Skip to content
2000
image of A Review of Amylin Peptide Receptor Activators for Obesity Pharmacotherapy

Abstract

Amylin is a thirty-seven amino acid peptide hormone that is secreted from the pancreas with insulin. The peptide hormone amylin activates its receptors in the brain to regulate blood glucose and food appetite. Interestingly, the amylin receptor is the heterodimer of the calcitonin receptor (which is the receptor for the peptide hormone calcitonin) and an accessory protein called receptor activity-modifying protein. Amylin receptor activation has emerged as a promising drug target for the treatment of diabetes and obesity. Recent pharmaceutical efforts with amylin receptor activators have focused on developing drugs for the treatment of obesity. Multiple amylin analogs have been tested in pre-clinical settings, and some are currently being tested in clinical trials. For this review, recent research publications and available information regarding drug development targeting amylin receptors were collected. This review summarizes the amylin receptor activators currently being tested in clinical trials for the treatment of obesity. In addition, recent research achievements were demonstrated, such as the introduction of mutations that enhanced receptor affinity/potency and the development of a method for measuring selective amylin receptor activation. Potential issues along with peptide drug development were described, including lipidation to achieve a long-acting property. The combination of an amylin analog and other anti-obesity peptide drugs has demonstrated higher clinical efficacy in reducing body weight than monotherapy. The combination therapy is likely to be the first drug therapy where an amylin analog is used for obesity treatment. In addition, amylin receptor activators may have an adverse effect profile more favorable than that of GLP-1 receptor activators, which could be a potential benefit of amylin receptor activators.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501398624250819070004
2025-08-29
2025-09-10
Loading full text...

Full text loading...

