hemmerle A.M. Billings H.J. Connors J.M. Goodman R.L. Lehman M.N. Neurokinin 3 receptor immunoreactivity in the septal region, preoptic area and hypothalamus of the female sheep: colocalisation in neurokinin B cells of the arcuate nucleus but not in gonadotrophin-releasing hormone neurones. J. Neuroendocrinol. 2010 22 1 1 12 10.1111/j.1365‑2826.2009.01930.x 19912479
    [Google Scholar]
  77. Flynn F.W. Jensen D.D. Thakar A. Xu X. Flynn S.W. Zhang Z. Neurokinin 3 receptor forms a complex with acetylated histone H3 and H4 in hypothalamic neurons following hyperosmotic challenge. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011 301 3 R822 R831 10.1152/ajpregu.00254.2011 21697521
    [Google Scholar]
  78. Skorupskaite K. George J.T. Veldhuis J.D. Millar R.P. Anderson R.A. Neurokinin 3 receptor antagonism reveals roles for neurokinin B in the regulation of gonadotropin secretion and hot flashes in postmenopausal women. Neuroendocrinology 2018 106 2 148 157 10.1159/000473893 28380486
    [Google Scholar]
  79. Tahara A. Takamatsu H. Ohtake A. Tanaka-Amino K. Kaku S. Effects of neurokinin 3 receptor antagonist fezolinetant on hot flash- like symptoms in ovariectomized rats. Eur. J. Pharmacol. 2021 905 174207 10.1016/j.ejphar.2021.174207 34048742
    [Google Scholar]
  80. Skorupskaite K. George J.T. Veldhuis J.D. Millar R.P. Anderson R.A. Neurokinin 3 receptor antagonism decreases gonadotropin and testosterone secretion in healthy men. Clin. Endocrinol. (Oxf.) 2017 87 6 748 756 10.1111/cen.13445 28802064
    [Google Scholar]
  81. Prague J.K. Roberts R.E. Comninos A.N. Clarke S. Jayasena C.N. Nash Z. Doyle C. Papadopoulou D.A. Bloom S.R. Mohideen P. Panay N. Hunter M.S. Veldhuis J.D. Webber L.C. Huson L. Dhillo W.S. Neurokinin 3 receptor antagonism as a novel treatment for menopausal hot flushes: A phase 2, randomised, double-blind, placebo-controlled trial. Lancet 2017 389 10081 1809 1820 10.1016/S0140‑6736(17)30823‑1 28385352
    [Google Scholar]
  82. Haley G.E. Flynn F.W. Blockade of NK3R signaling in the PVN decreases vasopressin and oxytocin release and c-Fos expression in the magnocellular neurons in response to hypotension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008 295 4 R1158 R1167 10.1152/ajpregu.90402.2008 18650316
    [Google Scholar]
  83. Sarau H.M. Griswold D.E. Bush B. Potts W. Sandhu P. Lundberg D. Foley J.J. Schmidt D.B. Webb E.F. Martin L.D. Legos J.J. Whitmore R.G. Barone F.C. Medhurst A.D. Luttmann M.A. Giardina G.A.M. Hay D.W.P. Nonpeptide tachykinin receptor antagonists. II. Pharmacological and pharmacokinetic profile of SB-222200, a central nervous system penetrant, potent and selective NK-3 receptor antagonist. J. Pharmacol. Exp. Ther. 2000 295 1 373 381 10.1016/S0022‑3565(24)38912‑8 10992004
    [Google Scholar]
  84. Sucquart i.e. Nagarkar R. Edwards M.C. Rodriguez Paris V. Aflatounian A. Bertoldo M.J. Campbell R.E. Gilchrist R.B. Begg D.P. Handelsman D.J. Padmanabhan V. Anderson R.A. Walters K.A. Neurokinin 3 receptor antagonism ameliorates key metabolic features in a hyperandrogenic PCOS mouse model. Endocrinology 2021 162 5 bqab020 10.1210/endocr/bqab020 33522579
