Skip to content
2000
image of Current Situation on Diabetes Management: New Weapons Fighting the Disease in 2025

Abstract

Introduction

The global prevalence of Diabetes Mellitus is rising; this complex metabolic disorder marked with hyperglycemia comes with increased morbidity and more associated health risks. Type 1 Diabetes Mellitus, an autoimmune disorder primarily affecting young individuals, lacks innovative pharmacological therapies. While current treatments for Type 2 Diabetes Mellitus-including lifestyle interventions and medications-can be effective, many patients still struggle with glycemic control. This review aims to highlight recent advances in diabetes mellitus management, emphasizing novel therapeutics and drug delivery systems that aim to decrease dosage frequency, target the manifestation of side effects, and enhance anti-diabetic effectiveness.

Methods

We conducted a comprehensive review of over 300 articles published between 2017 and 2025, utilizing databases such as PubMed and ScienceDirect.

Results

Recent therapeutic innovations include nanocarrier-mediated drug delivery, microneedle patches, and mRNA- and gene-based systems.

Discussion

These technologies aim to improve glycemic control, reduce dosing frequency, and minimize side effects. The 2024 American Diabetes Association Standards of Care introduced updated diagnostic criteria and management recommendations, which are summarized herein.

Conclusion

This review outlines key developments in pharmacological and delivery strategies of the past 5 years, targeting all types of diabetes. Special focus is placed on emerging therapies such as mRNA, nanotechnology, and innovative delivery systems, which may transform future diabetes management. The content is designed to support clinicians, researchers, and healthcare professionals in developing future therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501399175250916110738
2025-09-29
2025-11-07
Loading full text...

Full text loading...

References

  1. Antar S.A. Ashour N.A. Sharaky M. Khattab M. Ashour N.A. Zaid R.T. Roh E.J. Elkamhawy A. Al-Karmalawy A.A. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed. Pharmacother. 2023 168 115734 10.1016/j.biopha.2023.115734 37857245
    [Google Scholar]
  2. Okur M.E. Karantas I.D. Siafaka P.I. Diabetes mellitus: A review on pathophysiology, current status of oral medications and future perspectives. Acta Pharm. Sci. 2017 55 1 61 82 10.23893/1307‑2080.APS.0555
    [Google Scholar]
  3. Watkins D.A. Ali M.K. Measuring the global burden of diabetes: Implications for health policy, practice, and research. Lancet 2023 402 10397 163 165 10.1016/S0140‑6736(23)01287‑4 37356449
    [Google Scholar]
  4. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014 37 Suppl. 1 S81 S90 10.2337/dc14‑S081 24357215
    [Google Scholar]
  5. Nguyen T.T. Ta Q.T.H. Nguyen T.K.O. Nguyen T.T.D. Van Giau V. Type 3 diabetes and its role implications in alzheimer’s disease. Int. J. Mol. Sci. 2020 21 9 3165 10.3390/ijms21093165 32365816
    [Google Scholar]
  6. Nguyen T.T. Ta Q.T.H. Nguyen T.T.D. Le T.T. Vo V.G. Role of insulin resistance in the alzheimer’s disease progression. Neurochem. Res. 2020 45 7 1481 1491 10.1007/s11064‑020‑03031‑0 32314178
    [Google Scholar]
  7. Poznyak A. Grechko A.V. Poggio P. Myasoedova V.A. Alfieri V. Orekhov A.N. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int. J. Mol. Sci. 2020 21 5 1835 10.3390/ijms21051835 32155866
    [Google Scholar]
  8. Dilworth L. Facey A. Omoruyi F. Diabetes mellitus and its metabolic complications: The role of adipose tissues. Int. J. Mol. Sci. 2021 22 14 7644 10.3390/ijms22147644 34299261
    [Google Scholar]
  9. ElSayed N.A. Aleppo G. Bannuru R.R. Bruemmer D. Collins B.S. Ekhlaspour L. Gaglia J.L. Hilliard M.E. Johnson E.L. Khunti K. Lingvay I. Matfin G. McCoy R.G. Perry M.L. Pilla S.J. Polsky S. Prahalad P. Pratley R.E. Segal A.R. Seley J.J. Selvin E. Stanton R.C. Gabbay R.A. 2. Diagnosis and classification of diabetes: Standards of care in diabetes—2024. Diabetes Care 2024 47 Suppl. 1 S20 S42 10.2337/dc24‑S002
    [Google Scholar]
  10. Dabelea D. Rewers A. Stafford J.M. Standiford D.A. Lawrence J.M. Saydah S. Imperatore G. D’Agostino R.B. Jr Mayer-Davis E.J. Pihoker C. Trends in the prevalence of ketoacidosis at diabetes diagnosis: The SEARCH for diabetes in youth study. Pediatrics 2014 133 4 e938 e945 10.1542/peds.2013‑2795 24685959
    [Google Scholar]
  11. Girdhar K. Huang Q. Chow I.T. Vatanen T. Brady C. Raisingani A. Autissier P. Atkinson M.A. Kwok W.W. Kahn C.R. Altindis E. A gut microbial peptide and molecular mimicry in the pathogenesis of type 1 diabetes. Proc. Natl. Acad. Sci. USA 2022 119 31 2120028119 10.1073/pnas.2120028119 35878027
    [Google Scholar]
  12. Choudhury A.A. Devi Rajeswari V. Gestational diabetes mellitus - A metabolic and reproductive disorder. Biomed. Pharmacother. 2021 143 112183 10.1016/j.biopha.2021.112183 34560536
    [Google Scholar]
  13. Delanerolle G. Phiri P. Zeng Y. Marston K. Tempest N. Busuulwa P. Shetty A. Goodison W. Muniraman H. Duffy G. Elliot K. Maclean A. Majumder K. Hirsch M. Rathod S. Raymont V. Shi J.Q. Hapangama D.K. A systematic review and meta-analysis of gestational diabetes mellitus and mental health among BAME populations. EClinicalMedicine 2021 38 101016 10.1016/j.eclinm.2021.101016 34308317
    [Google Scholar]
  14. Okur M.E. Bülbül E.Ö. Mutlu G. Eleftherıadou K. Karantas I.D. Okur N.Ü. Siafaka P.I. An updated review for the diabetic wound healing systems. Curr. Drug Targets 2022 23 4 393 419 10.2174/1389450122666210914104428 34521324
    [Google Scholar]
  15. Tomic D. Harding J.L. Jenkins A.J. Shaw J.E. Magliano D.J. The epidemiology of type 1 diabetes mellitus in older adults. Nat. Rev. Endocrinol. 2025 21 2 92 104 10.1038/s41574‑024‑01046‑z 39448829
    [Google Scholar]
  16. Perrett K.P. Jachno K. Nolan T.M. Harrison L.C. Association of rotavirus vaccination with the incidence of type 1 diabetes in children. JAMA Pediatr. 2019 173 3 280 282 10.1001/jamapediatrics.2018.4578 30667473
    [Google Scholar]
  17. Vanderniet J.A. Jenkins A.J. Donaghue K.C. Epidemiology of type 1 diabetes. Curr. Cardiol. Rep. 2022 24 10 1455 1465 10.1007/s11886‑022‑01762‑w 35976602
    [Google Scholar]
  18. Noble J.A. Valdes A.M. Genetics of the HLA region in the prediction of type 1 diabetes. Curr. Diab. Rep. 2011 11 6 533 542 10.1007/s11892‑011‑0223‑x 21912932
    [Google Scholar]
  19. Lönnrot M. Lynch K.F. Elding Larsson H. Lernmark Å. Rewers M.J. Törn C. Burkhardt B.R. Briese T. Hagopian W.A. She J.X. Simell O.G. Toppari J. Ziegler A.G. Akolkar B. Krischer J.P. Hyöty H. Respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: The TEDDY study. Diabetologia 2017 60 10 1931 1940 10.1007/s00125‑017‑4365‑5 28770319
    [Google Scholar]
  20. Yavuz O. Dincel G.C. Yildirim S. El-Ashram S. Al-Olayan E. Impact of apoptosis and oxidative stress on pancreatic beta cell pathophysiology in streptozotocin-induced Type 1 diabetes mellitus. Tissue Cell 2024 91 102552 10.1016/j.tice.2024.102552 39255742
    [Google Scholar]
  21. Gan M.J. Albanese-O’Neill A. Haller M.J. Type 1 diabetes: Current concepts in epidemiology, pathophysiology, clinical care, and research. Curr. Probl. Pediatr. Adolesc. Health Care 2012 42 10 269 291 10.1016/j.cppeds.2012.07.002 23046732
    [Google Scholar]
  22. The environmental determinants of diabetes in the young (TEDDY) study. Ann. N. Y. Acad. Sci. 2008 1150 1 1 13 10.1196/annals.1447.062 19120261
    [Google Scholar]
  23. Wenzlau J.M. Juhl K. Yu L. Moua O. Sarkar S.A. Gottlieb P. Rewers M. Eisenbarth G.S. Jensen J. Davidson H.W. Hutton J.C. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc. Natl. Acad. Sci. USA 2007 104 43 17040 17045 10.1073/pnas.0705894104 17942684
    [Google Scholar]
  24. Quattrin T. Mastrandrea L.D. Walker L.S.K. Type 1 diabetes. Lancet 2023 401 10394 2149 2162 10.1016/S0140‑6736(23)00223‑4 37030316
    [Google Scholar]
  25. Zhou B. Rayner A.W. Gregg E.W. Sheffer K.E. Carrillo-Larco R.M. Bennett J.E. Shaw J.E. Paciorek C.J. Singleton R.K. Barradas Pires A. Stevens G.A. Danaei G. Lhoste V.P.F. Phelps N.H. Heap R.A. Jain L. D’Ailhaud De Brisis Y. Galeazzi A. Kengne A.P. Mishra A. Ikeda N. Lin H-H. Aguilar-Salinas C.A. Anjana R.M. Ben Romdhane H. Davletov K. Ganapathy S. Heidemann C. Khader Y.S. Khang Y-H. Laxmaiah A. Mbanya J.C.N. Mohan V. Narayan K.M.V. Pavkov M.E. Sobngwi E. Wade A.N. Younger-Coleman N.O. Zdrojewski T. Abarca-Gómez L. Abbasi-Kangevari M. Abdul Rahim H.F. Abu-Rmeileh N.M. Adambekov S. Adams R.J. Aekplakorn W. Afzal S. Agdeppa I.A. Aghazadeh-Attari J. Agyemang C. Ahmad N.A. Ahmadi A. Ahmadi N. Ahmadi N. Ahmed S.H. Ahrens W. Ajlouni K. Al-Hamli S.F. Al-Hinai H. Al-Lawati J.A. Al Asfoor D. Alarouj M. AlBuhairan F. AlDhukair S. Ali M.M. Ali M.K. Alieva A.V. Alinezhad F. Alkandari A. Alkerwi A. Aly E. Amarapurkar D.N. Andersen L.B. Anderssen S.A. Andrade D.S. Ansari-Moghaddam A. Aounallah-Skhiri H. Araújo J. Aris T. Arku R.E. Arlappa N. Aryal K.K. Aspelund T. Assah F.K. Assembekov B. Au Yeung S.L. Auvinen J. Avdičová M. Azad K. Azevedo A. Azimi-Nezhad M. Azizi F. Bacopoulou F. Balakrishna N. Balanova Y. Bamoshmoosh M. Banach M. Bandosz P. Banegas J.R. Barbagallo C.M. Barcelo A. Baretić M. Barrera L. Barreto M. Basit A. Batieha A.M. Batista A.P. Baur L.A. Belavendra A. Benedek T. Benet M. Benzeval M. Berkinbayev S. Bernabe-Ortiz A. Berrios Carrasola X. Bettiol H. Beybey A.F. Bhargava S.K. Bi Y. Bika Lele E.C. Bikbov M.M. Bista B. Bjerregaard P. Bjertness E. Bjertness M.B. Björkelund C. Bloch K.V. Blokstra A. Bobak M. Boehm B.O. Boggia J.G. Boissonnet C.P. Bojesen S.E. Bonaccio M. Bonilla-Vargas A. Borghs H. Botomba S. Bovet P. Brajkovich I. Brenner H. Brewster L.M. Brian G.R. Briceño Y. Brito M. Bueno G. Bugge A. Buntinx F. Cabrera de León A. Caixeta R.B. Can G. Cândido A.P.C. Capanzana M.V. Čapková N. Capuano E. Capuano R. Capuano V. Cardoso V.C. Carlsson A.C. Casanueva F.F. Censi L. Cervantes-Loaiza M. Chadjigeorgiou C.A. Chamnan P. Chamukuttan S. Chan Q. Charchar F.J. Chaturvedi N. Chen C-J. Chen H. Chen L-S. Cheng C-Y. Cheraghian B. Chetrit A. Chiou S-T. Chirlaque M-D. Chudek J. Cifkova R. Cirillo M. Claessens F. Clarke J. Cohen E. Concin H. Cooper C. Cosmin C.R. Costanzo S. Cowan M.J. Cowell C. Crampin A.C. Crujeiras A.B. Cruz J.J. Cureau F.V. Cuschieri S. D’Arrigo G. d’Orsi E. da Silva-Ferreira H. Dallongeville J. Damasceno A. Dankner R. Dastgiri S. Dauchet L. De Curtis A. de Gaetano G. De Henauw S. De Ridder D. Deepa M. DeGennaro V.J. Demarest S. Dennison E. Deschamps V. Dhimal M. Dika Z. Djalalinia S. Donfrancesco C. Dorobantu M. Dragano N. Drygas W. Du S. Du Y. Duante C.A. Duboz P. Duda R.B. Dushpanova A. Dzerve V. Dziankowska-Zaborszczyk E. Ebrahimi N. Eddie R. Eftekhar E. Efthymiou V. Egbagbe E.E. Eggertsen R. Eghtesad S. Ejembi C.L. El-Khateeb M. El Ati J. Eldemire-Shearer D. Elosua R. Enang O. Erasmus R.T. Erem C. Ergor G. Eriksen L. Eriksson J.G. Esmaeili A. Evans R.G. Fagherazzi G. Fahimfar N. Fakhradiyev I. Fakhretdinova A.A. Fall C.H. Faramarzi E. Farjam M. Farzadfar F. Farzi Y. Fattahi M.R. Fawwad A. Felix-Redondo F.J. Ferguson T.S. Fernández-Bergés D. Fernando D.R. Ferrao T. Ferrari M. Ferrario M.M. Ferreccio C. Ferrer E. Feskens E.J.M. Fink G. Flood D. Forsner M. Fosse-Edorh S. Fottrell E.F. Fouad H.M. Francis D.K. Frontera G. Fujiati I.I. Fumihiko M. Furusawa T. Gaciong Z. Galvano F. Garnett S.P. Gaspoz J-M. Gasull M. Gazzinelli A. Gehring U. Ghaderi E. Ghamari S-H. Ghanbari A. Ghasemi E. Gheorghe-Fronea O-F. Ghimire A. Gialluisi A. Giampaoli S. Gianfagna F. Gill T.K. Giovannelli J. Gironella G. Giwercman A. Goldberg M. Goltzman D. Gomula A. Gonçalves H. Gonçalves M. Gonzalez-Chica D.A. Gonzalez-Gross M. González-Rivas J.P. Gonzalez A.R. Goto A. Gottrand F. Grafnetter D. Grammatikopoulou M.G. Grant A. Grimsgaard A.S. Grodzicki T. Grøntved A. Grosso G. Gu D. Gudnason V. Guerrero R. Guessous I. Gujral U.P. Gupta R. Gutierrez L. Gwee X. Ha S. Haghshenas R. Hakimi H. Hambleton I.R. Hamzeh B. Hange D. Hantunen S. Hao J. Harooni J. Hashemi-Shahri S.M. Hata J. Hayes A.J. He J. Henrique R.S. Henriques A. Herrala S. Herzig K-H. Heshmat R. Hill A.G. Ho S.Y. Holdsworth M. Homayounfar R. Hopman W.M. Horimoto A.R.V.R. Hormiga C. Horta B.L. Houti L. Howitt C. Htay T.T. Htet A.S. Htike M.M.T. Huerta J.M. Huhtaniemi I.T. Huiart L. Huisman M. Hunsberger M. Husseini A. Huybrechts I. Iacoviello L. Iakupova E.M. Iannone A.G. Ibrahim Wong N. Ijoma C. Irazola V.E. Ishida T. Islam S.M.S. Islek D. Ittermann T. Iwasaki M. Jääskeläinen T. Jacobs J.M. Jaddou H.Y. Jadoul M. Jallow B. James K. Jamil K.M. Janus E. Jarvelin M-R. Jasienska G. Jelaković A. Jelaković B. Jennings G. Jha A.K. Jibo A.M. Jimenez R.O. Jöckel K-H. Jokelainen J.J. Jonas J.B. Josipović J. Joukar F. Jóźwiak J. Kafatos A. Kajantie E.O. Kalmatayeva Z. Kalter-Leibovici O. Karakosta A. Karki K.B. Katibeh M. Katulanda P. Kauhanen J. Kazakbaeva G.M. Kaze F.F. Ke C. Keinänen-Kiukaanniemi S. Kelishadi R. Keramati M. Kersting M. Khalagi K. Khaledifar A. Khalili D. Kheiri B. Kheradmand M. Khosravi Farsani A. Kiechl-Kohlendorfer U. Kiechl S.J. Kiechl S. Kim H.C. Kingston A. Klakk H. Klanova J. Knoflach M. Kolsteren P. König J. Korpelainen R. Korrovits P. Kos J. Koskinen S. Kowlessur S. Koziel S. Kratzer W. Kriemler S. Kristensen P.L. Krokstad S. Kromhout D. Kubinova R. Kujala U.M. Kulimbet M. Kulothungan V. Kumari M. Kutsenko V. Kyobutungi C. La Q.N. Laatikainen T. Labadarios D. Lachat C. Laid Y. Lall L. Langsted A. Lankila T. Lanska V. Lappas G. Larijani B. Latt T.S. Laurenzi M. Le Coroller G. Lee J. Lehtimäki T. Lemogoum D. Leung G.M. Lim C. Lim W-Y. Lima-Costa M.F. Lin Y-J. Lind L. Lissner L. Liu L. Liu X. Lo