    [Google Scholar]
  85. Zhang L. Fernando T. Liu Y. Liu Y. Zhu X. Li M. Shi Y. Neurokinin 3 receptor antagonist-induced adipocyte activation improves obesity and metabolism in PCOS-like mice. Life Sci. 2022 310 121078 10.1016/j.lfs.2022.121078 36252700
    [Google Scholar]
  86. Ceci L. Francis H. Zhou T. Giang T. Yang Z. Meng F. Wu N. Kennedy L. Kyritsi K. Meadows V. Wu C. Liangpunsakul S. Franchitto A. Sybenga A. Ekser B. Mancinelli R. Onori P. Gaudio E. Glaser S. Alpini G. Knockout of the Tachykinin receptor 1 in the Mdr2−/− (Abcb4−/−) mouse model of primary sclerosing cholangitis reduces biliary damage and liver fibrosis. Am. J. Pathol. 2020 190 11 2251 2266 10.1016/j.ajpath.2020.07.007 32712019
    [Google Scholar]
  87. Felipe C.D. Herrero J.F. O’Brien J.A. Palmer J.A. Doyle C.A. Smith A.J.H. Laird J.M.A. Belmonte C. Cervero F. Hunt S.P. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 1998 392 6674 394 397 10.1038/32904 9537323
    [Google Scholar]
  88. Quartara L. Maggi C.A. The tachykinin NK1 receptor. Part II: Distribution and pathophysiological roles. Neuropeptides 1998 32 1 1 49 10.1016/S0143‑4179(98)90015‑4 9571643
    [Google Scholar]
  89. Vannucchi M.G. Evangelista S. Neurokinin receptors in the gastrointestinal muscle wall: cell distribution and possible roles. Biomol. Concepts 2013 4 3 221 231 10.1515/bmc‑2013‑0001 25436578
    [Google Scholar]
  90. Karagiannides I. Stavrakis D. Bakirtzi K. Kokkotou E. Pirtskhalava T. Nayeb-Hashemi H. Bowe C. Bugni J.M. Nuño M. Lu B. Gerard N.P. Leeman S.E. Kirkland J.L. Pothoulakis C. Substance P. Substance P (SP)-neurokinin-1 receptor (NK-1R) alters adipose tissue responses to high-fat diet and insulin action. Endocrinology 2011 152 6 2197 2205 10.1210/en.2010‑1345 21467195
    [Google Scholar]
  91. Ota T. Chemokine systems link obesity to insulin resistance. Diabetes Metab. J. 2013 37 3 165 172 10.4093/dmj.2013.37.3.165 23807918
    [Google Scholar]
  92. Rasouli N. Kern P.A. Adipocytokines and the metabolic complications of obesity. J. Clin. Endocrinol. Metab. 2008 93 11 s64 s73 10.1210/jc.2008‑1613 18987272
    [Google Scholar]
  93. Jin P. Deng S. Sherchan P. Cui Y. Huang L. Li G. Lian L. Xie S. Lenahan C. Travis Z.D. Zhang J.H. Gong Y. Tang J. Neurokinin receptor 1 (NK1R) antagonist aprepitant enhances hematoma clearance by regulating microglial polarization via PKC/p38MAPK/NFκB pathway after experimental intracerebral hemorrhage in mice. Neurotherapeutics 2021 18 3 1922 1938 10.1007/s13311‑021‑01077‑8 34244927
    [Google Scholar]
  94. Chowdari Gurram P. Satarker S. Nampoothiri M. Recent advances in the molecular signaling pathways of Substance P in Alzheimer’s disease: Link to neuroinflammation associated with toll-like receptors. Biochem. Biophys. Res. Commun. 2024 733 150597 10.1016/j.bbrc.2024.150597 39197195
    [Google Scholar]
  95. Billington C.K. Penn R.B. Signaling and regulation of G protein- coupled receptors in airway smooth muscle. Respir. Res. 2003 4 1 2 10.1186/rr195 12648290
    [Google Scholar]