W-C. Loit H-M. Lopez-Garcia E. Lopez T. Lozano J.E. Luksiene D. Lundqvist A. Lunet N. Lung T. Lustigová M. Ma G. Machado-Coelho G.L.L. Machado-Rodrigues A.M. Macia E. Macieira L.M. Madar A.A. Maestre G.E. Maggi S. Magliano D.J. Magriplis E. Mahasampath G. Maire B. Makdisse M. Makrilakis K. Malekpour M-R. Malekzadeh F. Malekzadeh R. Malyutina S. Maniego L.V. Manios Y. Mansour-Ghanaei F. Manzato E. Mapatano M.A. Marcil A. Mardones F. Margozzini P. Marques-Vidal P. Marques L.P. Martorell R. Mascarenhas L.P. Masimango Imani M. Masinaei M. Masoodi S.R. Mathiesen E.B. Mathur P. Matsha T.E. Mc Donald Posso A.J. McFarlane S.R. McGarvey S.T. McLean S.B. McNulty B.A. Mediene Benchekor S. Mehlig K. Mehrparvar A.H. Melgarejo J.D. Méndez F. Menezes A.M.B. Mereke A. Meshram I.I. Meto D.T. Michels N. Minderico C.S. Mini G.K. Miquel J.F. Miranda J.J. Mirjalili M.R. Mirkopoulou D. Modesti P.A. Moghaddam S.S. Mohammad K. Mohammadi M.R. Mohammadi Z. Mohammadifard N. Mohammadpourhodki R. Mohd Yusoff M.F. Mohebbi I. Møller N.C. Molnár D. Momenan A. Montenegro Mendoza R.A. Moosazadeh M. Moradpour F. Morejon A. Moreno L.A. Morgan K. Morin S.N. Moschonis G. Moslem A. Mosquera M. Mossakowska M. Mostafa A. Mostafavi S-A. Mota E. Mota J. Mota M. Motlagh M.E. Motta J. Msyamboza K.P. Mu T.T. Muiesan M.L. Munroe P.B. Mursu J. Musa K.I. Mustafa N. Muyer M.T.M.C. Nabipour I. Nagel G. Naidu B.M. Najafi F. Námešná J. Nang E.E.K. Nangia V.B. Naseri T. Navarro-Ramírez A.J. Neelapaichit N. Nejatizadeh A. Nenko I. Nervi F. Ng T.P. Nguyen C.T. Nguyen N.D. Nguyen Q.N. Ni M.Y. Nie P. Nieto-Martínez R.E. Ning G. Ninomiya T. Nishi N. Noale M. Noboa O.A. Noda M. Nordestgaard B.G. Noto D. Nsour M.A. Nuhoğlu I. Nyirenda M. O’Neill T.W. Oh K. Ohtsuka R. Omar M.A. Onat A. Ong S.K. Onodugo O. Ordunez P. Ornelas R. Ortiz P.J. Osmond C. Ostovar A. Otero J.A. Ottendahl C.B. Otu A. Owusu-Dabo E. Pahomova E. Palmieri L. Pan W-H. Panagiotakos D. Panda-Jonas S. Pang Z. Panza F. Paoli M. Park S. Parsaeian M. Patalen C.F. Patel N.D. Pechlaner R. Pećin I. Pedro J.M. Peixoto S.V. Peltonen M. Pereira A.C. Pessôa dos Prazeres T.M. Peykari N. Phall M.C. Pham S.T. Pichardo R.N. Pigeot I. Pikhart H. Pilav A. Piler P. Pitakaka F. Piwonska A. Pizarro A.N. Plans-Rubió P. Plata S. Popkin B.M. Porta M. Poudyal A. Pourfarzi F. Pourshams A. Poustchi H. Prabhakaran D. Pradeepa R. Price A.J. Price J.F. Providencia R. Puder J.J. Puhakka S. Punab M. Qiao Q. Qorbani M. Quintana H.K. Quoc Bao T. Radisauskas R. Rahimikazerooni S. Raitakari O. Ramachandran A. Ramirez-Zea M. Ramke J. Ramos E. Ramos R. Rampal L. Rampal S. Ramsay S.E. Rangel Reina D.A. Rannan-Eliya R.P. Rashidi M-M. Redon J. Renner J.D.P. Reuter C.P. Revilla L. Rezaei N. Rezaianzadeh A. Rho Y. Rigo F. Riley L.M. Risérus U. Roa R.G. Robinson L. Rodríguez-Anderson W.E. Rodríguez-Artalejo F. Rodriguez-Perez M.C. Rodríguez-Villamizar L.A. Rodríguez A.Y. Roggenbuck U. Rohloff P. Rojas-Martinez R. Romeo E.L. Rosengren A. Roy J.G.R. Rubinstein A. Ruiz-Castell M. Russo P. Rust P. Rutkowski M. Sabanayagam C. Sabbaghi H. Sachdev H.S. Sadjadi A. Safarpour A.R. Safi S. Safiri S. Saghi M.H. Saidi O. Sakata S. Saki N. Šalaj S. Salanave B. Salonen J.T. Salvetti M. Sánchez-Abanto J. Santos D.A. Santos L.C. Santos M.P. Santos R. Santos T.R. Saramies J.L. Sardinha L.B. Sarrafzadegan N. Sato Y. Saum K-U. Savin S. Sawada N. Sbaraini M. Scazufca M. Schaan B.D. Schargrodsky H. Scheidt-Nave C. Schipf S. Schmidt A.F. Schmidt B. Schmidt C.O. Schnohr P. Schooling C.M. Schöttker B. Schramm S. Sebert S. Sedaghattalab M. Sein A.A. Sen A. Sepanlou S.G. Servais J. Sewpaul R. Shalnova S. Shamshirgaran S.M. Shanthirani C.S. Sharafkhah M. Sharma S.K. Sharman A. Shayanrad A. Shayesteh A.A. Shibuya K. Shimizu-Furusawa H. Shiri R. Shoranov M. Shrestha N. Si-Ramlee K. Siani A. Siedner M.J. Silva D.A.S. Sim X. Simon M. Simons J. Simons L.A. Sjöström M. Slowikowska-Hilczer J. Slusarczyk P. Smeeth L. Söderberg S. Soemantri A. Solfrizzi V. Somi M.H. Soumaré A. Sousa-Poza A. Sousa-Uva M. Sparrenberger K. Staessen J.A. Stang A. Stavreski B. Steene-Johannessen J. Stehle P. Stein A.D. Stessman J. Stokwiszewski J. Stronks K. Suarez-Ortegón M.F. Suebsamran P. Suka M. Sun C-A. Sun J. Sundström J. Suriyawongpaisal P. Sylva R.C. Tai E.S. Takuro F. Tamosiunas A. Tan E.J. Tanabayev B. Tandon N. Tarawneh M.R. Tarqui-Mamani C.B. Taylor A. Tello T. Tham Y.C. Thankappan K.R. Theobald H. Theodoridis X. Thomas N. Thrift A.G. Timmermans E.J. Tolonen H.K. Tolstrup J.S. Tomaszewski M. Topbas M. Tornaritis M.J. Torrent M. Torres-Collado L. Touloumi G. Traissac P. Triantafyllou A. Trinh O.T.H. Tsao Y-H. Tsiampalis T. Tsugane S. Tuitele J. Tuliakova A.M. Tulloch-Reid M.K. Tuomainen T-P. Turley M.L. Tzala E. Tzourio C. Ueda P. Ugel E. Ukoli F.A.M. Ulmer H. Uusitalo H.M.T. Valdivia G. Valvi D. van Dam R.M. van den Born B-J. Van der Heyden J. Van Minh H. van Rossem L. Van Schoor N.M. van Valkengoed I.G.M. Vanderschueren D. Vanuzzo D. Varbo A. Vasan S.K. Vega T. Veidebaum T. Velasquez-Melendez G. Verdot C. Veronesi G. Verstraeten R. Victora C.G. Viet L. Villarroel L. Vioque J. Virtanen J.K. Viswanathan B. Vollenweider P. Voutilainen A. Vrijheid M. Walton J. Wan Bebakar W.M. Wan Mohamud W.N. Wang C. Wang H. Wang N. Wang Q. Wang W. Wang Y.X. Wang Y-R. Wang Y-W. Wannamethee S.G. Webster-Kerr K. Wedderkopp N. Wei W. Westbury L.D. Whincup P.H. Widhalm K. Widyahening I.S. Więcek A. Wijemunige N. Wilks R.J. Willeit K. Willeit P. Wilsgaard T. Wojtyniak B. Wong-McClure R.A. Wong A. Wong E.B. Woodward M. Wu C-C. Wu F.C. Xu H. Xu L. Xu Y. Yaacob N.A. Yan L. Yan W. Yasuharu T. Yeh C-Y. Yoosefi M. Yoshihara A. You S-L. Yu Y-L. Yusoff A.F. Zainuddin A.A. Zamani F. Zambon S. Zampelas A. Zargar A.H. Zaw K.K. Zeljkovic Vrkic T. Zeng Y. Zhang B. Zhang L. Zhang L. Zhang Z-Y. Zhao M-H. Zhao W. Zholdin B. Zimmet P. Zins M. Zitt E. Zoghlami N. Zuñiga Cisneros J. Ezzati M. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants. Lancet 2024 404 10467 2077 2093 10.1016/S0140‑6736(24)02317‑1 39549716
    [Google Scholar]
  26. Jang W. Kim S. Son Y. Kim S. Kim H.J. Jo H. Park J. Lee K. Lee H. Tully M.A. Rahmati M. Smith L. Kang J. Woo S. Kim S. Hwang J. Rhee S.Y. Yon D.K. Prevalence, awareness, treatment, and control of type 2 diabetes in south korea (1998 to 2022): Nationwide cross-sectional study. JMIR Public Health Surveill. 2024 10 59571 10.2196/59571 39190907
    [Google Scholar]
  27. Neupane S. Florkowski W.J. Dhakal U. Dhakal C. Regional disparities in type 2 diabetes prevalence and associated risk factors in the United States. Diabetes Obes. Metab. 2024 26 10 4776 4782 10.1111/dom.15797 39021356
    [Google Scholar]
  28. D’Adamo E. Caprio S. Type 2 diabetes in youth: Epidemiology and pathophysiology. Diabetes Care 2011 34 Suppl 2 S161 S165 10.2337/dc11‑s212
    [Google Scholar]
  29. Valaiyapathi B. Gower B. Ashraf A.P. Pathophysiology of type 2 diabetes in children and adolescents. Curr. Diabetes Rev. 2020 16 3 220 229 10.2174/18756417OTA50ODUuTcVY 29879890
    [Google Scholar]
  30. Ali O. Genetics of type 2 diabetes. World J. Diabetes 2013 4 4 114 123 10.4239/wjd.v4.i4.114 23961321
    [Google Scholar]
  31. Pickup J.C. Crook M.A. Is Type II diabetes mellitus a disease of the innate immune system? Diabetologia 1998 41 10 1241 1248 10.1007/s001250051058 9794114
    [Google Scholar]
  32. Weisberg S.P. McCann D. Desai M. Rosenbaum M. Leibel R.L. Ferrante A.W. Jr Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 2003 112 12 1796 1808 10.1172/JCI200319246 14679176
    [Google Scholar]
  33. Sur D. Banu S. Role of macrophage in type 2 diabetes mellitus: Macrophage polarization a new paradigm for treatment of type 2 diabetes mellitus. Endocr. Metab. Immune Disord. Drug Targets 2023 23 1 2 11 10.2174/1871530322666220630093359 35786198
    [Google Scholar]
  34. Lima J.E.B.F. Moreira N.C.S. Sakamoto-Hojo E.T. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022 874-875 503437 10.1016/j.mrgentox.2021.503437 35151421
    [Google Scholar]
  35. Rehman K. Akash M.S.H. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: How are they interlinked? J. Cell. Biochem. 2017 118 11 3577 3585 10.1002/jcb.26097 28460155
    [Google Scholar]
  36. Lytrivi M. Castell A.L. Poitout V. Cnop M. Recent insights into mechanisms of β-cell lipo- and glucolipotoxicity in type 2 diabetes. J. Mol. Biol. 2020 432 5 1514 1534 10.1016/j.jmb.2019.09.016 31628942
    [Google Scholar]
  37. Petersmann A. Müller-Wieland D. Müller U. A. Landgraf R. Nauck M. Freckmann G. Heinemann L. Schleicher E. Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes. 2019 127 S 01 S1 S7 10.1055/a‑1018‑9078
    [Google Scholar]
  38. American Diabetes Association Professional Practice Committee, Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022 45 S17 S38 10.2337/dc22‑S002 34964875
    [Google Scholar]
  39. Kerner W. Brückel J. Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2014 122 7 384 386 10.1055/s‑0034‑1366278 25014088
    [Google Scholar]
  40. Punthakee Z. Goldenberg R. Katz P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can. J. Diabetes 2018 42 Suppl. 1 S10 S15 10.1016/j.jcjd.2017.10.003 29650080
    [Google Scholar]
  41. ElSayed N.A. Aleppo G. Aroda V.R. Bannuru R.R. Brown F.M. Bruemmer D. Collins B.S. Gaglia J.L. Hilliard M.E. Isaacs D. Johnson E.L. Kahan S. Khunti K. Leon J. Lyons S.K. Perry M.L. Prahalad P. Pratley R.E. Seley J.J. Stanton R.C. Gabbay R.A. 2. Classification and diagnosis of diabetes: standards of care in diabetes—2023. Diabetes Care 2023 46 Suppl. 1 S19 S40 10.2337/dc23‑S002 36507649
    [Google Scholar]
  42. Mortality in type 1 diabetes in the dcct/edic versus the general population. Diabetes Care 2016 39 8 1378 1383 10.2337/dc15‑2399 27411699
    [Google Scholar]
  43. Lachin J.M. Bebu I. Nathan D.M. The beneficial effects of earlier versus later implementation of intensive therapy in type 1 diabetes. Diabetes Care 2021 44 10 2225 2230 10.2337/dc21‑1331 34380706
    [Google Scholar]
  44. McAdams B. Rizvi A. An overview of insulin pumps and glucose sensors for the generalist. J. Clin. Med. 2016 5 1 5 10.3390/jcm5010005 26742082
    [Google Scholar]
  45. Hirsch I.B. Juneja R. Beals J.M. Antalis C.J. Wright E.E. Jr The evolution of insulin and how it informs therapy and treatment choices. Endocr. Rev. 2020 41 5 733 755 10.1210/endrev/bnaa015 32396624
    [Google Scholar]
  46. Haahr H. Heise T. A review of the pharmacological properties of insulin degludec and their clinical relevance. Clin. Pharmacokinet. 2014 53 9 787 800 10.1007/s40262‑014‑0165‑y 25179915
    [Google Scholar]
  47. Aronson R. Biester T. Leohr J. Pollom R. Linnebjerg H. LaBell E.S. Zhang Q. Coutant D.E. Danne T. Ultra rapid lispro showed greater reduction in postprandial glucose versus Humalog in children, adolescents and adults with type 1 diabetes mellitus. Diabetes Obes. Metab. 2023 25 7 1964 1972 10.1111/dom.15063 36974352
    [Google Scholar]
  48. Qiao Y.C. Ling W. Pan Y.H. Chen Y.L. Zhou D. Huang Y.M. Zhang X.X. Zhao H.L. Efficacy and safety of pramlintide injection adjunct to insulin therapy in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. Oncotarget 2017 8 39 66504 66515 10.18632/oncotarget.16008 29029531
    [Google Scholar]
  49. Maffei P. Bettini S. Busetto L. Dassie F. SGLT2 inhibitors in the management of type 1 diabetes (T1D): An update on current evidence and recommendations. Diabetes Metab. Syndr. Obes. 2023 16 3579 3598 10.2147/DMSO.S240903 37964939
    [Google Scholar]
  50. Guyton J. Jeon M. Brooks A. Glucagon-like peptide 1 receptor agonists in type 1 diabetes mellitus. Am. J. Health Syst. Pharm. 2019 76 21 1739 1748 10.1093/ajhp/zxz179 31612934
    [Google Scholar]
  51. Krishnamurthy B. Lacorcia M. Kay T.W.H. Thomas H.E. Mannering S.I. Monitoring immunomodulation strategies in type 1 diabetes. Front. Immunol. 2023 14 1206874 10.3389/fimmu.2023.1206874 37346035
    [Google Scholar]
  52. Zong Q. Zhou R. Zhao Z. Wang Y. Liu C. Zhang P. Glucose-responsive insulin microneedle patch based on phenylboronic acid for 1 diabetes treatment. Eur. Polym. J. 2022 173 111217 10.1016/j.eurpolymj.2022.111217
    [Google Scholar]
  53. Akturk H.K. Snell-Bergeon J.K. Rewers A. Klaff L.J. Bode B.W. Peters A.L. Bailey T.S. Garg S.K. Improved postprandial glucose with inhaled technosphere insulin compared with insulin aspart in patients with type 1 diabetes on multiple daily injections: The STAT study. Diabetes Technol. Ther. 2018 20 10 639 647 10.1089/dia.2018.0200 30207748
    [Google Scholar]
  54. Grant M. Heise T. Baughman R. Comparison of pharmacokinetics and pharmacodynamics of inhaled technosphere insulin and subcutaneous insulin lispro in the treatment of type 1 diabetes mellitus. Clin. Pharmacokinet. 2022 61 3 413 422 10.1007/s40262‑021‑01084‑0 34773608
    [Google Scholar]
  55. Peacock S. Frizelle I. Hussain S. A systematic review of commercial hybrid closed-loop automated insulin delivery systems. Diabetes Ther. 2023 14 5 839 855 10.1007/s13300‑023‑01394‑5 37017916
    [Google Scholar]
  56. Arunachalum S. Velado K. Vigersky R.A. Cordero T.L. Glycemic outcomes during real-world hybrid closed-loop system use by individuals with type 1 diabetes in the united states. J. Diabetes Sci. Technol. 2023 17 4 951 958 10.1177/19322968221088608 35414272
    [Google Scholar]
  57. Zong Q. Guo R. Dong N. Ling G. Zhang P. Design and development of insulin microneedles for diabetes treatment. Drug Deliv. Transl. Res. 2022 12 5 973 980 10.1007/s13346‑021‑00981‑y 33851362
    [Google Scholar]
  58. Sharma S. Hatware K. Bhadane P. Sindhikar S. Mishra D.K. Recent advances in microneedle composites for biomedical applications: Advanced drug delivery technologies. Mater. Sci. Eng. C 2019 103 109717 10.1016/j.msec.2019.05.002 31349403