  96. Modi M. Dhillo W.S. Neurokinin B and Neurokinin-3 receptor signaling: Promising developments in the management of menopausal hot flushes. Semin. Reprod. Med. 2019 37 3 125 130 10.1055/s‑0039‑3400241 31869840
    [Google Scholar]
  97. Wong T.S. Li G. Li S. Gao W. Chen G. Gan S. Zhang M. Li H. Wu S. Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct. Target. Ther. 2023 8 1 177 10.1038/s41392‑023‑01427‑2 37137892
    [Google Scholar]
  98. Hu Z. Cheng Y. Zhang H. Zhou C. Han B. Zhang Y. Huang C. Chang J. Song X. Liang J. Liang H. Bai C. Yu S. Chen J. Wang J. Pan H. Chitkara D.K. Hille D.A. Zhang L. Aprepitant triple therapy for the prevention of chemotherapy-induced nausea and vomiting following high-dose cisplatin in Chinese patients: A randomized, double-blind, placebo-controlled phase III trial. Support. Care Cancer 2014 22 4 979 987 10.1007/s00520‑013‑2043‑9 24276953
    [Google Scholar]
  99. Schwartzberg L.S. Modiano M.R. Rapoport B.L. Chasen M.R. Gridelli C. Urban L. Poma A. Arora S. Navari R.M. Schnadig I.D. Safety and efficacy of rolapitant for prevention of chemotherapy-induced nausea and vomiting after administration of moderately emetogenic chemotherapy or anthracycline and cyclophosphamide regimens in patients with cancer: A randomised, active-controlled, double-blind, phase 3 trial. Lancet Oncol. 2015 16 9 1071 1078 10.1016/S1470‑2045(15)00034‑0 26272768
    [Google Scholar]
  100. Weinstein C. Jordan K. Green S.A. Camacho E. Khanani S. Beckford-Brathwaite E. Vallejos W. Liang L.W. Noga S.J. Rapoport B.L. Single-dose fosaprepitant for the prevention of chemotherapy-induced nausea and vomiting associated with moderately emetogenic chemotherapy: Results of a randomized, double-blind phase III trial. Ann. Oncol. 2016 27 1 172 178 10.1093/annonc/mdv482 26449391
    [Google Scholar]
  101. A dose-ranging study of orvepitant in patients with chronic refractory cough. 2022 Available at: https://clinicaltrials.gov/study/NCT02993822.
  102. Faria V. Åhs F. Appel L. Linnman C. Bani M. Bettica P. Pich E.M. Fredrikson M. Furmark T. Furmark T. Amygdala-frontal couplings characterizing SSRI and placebo response in social anxiety disorder. Int. J. Neuropsychopharmacol. 2014 17 8 1149 1157 10.1017/S1461145714000352 24666527
    [Google Scholar]
  103. Goldstein D.J. Wang O. Gitter B.D. Iyengar S. Dose-response study of the analgesic effect of lanepitant in patients with painful diabetic neuropathy. Clin. Neuropharmacol. 2001 24 1 16 22 10.1097/00002826‑200101000‑00004 11290877
    [Google Scholar]
  104. Yosipovitch G. Ständer S. Kerby M.B. Larrick J.W. Perlman A.J. Schnipper E.F. Zhang X. Tang J.Y. Luger T. Steinhoff M. Serlopitant for the treatment of chronic pruritus: Results of a randomized, multicenter, placebo-controlled phase 2 clinical trial. J. Am. Acad. Dermatol. 2018 78 5 882 891.e10 10.1016/j.jaad.2018.02.030 29462657
    [Google Scholar]
  105. A 24-52-week Study to Evaluate the Long-term Efficacy and Safety of Saredutant in Patients With Depression (MAGENTA). 2016. Available at: https://clinicaltrials.gov/study/ NCT00336713.