    [Google Scholar]
  59. Ita K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics 2015 7 3 90 105 10.3390/pharmaceutics7030090 26131647
    [Google Scholar]
  60. Ahmed Saeed AL-Japairai K. Mahmood S. Hamed Almurisi S. Reddy Venugopal J. Rebhi Hilles A. Azmana M. Raman S. Current trends in polymer microneedle for transdermal drug delivery. Int. J. Pharm. 2020 587 119673 10.1016/j.ijpharm.2020.119673
    [Google Scholar]
  61. Demir Y.K. Akan Z. Kerimoglu O. Characterization of polymeric microneedle arrays for transdermal drug delivery. PLoS One 2013 8 10 77289 10.1371/journal.pone.0077289 24194879
    [Google Scholar]
  62. Sartawi Z. Blackshields C. Faisal W. Dissolving microneedles: Applications and growing therapeutic potential. J. Control. Release 2022 348 186 205 10.1016/j.jconrel.2022.05.045 35662577
    [Google Scholar]
  63. Anbazhagan G. Suseela S.B. Development and evaluation of biocompatible coated microneedle array for controlled insulin delivery: Fabrication, characterization, in vitro, and in vivo investigations. Mater. Today Commun. 2024 41 110747 10.1016/j.mtcomm.2024.110747
    [Google Scholar]
  64. Wang Y. Yu H. Wang L. Hu J. Feng J. Shen D. Hong Y. Liu J. Chen D. Microneedles with two-stage glucose-sensitive controlled release for long-term insulin delivery. ACS Biomater. Sci. Eng. 2023 9 5 2534 2544 10.1021/acsbiomaterials.3c00137 37027835
    [Google Scholar]
  65. Zhang P. Zhang Y. Liu C.G. Polymeric nanoparticles based on carboxymethyl chitosan in combination with painless microneedle therapy systems for enhancing transdermal insulin delivery. RSC Advances 2020 10 41 24319 24329 10.1039/D0RA04460A 35516174
    [Google Scholar]
  66. Wang Y. Yu H. Wang L. Zhang L. Liu J. Chen D. Yang J. Ouyang C. Hu J. Feng J. Li C. Intelligent microneedle patch based on functionalized alginate and chitosan for long-term self-regulated insulin delivery. Carbohydr. Polym. 2025 348 Pt B 122885 10.1016/j.carbpol.2024.122885 39567163
    [Google Scholar]
  67. Resnik D. Možek M. Pečar B. Janež A. Urbančič V. Iliescu C. Vrtačnik D. in vivo experimental study of noninvasive insulin microinjection through hollow si microneedle array. Micromachines 2018 9 1 40 10.3390/mi9010040 30393315
    [Google Scholar]
  68. Fonseca D.F.S. Costa P.C. Almeida I.F. Dias-Pereira P. Correia-Sá I. Bastos V. Oliveira H. Duarte-Araújo M. Morato M. Vilela C. Silvestre A.J.D. Freire C.S.R. Pullulan microneedle patches for the efficient transdermal administration of insulin envisioning diabetes treatment. Carbohydr. Polym. 2020 241 116314 10.1016/j.carbpol.2020.116314 32507191
    [Google Scholar]
  69. Kuang Y. Xue F. Dai Z. Zhu Y. Liu Q. Chen H. Anti-inflammatory PEGylated bilirubin microneedle patch for diabetes treatment. Appl. Mater. Today 2024 39 102295 10.1016/j.apmt.2024.102295
    [Google Scholar]
  70. Vasconcelos Silva E.L. Oliveira A.C.J. Moreira L.M.C.C. Silva-Filho E.C. Wanderley A.G. Soares M.F.L.R. Soares-Sobrinho J.L. Insulin-loaded nanoparticles based on acetylated cashew gum/chitosan complexes for oral administration and diabetes treatment. Int. J. Biol. Macromol. 2023 242 Pt 1 124737 10.1016/j.ijbiomac.2023.124737 37148931
    [Google Scholar]
  71. Wang Y. Song W. Xue S. Sheng Y. Gao B. Dang Y. Zhang Y. Zhang G. β-Cyclodextrin/dialdehyde glucan-coated keratin nanoparticles for oral delivery of insulin. Int. J. Biol. Macromol. 2024 276 Pt 2 133805 10.1016/j.ijbiomac.2024.133805 38996885
    [Google Scholar]
  72. Niu L. Xu Y.C. Dai Z. Tang H.Q. Gene therapy for type 1 diabetes mellitus in rats by gastrointestinal administration of chitosan nanoparticles containing human insulin gene. World J. Gastroenterol. 2008 14 26 4209 4215 10.3748/wjg.14.4209 18636668
    [Google Scholar]
  73. Lopes M. Shrestha N. Correia A. Shahbazi M.A. Sarmento B. Hirvonen J. Veiga F. Seiça R. Ribeiro A. Santos H.A. Dual chitosan/albumin- coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J. Control. Release 2016 232 29 41 10.1016/j.jconrel.2016.04.012 27074369
    [Google Scholar]
  74. Lopes M. Aniceto D. Abrantes M. Simões S. Branco F. Vitória I. Botelho M.F. Seiça R. Veiga F. Ribeiro A. In vivo biodistribution of antihyperglycemic biopolymer-based nanoparticles for the treatment of type 1 and type 2 diabetes. Eur. J. Pharm. Biopharm. 2017 113 88 96 10.1016/j.ejpb.2016.11.037 28007370
    [Google Scholar]
  75. Li M. PH and H2O2 dual-sensitive nanoparticles enable enhanced and safe glucose-responsive oral insulin delivery for diabetes mellitus treatment. Theranostics 2024 14 14 5596 5607 10.7150/thno.98177 39310111
    [Google Scholar]
  76. Shaaban E.M. Ellakwa D.E. Elaraby N.M. Amr K.S. Mohamadin A.M. The effect of insulin-loaded gold and carboxymethyl chitosan nanoparticles on gene expression of glucokinase and pyruvate kinase in rats with diabetes type 1. J. Food Biochem. 2022 46 12 14447 10.1111/jfbc.14447 36219732
    [Google Scholar]
  77. Wang M. Zhang Z. Huo Q. Wang M. Sun Y. Liu H. Chang J. He B. Liang Y. Targeted polymeric nanoparticles based on mangiferin for enhanced protection of pancreatic β- cells and type 1 diabetes mellitus efficacy. ACS Appl. Mater. Interfaces 2022 14 9 11092 11103 10.1021/acsami.1c22964 35199981
    [Google Scholar]
  78. Rother K.I. Harlan D.M. Challenges facing islet transplantation for the treatment of type 1 diabetes mellitus. J. Clin. Invest. 2004 114 7 877 883 10.1172/JCI200423235 15467822
    [Google Scholar]
  79. Silva I.B.B. Kimura C.H. Colantoni V.P. Sogayar M.C. Stem cells differentiation into insulin-producing cells (IPCs): Recent advances and current challenges. Stem Cell Res. Ther. 2022 13 1 309 10.1186/s13287‑022‑02977‑y 35840987
    [Google Scholar]
  80. Singh A. Afshan N. Singh A. Singh S.K. Yadav S. Kumar M. Sarma D.K. Verma V. Recent trends and advances in type 1 diabetes therapeutics: A comprehensive review. Eur. J. Cell Biol. 2023 102 2 151329 10.1016/j.ejcb.2023.151329 37295265
    [Google Scholar]
  81. ElSayed N.A. Aleppo G. Bannuru R.R. Bruemmer D. Collins B.S. Ekhlaspour L. Gaglia J.L. Hilliard M.E. Johnson E.L. Khunti K. Lingvay I. Matfin G. McCoy R.G. Perry M.L. Pilla S.J. Polsky S. Prahalad P. Pratley R.E. Segal A.R. Seley J.J. Stanton R.C. Gabbay R.A. 9. Pharmacologic approaches to glycemic treatment: standards of care in diabetes—2024. Diabetes Care 2024 47 Suppl. 1 S158 S178 10.2337/dc24‑S009
    [Google Scholar]
  82. Chung W.K. Erion K. Florez J.C. Hattersley A.T. Hivert M.F. Lee C.G. McCarthy M.I. Nolan J.J. Norris J.M. Pearson E.R. Philipson L. McElvaine A.T. Cefalu W.T. Rich S.S. Franks P.W. Precision medicine in diabetes: A consensus report from the american diabetes association (ADA) and the european association for the study of diabetes (EASD). Diabetes Care 2020 43 7 1617 1635 10.2337/dci20‑0022 32561617
    [Google Scholar]
  83. Xie X. Wu C. Hao Y. Wang T. Yang Y. Cai P. Zhang Y. Huang J. Deng K. Yan D. Lin H. Benefits and risks of drug combination therapy for diabetes mellitus and its complications: A comprehensive review. Front. Endocrinol. 2023 14 1301093 10.3389/fendo.2023.1301093 38179301
    [Google Scholar]
  84. Chuang M.H. Chen J.Y. Wang H.Y. Jiang Z.H. Wu V.C. Clinical outcomes of tirzepatide or GLP-1 receptor agonists in individuals with type 2 diabetes. JAMA Netw. Open 2024 7 8 2427258 10.1001/jamanetworkopen.2024.27258 39133485
    [Google Scholar]
  85. Syed Y.Y. Dorzagliatin: First approval. Drugs 2022 82 18 1745 1750 10.1007/s40265‑022‑01813‑0 36449148
    [Google Scholar]
  86. Kaur U. Pathak B.K. Meerashahib T.J. Krishna D.V.V. Chakrabarti S.S. Should glucokinase be given a chance in diabetes therapeutics? a clinical-pharmacological review of dorzagliatin and lessons learned so far. Clin. Drug Investig. 2024 44 4 223 250 10.1007/s40261‑024‑01351‑5 38460077
    [Google Scholar]
  87. Lingvay I. Sumithran P. Cohen R.V. le Roux C.W. Obesity management as a primary treatment goal for type 2 diabetes: Time to reframe the conversation. Lancet 2022 399 10322 394 405 10.1016/S0140‑6736(21)01919‑X 34600604
    [Google Scholar]
  88. Wing R.R. Lang W. Wadden T.A. Safford M. Knowler W.C. Bertoni A.G. Hill J.O. Brancati F.L. Peters A. Wagenknecht L. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 2011 34 7 1481 1486 10.2337/dc10‑2415 21593294
    [Google Scholar]
  89. Yao L. Wang L. Zhang R. Soukas A.A. Wu L. The direct targets of metformin in diabetes and beyond. Trends Endocrinol. Metab. 2025 36 4 364 372 10.1016/j.tem.2024.07.017 39227192
    [Google Scholar]
  90. Saif-Ul Haque M. Khan U.Z. Memon R.A. Pharmacological management of diabetes. BIDE’ s Diabetes Desk Book., Amsterdam, Netherlands: Elsevier Elsevier 2024 71 101 10.1016/B978‑0‑443‑22106‑4.00029‑2
    [Google Scholar]
  91. Van Name M.A. Medications for the treatment of type II diabetes. Pediatric Type II Diabetes. Amsterdam, Netherlands: Elsevier Elsevier 2019 101 106 10.1016/B978‑0‑323‑55138‑0.00012‑7
    [Google Scholar]
  92. Habtemariam S. Current pharmacotherapy options for type 2 diabetes. Medicinal foods as potential therapies for type-2 diabetes and associated diseases., Amsterdam, Netherlands: Elsevier Elsevier 2019 89 107 10.1016/B978‑0‑08‑102922‑0.00005‑5
    [Google Scholar]
  93. Balasubramanian P. Inzucchi S.E. Sodium-glucose co-transporter-2 inhibitors: A new era of cardioprotection and renoprotection. Cardiovascular Endocrinology and Metabolism., Amsterdam, Netherlands: Elsevier Elsevier 2023 337 363 10.1016/B978‑0‑323‑99991‑5.00006‑1
    [Google Scholar]
  94. Steven S. Frenis K. Oelze M. Vujacic-Mirski K. Jimenez M.T.B. Kalinovic S. Kröller-Schön S. Münzel T. Daiber A. Sodium-glucose cotransporter 2 inhibitors, diabetes, and oxidative stress. Diabetes., Amsterdam, Netherlands: Elsevier Elsevier 2020 117 128 10.1016/B978‑0‑12‑815776‑3.00012‑7
    [Google Scholar]
  95. Thomas M.C. Neuen B.L. Twigg S.M. Cooper M.E. Badve S.V. SGLT2 inhibitors for patients with type 2 diabetes and CKD: A narrative review. Endocr. Connect. 2023 12 8 230005 10.1530/EC‑23‑0005 37159343
    [Google Scholar]
  96. Ferrannini G. Savarese G. Cosentino F. SGLT2 inhibitors in type 2 diabetes mellitus. Heart Fail. Clin. 2022 18 4 551 559 10.1016/j.hfc.2022.03.009 36216485
    [Google Scholar]
  97. Wright E.M. SGLT2 inhibitors: Physiology and pharmacology. Kidney360 2021 2 12 2027 2037 10.34067/KID.0002772021 35419546
    [Google Scholar]
  98. Jalleh R.J. Rayner C.K. Hausken T. Jones K.L. Camilleri M. Horowitz M. Gastrointestinal effects of GLP-1 receptor agonists: Mechanisms, management, and future directions. Lancet Gastroenterol. Hepatol. 2024 9 10 957 964 10.1016/S2468‑1253(24)00188‑2 39096914
    [Google Scholar]
  99. Nauck M.A. Quast D.R. Wefers J. Meier J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Mol. Metab. 2021 46 101102 10.1016/j.molmet.2020.101102 33068776
    [Google Scholar]
  100. Zhao X. Wang M. Wen Z. Lu Z. Cui L. Fu C. Xue H. Liu Y. Zhang Y. GLP-1 receptor agonists: Beyond their pancreatic effects. Front. Endocrinol. 2021 12 721135 10.3389/fendo.2021.721135 34497589
    [Google Scholar]
  101. Várkonyi T.T. Pósa A. Pávó N. Pavo I. Perspectives on weight control in diabetes – Tirzepatide. Diabetes Res. Clin. Pract. 2023 202 110770 10.1016/j.diabres.2023.110770 37279858
    [Google Scholar]
  102. Chavda V.P. Ajabiya J. Teli D. Bojarska J. Apostolopoulos V. Tirzepatide, a new era of dual-targeted treatment for diabetes and obesity: A mini-review. Molecules 2022 27 13 4315 10.3390/molecules27134315 35807558
    [Google Scholar]
  103. Forzano I. Varzideh F. Avvisato R. Jankauskas S.S. Mone P. Santulli G. Tirzepatide: A systematic update. Int. J. Mol. Sci. 2022 23 23 14631 10.3390/ijms232314631 36498958
    [Google Scholar]
  104. Shao D.W. Zhao L.J. Sun J.F. Synthesis and clinical application of representative small-molecule dipeptidyl Peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes mellitus (T2DM). Eur. J. Med. Chem. 2024 272 116464 10.1016/j.ejmech.2024.116464 38704940
    [Google Scholar]
  105. Gilbert M.P. Pratley R.E. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: Review of head-to-head clinical trials. Front. Endocrinol. 2020 11 178 10.3389/fendo.2020.00178 32308645
    [Google Scholar]
  106. Basak S. Murmu A. Matore B.W. Roy P.P. Singh J. Thiazolidinedione an auspicious scaffold as PPAR-γ agonist: Its possible mechanism to Manoeuvre against insulin resistant diabetes mellitus. Eur. J. Med. Chem. Rep. 2024 11 100160 10.1016/j.ejmcr.2024.100160
    [Google Scholar]
  107. Dutta D. Bhattacharya S. Kumar M. Datta P.K. Mohindra R. Sharma M. Efficacy and safety of novel thiazolidinedione lobeglitazone for managing type-2 diabetes a meta-analysis. Diabetes Metab. Syndr. 2023 17 1 102697 10.1016/j.dsx.2022.102697 36580702
    [Google Scholar]
  108. Nath M. Nath S. Choudhury Y. The impact of thiazolidinediones on the risk for prostate cancer in patients with type 2 diabetes mellitus: A review and meta-analysis. Meta Gene 2021 27 100840 10.1016/j.mgene.2020.100840
    [Google Scholar]
  109. Islam N. Ayele H.T. Yu O.H.Y. Douros A. Filion K.B. Sulfonylureas and the risk of ventricular arrhythmias among people with type 2 diabetes: A systematic review of observational studies. Clin. Pharmacol. Ther. 2022 111 6 1248 1257 10.1002/cpt.2570 35238022
    [Google Scholar]
  110. Su J. Xu J. Hu S. Ye H. Xie L. Ouyang S. Advances in small- molecule insulin secretagogues for diabetes treatment. Biomed. Pharmacother. 2024 178 117179 10.1016/j.biopha.2024.117179 39059347
    [Google Scholar]
  111. DeMarsilis A. Reddy N. Boutari C. Filippaios A. Sternthal E. Katsiki N. Mantzoros C. Pharmacotherapy of type 2 diabetes: An update and future directions. Metabolism 2022 137 155332 10.1016/j.metabol.2022.155332 36240884
    [Google Scholar]