  106. Tack J. Schumacher K. Tonini G. Scartoni S. Capriati A. Maggi C.A. Iris-2 investigators The neurokinin-2 receptor antagonist ibodutant improves overall symptoms, abdominal pain and stool pattern in female patients in a phase II study of diarrhoea-predominant IBS. Gut 2017 66 8 1403 1413 10.1136/gutjnl‑2015‑310683 27196574
    [Google Scholar]
  107. Albert J.S. Potts W. Neurokinin-3 receptor antagonists in schizophrenia. Expert Opin Ther Pat. 2006 16 7 925 10.1517/13543776.16.7.925
    [Google Scholar]
  108. Lederman S. Ottery F.D. Cano A. Santoro N. Shapiro M. Stute P. Thurston R.C. English M. Franklin C. Lee M. Neal-Perry G. Fezolinetant for treatment of moderate-to-severe vasomotor symptoms associated with menopause (SKYLIGHT 1): A phase 3 randomised controlled study. Lancet 2023 401 10382 1091 1102 10.1016/S0140‑6736(23)00085‑5 36924778
    [Google Scholar]
  109. Hager M. Goldstein T. Fitz V. Ott J. Elinzanetant, a new combined neurokinin-1/-3 receptor antagonist for the treatment of postmenopausal vasomotor symptoms. Expert Opin. Pharmacother. 2024 25 7 783 789 10.1080/14656566.2024.2358131 38869992
    [Google Scholar]
  110. Onaga T. Tachykinin: Recent developments and novel roles in health and disease. Biomol. Concepts 2014 5 3 225 243 10.1515/bmc‑2014‑0008 25372755
    [Google Scholar]
  111. Barrero J.A. González-Clavijo A.M. Tachykinin/neurokinin 3 receptor antagonists: in silico ADME/T analysis of novel compounds for menopause hot flashes therapy. Rev. Colomb. Cienc. Quirn. Farm. 2022 51 1 100 122 10.15446/rcciquifa.v51n1.102679
    [Google Scholar]
  112. Robinson P. Rosso M. Muñoz M. Neurokinin-1 receptor antagonists as a potential novel therapeutic option for osteosarcoma patients. J. Clin. Med. 2023 12 6 2135 10.3390/jcm12062135 36983138
    [Google Scholar]
  113. Hauser A.S. Chavali S. Masuho I. Jahn L.J. Martemyanov K.A. Gloriam D.E. Babu M.M. Pharmacogenomics of GPCR drug targets. Cell 2018 172 1-2 41 54.e19 10.1016/j.cell.2017.11.033 29249361
    [Google Scholar]
  114. Hauser A.S. Attwood M.M. Rask-Andersen M. Schiöth H.B. Gloriam D.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2017 16 12 829 842 10.1038/nrd.2017.178 29075003
    [Google Scholar]
  115. Addis P. Bali U. Baron F. Campbell A. Harborne S. Jagger L. Milne G. Pearce M. Rosethorne E.M. Satchell R. Swift D. Young B. Unitt J.F. Key aspects of modern GPCR drug discovery. SLAS Discov. 2024 29 1 1 22 10.1016/j.slasd.2023.08.007 37625784
    [Google Scholar]
  116. McCoy R.G. Herrin J. Swarna K.S. Deng Y. Kent D.M. Ross J.S. Umpierrez G.E. Galindo R.J. Crown W.H. Borah B.J. Montori V.M. Brito J.P. Neumiller J.J. Mickelson M.M. Polley E.C. Effectiveness of glucose-lowering medications on cardiovascular outcomes in patients with type 2 diabetes at moderate cardiovascular risk. Nat. Cardiovasc. Res. 2024 3 4 431 440 10.1038/s44161‑024‑00453‑9 38846711
    [Google Scholar]
  117. Hsia D.S. Grove O. Cefalu W.T. An update on sodium-glucose co- transporter-2 inhibitors for the treatment of diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2017 24 1 73 79 10.1097/MED.0000000000000311 27898586
    [Google Scholar]
  118. Padda I.S. Mahtani A.U. Parmar M. Sodium-Glucose Transport Protein 2 (SGLT2) inhibitors. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  119. Christopoulos A. Advances in G protein-coupled receptor allostery: From function to structure. Mol. Pharmacol. 2014 86 5 463 478 10.1124/mol.114.094342 25061106
    [Google Scholar]
  120. Foster D.J. Conn P.J. Allosteric modulation of GPCRs: New insights and potential utility for treatment of schizophrenia and other CNS disorders. Neuron 2017 94 3 431 446 10.1016/j.neuron.2017.03.016 28472649
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501399586250903081350
Loading
/content/journals/cdt/10.2174/0113894501399586250903081350
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: neurokinin ; diabetes ; Tachykinin receptors ; obesity ; metabolic disorders ; antagonists
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test