  112. Lin Y. Wu J. Zhuang Z. Gong X. Jin Z. Lin X. Zhang C. Zhao K. A pH-responsive microneedle patch for the transdermal delivery of biomineralized insulin nanoparticles to diabetes treatment. Int. J. Biol. Macromol. 2025 284 Pt 1 137955 10.1016/j.ijbiomac.2024.137955 39592049
    [Google Scholar]
  113. Rabiei M. Kashanian S. Bahrami G. Derakhshankhah H. Barzegari E. Samavati S.S. McInnes S.J.P. Dissolving microneedle-assisted long-acting Liraglutide delivery to control type 2 diabetes and obesity. Eur. J. Pharm. Sci. 2021 167 106040 10.1016/j.ejps.2021.106040 34655736
    [Google Scholar]
  114. Weng L. Wang X. Liu H. Yu Z. Liu S. Light-responsive microneedle array with tunable insulin release function for painless and on-demand anti-diabetic therapy. Mater. Lett. 2024 357 135684 10.1016/j.matlet.2023.135684
    [Google Scholar]
  115. Zhu M. Liu Y. Jiang F. Cao J. Kundu S.C. Lu S. Combined silk fibroin microneedles for insulin delivery. ACS Biomater. Sci. Eng. 2020 6 6 3422 3429 10.1021/acsbiomaterials.0c00273 33463180
    [Google Scholar]
  116. Jiang G. Xu B. Zhu J. Zhang Y. Liu T. Song G. Polymer microneedles integrated with glucose-responsive mesoporous bioactive glass nanoparticles for transdermal delivery of insulin. Biomed. Phys. Eng. Express 2019 5 4 045038 10.1088/2057‑1976/ab3202
    [Google Scholar]
  117. Chen B.Z. Zhang L.Q. Xia Y.Y. Zhang X.P. Guo X.D. A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Sci. Adv. 2020 6 28 eaba7260 10.1126/sciadv.aba7260 32832606
    [Google Scholar]
  118. El-Dakroury W.A. Zewail M.B. Amin M.M. Design, optimization, and in-vivo performance of glipizide-loaded O-carboxymethyl chitosan nanoparticles in insulin resistant/type 2 diabetic rat model. J. Drug Deliv. Sci. Technol. 2023 79 104040 10.1016/j.jddst.2022.104040
    [Google Scholar]
  119. Kumar S. Bhanjana G. Verma R.K. Dhingra D. Dilbaghi N. Kim K.H. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J. Pharm. Pharmacol. 2017 69 2 143 150 10.1111/jphp.12672 28033667
    [Google Scholar]
  120. Hu M. Gou T. Chen Y. Xu M. Chen R. Zhou T. Liu J. Peng C. Ye Q. A novel drug delivery system: Hyodeoxycholic acid-modified metformin liposomes for type 2 diabetes treatment. Molecules 2023 28 6 2471 10.3390/molecules28062471 36985444
    [Google Scholar]
  121. Zhang Y. Jiang G. Hong W. Gao M. Xu B. Zhu J. Song G. Liu T. Polymeric microneedles integrated with metformin-loaded and PDA/LA-Coated hollow mesoporous SiO 2 for NIR-triggered transdermal delivery on diabetic rats. ACS Appl. Bio Mater. 2018 1 6 1906 1917 10.1021/acsabm.8b00470 34996291
    [Google Scholar]
  122. Bornstein S.R. Wright J.F. Steenblock C. The promising potential of gene therapy for diabetes mellitus. Nat. Rev. Endocrinol. 2024 20 11 627 628 10.1038/s41574‑024‑01030‑7 39209975
    [Google Scholar]
  123. Srinivasan M. Thangaraj S.R. Arzoun H. Gene therapy - Can it cure type 1 diabetes? Cureus 2021 13 12 20516 10.7759/cureus.20516 35004071
    [Google Scholar]
  124. Kroger C.J. Clark M. Ke Q. Tisch R.M. Therapies to Suppress β Cell Autoimmunity in Type 1 Diabetes. Front. Immunol. 2018 9 1891 10.3389/fimmu.2018.01891 30166987
    [Google Scholar]
  125. Dong S. Wu H. Regenerating β cells of the pancreas – potential developments in diabetes treatment. Expert Opin. Biol. Ther. 2018 18 2 175 185 10.1080/14712598.2018.1402885 29130349
    [Google Scholar]
  126. Shi R. Liu X. Wang Y. Pan M. Wang S. Shi L. Ni B. Long-term stability and immunogenicity of lipid nanoparticle COVID-19 mRNA vaccine is affected by particle size. Hum. Vaccin. Immunother. 2024 20 1 2342592 10.1080/21645515.2024.2342592 38714327
    [Google Scholar]
  127. El Nahas R. Al-Aghbar M.A. Herrero L. van Panhuys N. Espino-Guarch M. Applications of genome-editing technologies for type 1 diabetes. Int. J. Mol. Sci. 2023 25 1 344 10.3390/ijms25010344 38203514
    [Google Scholar]
  128. Xia F. Cao H. Du J. Liu X. Liu Y. Xiang M. Reg3g overexpression promotes β cell regeneration and induces immune tolerance in nonobese-diabetic mouse model. J. Leukoc. Biol. 2016 99 6 1131 1140 10.1189/jlb.3A0815‑371RRR 26667474
    [Google Scholar]
  129. Gautam P. Recino A. Foale R.D. Zhao J. Gan S.U. Wallberg M. Calne R. Lever A.M.L. Promoter optimisation of lentiviral vectors for efficient insulin gene expression in canine mesenchymal stromal cells: Potential surrogate beta cells. J. Gene Med. 2016 18 10 312 321 10.1002/jgm.2900 27572655
    [Google Scholar]
  130. Matsuoka T. Kawashima S. Miyatsuka T. Sasaki S. Shimo N. Katakami N. Kawamori D. Takebe S. Herrera P.L. Kaneto H. Stein R. Shimomura I. Mafa enables PDX1 to effectively convert pancreatic islet progenitors and committed islet α-cells into β-cells in vivo. Diabetes 2017 66 5 1293 1300 10.2337/db16‑0887 28223284
    [Google Scholar]
  131. Jaén M.L. Vilà L. Elias I. Jimenez V. Rodó J. Maggioni L. Ruiz-de Gopegui R. Garcia M. Muñoz S. Callejas D. Ayuso E. Ferré T. Grifoll I. Andaluz A. Ruberte J. Haurigot V. Bosch F. Long-term efficacy and safety of insulin and glucokinase gene therapy for diabetes: 8-year follow-up in dogs. Mol. Ther. Methods Clin. Dev. 2017 6 1 7 10.1016/j.omtm.2017.03.008 28626777
    [Google Scholar]
  132. Chen J. Hu Y. Chen Y. Zhou Z. Shen Y. Wang Y. Liu Z. Li X. Su Z. Wu J. LNP-mRNA vaccine prevents type 1 diabetes in non-obese diabetes mice. J. Control. Release 2024 375 513 523 10.1016/j.jconrel.2024.09.020 39278354
    [Google Scholar]
  133. Fishman S. Lewis M.D. Siew L.K. De Leenheer E. Kakabadse D. Davies J. Ziv D. Margalit A. Karin N. Gross G. Wong F.S. Adoptive transfer of mRNA-transfected T cells redirected against diabetogenic cd8 T cells can prevent diabetes. Mol. Ther. 2017 25 2 456 464 10.1016/j.ymthe.2016.12.007 28109957
    [Google Scholar]
  134. Lakey J.R.T. Wang Y. Alexander M. Chan M.K.S. Wong M.B.F. Casazza K. Jenkins I. Exosomes; a Potential Source of Biomarkers, Therapy, and Cure for Type-1 Diabetes. Int. J. Mol. Sci. 2023 24 21 15713 10.3390/ijms242115713 37958696
    [Google Scholar]
  135. Tang D-Q. Shun L. Koya V. Sun Y. Wang Q. Wang H. Li S-W. Sun Y. Purich D.L. Zhang C. Hansen B. Qian K. Atkinson M. Phillips M.I. Yang L-J. Genetically reprogrammed, liver-derived insulin-producing cells are glucose-responsive, but susceptible to autoimmune destruction in settings of murine model of type 1 diabetes. Am. J. Transl. Res. 2013 5 2 184 199 23573363
    [Google Scholar]
  136. Ma S. Yang M. Zhou W. Dai L. Ding Y. Guo X. Yuan Y. Tang J. Li D. Wang X. An efficient and footprint-free protocol for the transdifferentiation of hepatocytes into insulin-producing cells with IVT mRNAs. Front. Genet. 2020 11 575 10.3389/fgene.2020.00575 32655618
    [Google Scholar]
  137. Kwon H. Kim M. Seo Y. Moon Y.S. Lee H.J. Lee K. Lee H. Emergence of synthetic mRNA: in vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 2018 156 172 193 10.1016/j.biomaterials.2017.11.034 29197748
    [Google Scholar]
  138. Bartesaghi S. Wallenius K. Hovdal D. Liljeblad M. Wallin S. Dekker N. Barlind L. Davies N. Seeliger F. Winzell M.S. Patel S. Theisen M. Brito L. Bergenhem N. Andersson S. Peng X.R. Subcutaneous delivery of FGF21 mRNA therapy reverses obesity, insulin resistance, and hepatic steatosis in diet-induced obese mice. Mol. Ther. Nucleic Acids 2022 28 500 513 10.1016/j.omtn.2022.04.010 35592498
    [Google Scholar]
  139. Zha W. Wang J. Guo Z. Zhang Y. Wang Y. Dong S. Liu C. Xing H. Li X. Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable lipid nanoparticles. Int. J. Pharm. 2023 632 122565 10.1016/j.ijpharm.2022.122565 36586634
    [Google Scholar]
  140. Shende P. Patel C. siRNA: An alternative treatment for diabetes and associated conditions. J. Drug Target. 2019 27 2 174 182 10.1080/1061186X.2018.1476518 29756500
    [Google Scholar]
  141. Tang X. Tang G. Ozcan S. Role of microRNAs in diabetes. Biochim. Biophys. Acta. Gene Regul. Mech. 2008 1779 11 697 701 10.1016/j.bbagrm.2008.06.010
    [Google Scholar]
  142. Latreille M. Herrmanns K. Renwick N. Tuschl T. Malecki M.T. McCarthy M.I. Owen K.R. Rülicke T. Stoffel M. miR-375 gene dosage in pancreatic β-cells: Implications for regulation of β-cell mass and biomarker development. J. Mol. Med. 2015 93 10 1159 1169 10.1007/s00109‑015‑1296‑9 26013143
    [Google Scholar]
  143. Pang H. Fan W. Shi X. Li J. Wang Y. Luo S. Lin J. Huang G. Li X. Xie Z. Zhou Z. Characterization of lncRNA Profiles of plasma-derived exosomes from type 1 diabetes mellitus. Front. Endocrinol. 2022 13 822221 10.3389/fendo.2022.822221 35634499
    [Google Scholar]
  144. Liu S.X. Zheng F. Xie K.L. Xie M.R. Jiang L.J. Cai Y. Exercise reduces insulin resistance in type 2 diabetes mellitus via mediating the lncRNA MALAT1/MicroRNA-382-3p/resistin axis. Mol. Ther. Nucleic Acids 2019 18 34 44 10.1016/j.omtn.2019.08.002 31479923
    [Google Scholar]
  145. Fang Y. Wang X. Li W. Han J. Jin J. Su F. Zhang J. Huang W. Xiao F. Pan Q. Zou L. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. Int. J. Mol. Med. 2018 42 4 1865 1874 10.3892/ijmm.2018.3783 30066828
    [Google Scholar]
  146. Zhang C. Han X. Yang L. Fu J. Sun C. Huang S. Xiao W. Gao Y. Liang Q. Wang X. Luo F. Lu W. Zhou Y. Circular RNA circPPM1F modulates M1 macrophage activation and pancreatic islet inflammation in type 1 diabetes mellitus. Theranostics 2020 10 24 10908 10924 10.7150/thno.48264 33042261
    [Google Scholar]
  147. Drucker D.J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018 27 4 740 756 10.1016/j.cmet.2018.03.001 29617641
    [Google Scholar]
  148. Gupta V. Glucagon-like peptide-1 analogues: An overview. Indian J. Endocrinol. Metab. 2013 17 3 413 421 10.4103/2230‑8210.111625 23869296
    [Google Scholar]
  149. Obesity atlas. 2023 Available from: https://data.worldobesity.org/publications/?cat=19
  150. Rosen C.J. Ingelfinger J.R. Shifting tides offer new hope for obesity. N. Engl. J. Med. 2022 387 3 271 273 10.1056/NEJMe2206939 35657317
    [Google Scholar]
  151. Jastreboff A.M. Aronne L.J. Ahmad N.N. Wharton S. Connery L. Alves B. Kiyosue A. Zhang S. Liu B. Bunck M.C. Stefanski A. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 2022 387 3 205 216 10.1056/NEJMoa2206038 35658024
    [Google Scholar]
  152. Davies M. Færch L. Jeppesen O.K. Pakseresht A. Pedersen S.D. Perreault L. Rosenstock J. Shimomura I. Viljoen A. Wadden T.A. Lingvay I. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): A randomised, double-blind, double-dummy, placebo- controlled, phase 3 trial. Lancet 2021 397 10278 971 984 10.1016/S0140‑6736(21)00213‑0 33667417
    [Google Scholar]
  153. Seino Y. Fukushima M. Yabe D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig. 2010 1 1-2 8 23 10.1111/j.2040‑1124.2010.00022.x 24843404
    [Google Scholar]
  154. Furman B.L. The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent. Toxicon 2012 59 4 464 471 10.1016/j.toxicon.2010.12.016 21194543
    [Google Scholar]
  155. Kolterman O.G. Kim D.D. Shen L. Ruggles J.A. Nielsen L.L. Fineman M.S. Baron A.D. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am. J. Health Syst. Pharm. 2005 62 2 173 181 10.1093/ajhp/62.2.173 15700891
    [Google Scholar]
  156. Davies M.J. Aroda V.R. Collins B.S. Gabbay R.A. Green J. Maruthur N.M. Rosas S.E. Del Prato S. Mathieu C. Mingrone G. Rossing P. Tankova T. Tsapas A. Buse J.B. Management of hyperglycemia in type 2 diabetes, 2022. a consensus report by the american diabetes association (ada) and the european association for the study of diabetes (EASD). Diabetes Care 2022 45 11 2753 2786 10.2337/dci22‑0034 36148880
    [Google Scholar]
  157. Deng W. Zhao Z. Zou T. Kuang T. Wang J. Research advances in fusion protein-based drugs for diabetes treatment. Diabetes Metab. Syndr. Obes. 2024 17 343 362 10.2147/DMSO.S421527 38288338
    [Google Scholar]
  158. Frias J.P. Wynne A.G. Matyjaszek-Matuszek B. Bartaskova D. Cox D.A. Woodward B. Li Y.G. Tham L.S. Milicevic Z. Efficacy and safety of an expanded dulaglutide dose range: A phase 2, placebo- controlled trial in patients with type 2 diabetes using metformin. Diabetes Obes. Metab. 2019 21 9 2048 2057 10.1111/dom.13764 31050143
    [Google Scholar]
  159. Rosenstock J. Sorli C.H. Trautmann M.E. Morales C. Wendisch U. Dailey G. Hompesch M. Choi I.Y. Kang J. Stewart J. Yoon K.H. Once-weekly efpeglenatide dose-range effects on glycemic control and body weight in patients with type 2 diabetes on metformin or drug naive, referenced to liraglutide. Diabetes Care 2019 42 9 1733 1741 10.2337/dc18‑2648 31320446
    [Google Scholar]
  160. Pratley R.E. Nauck M.A. Barnett A.H. Feinglos M.N. Ovalle F. Harman-Boehm I. Ye J. Scott R. Johnson S. Stewart M. Rosenstock J. Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs (HARMONY 7): A randomised, open-label, multicentre, non-inferiority phase 3 study. Lancet Diabetes Endocrinol. 2014 2 4 289 297 10.1016/S2213‑8587(13)70214‑6 24703047
    [Google Scholar]
  161. Duttaroy A. Kanakaraj P. Osborn B.L. Schneider H. Pickeral O.K. Chen C. Zhang G. Kaithamana S. Singh M. Schulingkamp R. Crossan D. Bock J. Kaufman T.E. Reavey P. Carey-Barber M. Krishnan S.R. Garcia A. Murphy K. Siskind J.K. McLean M.A. Cheng S. Ruben S. Birse C.E. Blondel O. Development of a long-acting insulin analog using albumin fusion technology. Diabetes 2005 54 1 251 258 10.2337/diabetes.54.1.251 15616036
    [Google Scholar]
  162. Wang Y. Shao J. Zaro J.L. Shen W.C. Proinsulin-transferrin fusion protein as a novel long-acting insulin analog for the inhibition of hepatic glucose production. Diabetes 2014 63 5 1779 1788 10.2337/db13‑0973 24353179
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501399175250916110738
Loading
/content/journals/cdt/10.2174/0113894501399175250916110738
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test