References

  1. Consequences of obesity. 2022 Available from: https://www.cdc.gov/obesity/basics/consequences.html
  2. Risk factors for obesity. 2024 Available from: https://www.cdc.gov/obesity/risk-factors/risk-factors.html
  3. Thaker V.V. Genetic and epigenetic causes of obesity. Adolesc. Med. State Art Rev. 2017 28 2 379 405 30416642
    [Google Scholar]
  4. Panera N. Mandato C. Crudele A. Bertrando S. Vajro P. Alisi A. Genetics, epigenetics and transgenerational transmission of obesity in children. Front. Endocrinol. 2022 13 1006008 10.3389/fendo.2022.1006008 36452324
    [Google Scholar]
  5. Kumar M. Hussain M.S. Sonu S.R. Raj S. Verma R. Sharma S. Sahu S.K. An overview of treatment modalities and management aspects for obesity. Curr. Nutr. Food Sci. 2023 19 2 105 113 10.2174/1573401318666220527124759
    [Google Scholar]
  6. Safety clinical trial shows possible increased risk of cancer with weight-loss medicine Belviq, Belviq XR (lorcaserin). 2020 Available from: https://www.fda.gov/drugs/drug-safety-and-availability/safety-clinical-trial-shows-possible-increased-risk-cancer- weight-loss-medicine-belviq-belviq-xr
  7. Jain S. Ramanand S. Ramanand J. Akat P. Patwardhan M. Joshi S. Evaluation of efficacy and safety of orlistat in obese patients. Indian J. Endocrinol. Metab. 2011 15 2 99 104 10.4103/2230‑8210.81938 21731866
    [Google Scholar]
  8. Gadde K. Shin Clinical utility of phentermine/topiramate (Qsymia™) combination for the treatment of obesity. Diabetes Metab. Syndr. Obes. 2013 6 131 139 10.2147/DMSO.S43403 23630428
    [Google Scholar]
  9. Sherman MM Ungureanu S Rey JA Naltrexone/Bupropion ER (Contrave): Newly approved treatment option for chronic weight management in obese adults. P T 2016 41 3 164 172 26957883
    [Google Scholar]
  10. Gallwitz B. Glucagon-like peptide-1-based therapies for the treatment of type 2 diabetes mellitus. Treat. Endocrinol. 2005 4 6 361 370 10.2165/00024677‑200504060‑00005 16318402
    [Google Scholar]
  11. Kim K.S. Park J.S. Hwang E. Park M.J. Shin H.Y. Lee Y.H. Kim K.M. Gautron L. Godschall E. Portillo B. Grose K. Jung S.H. Baek S.L. Yun Y.H. Lee D. Kim E. Ajwani J. Yoo S.H. Güler A.D. Williams K.W. Choi H.J. GLP-1 increases preingestive satiation via hypothalamic circuits in mice and humans. Science 2024 385 6707 438 446 10.1126/science.adj2537 38935778
    [Google Scholar]
  12. Menacho-Melgar R Decker JS Hennigan JN Lynch MD A review of lipidation in the development of advanced protein and peptide therapeutics. J. Control. Release 2019 295 1 12 10.1016/j.jconrel.2018.12.032 30579981
    [Google Scholar]
  13. Jastreboff A.M. Aronne L.J. Ahmad N.N. Wharton S. Connery L. Alves B. Kiyosue A. Zhang S. Liu B. Bunck M.C. Stefanski A. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 2022 387 3 205 216 10.1056/NEJMoa2206038 35658024
    [Google Scholar]
  14. Hay D.L. Chen S. Lutz T.A. Parkes D.G. Roth J.D. Amylin: Pharmacology, physiology, and clinical potential. Pharmacol. Rev. 2015 67 3 564 600 10.1124/pr.115.010629 26071095
    [Google Scholar]
  15. Lutz T.A. Amylinergic control of food intake. Physiol. Behav. 2006 89 4 465 471 10.1016/j.physbeh.2006.04.001 16697020
    [Google Scholar]
  16. Young A. Inhibition of food intake. Adv. Pharmacol. 2005 52 79 98 10.1016/S1054‑3589(05)52005‑2 16492542
    [Google Scholar]
  17. Young A. Inhibition of gastric emptying. Adv. Pharmacol. 2005 52 99 121 10.1016/S1054‑3589(05)52006‑4 16492543
    [Google Scholar]
  18. Young A. Inhibition of glucagon secretion. Adv. Pharmacol. 2005 52 151 171 10.1016/S1054‑3589(05)52008‑8 16492545
    [Google Scholar]
  19. Chiu C. Singh S. de Pablo J.J. Effect of proline mutations on the monomer conformations of amylin. Biophys. J. 2013 105 5 1227 1235 10.1016/j.bpj.2013.07.029 24010666
    [Google Scholar]
  20. McQueen J. Pramlintide acetate. Am. J. Health Syst. Pharm. 2005 62 22 2363 2372 10.2146/ajhp050341 16278328
    [Google Scholar]
  21. Aronne L. Fujioka K. Aroda V. Chen K. Halseth A. Kesty N.C. Burns C. Lush C.W. Weyer C. Progressive reduction in body weight after treatment with the amylin analog pramlintide in obese subjects: A phase 2, randomized, placebo-controlled, dose-escalation study. J. Clin. Endocrinol. Metab. 2007 92 8 2977 2983 10.1210/jc.2006‑2003 17504894
    [Google Scholar]
  22. Riddle M. Frias J. Zhang B. Maier H. Brown C. Lutz K. Kolterman O. Pramlintide improved glycemic control and reduced weight in patients with type 2 diabetes using basal insulin. Diabetes Care 2007 30 11 2794 2799 10.2337/dc07‑0589 17698615
    [Google Scholar]
  23. Smith S.R. Blundell J.E. Burns C. Ellero C. Schroeder B.E. Kesty N.C. Chen K.S. Halseth A.E. Lush C.W. Weyer C. Pramlintide treatment reduces 24-h caloric intake and meal sizes and improves control of eating in obese subjects: A 6-wk translational research study. Am. J. Physiol. Endocrinol. Metab. 2007 293 2 E620 E627 10.1152/ajpendo.00217.2007 17505051
    [Google Scholar]
  24. Weyer C. Maggs D. Young A. Kolterman O. Amylin replacement with pramlintide as an adjunct to insulin therapy in type 1 and type 2 diabetes mellitus: A physiological approach toward improved metabolic control. Curr. Pharm. Des. 2001 7 14 1353 1373 10.2174/1381612013397357 11472273
    [Google Scholar]
  25. Kruse T. Hansen J.L. Dahl K. Schäffer L. Sensfuss U. Poulsen C. Schlein M. Hansen A.M.K. Jeppesen C.B. Dornonville de la Cour C. Clausen T.R. Johansson E. Fulle S. Skyggebjerg R.B. Raun K. Development of cagrilintide, a long-acting amylin analogue. J. Med. Chem. 2021 64 15 11183 11194 10.1021/acs.jmedchem.1c00565 34288673
    [Google Scholar]
  26. Cao J Belousoff MJ Johnson RM Structural and dynamic features of cagrilintide binding to calcitonin and amylin receptors. Nat. Commun. 2025 16 3389 10.1038/s41467‑025‑58680‑y
    [Google Scholar]
  27. Lau D.C.W. Erichsen L. Francisco A.M. Satylganova A. le Roux C.W. McGowan B. Pedersen S.D. Pietiläinen K.H. Rubino D. Batterham R.L. Once-weekly cagrilintide for weight management in people with overweight and obesity: A multicentre, randomised, double-blind, placebo-controlled and active-controlled, dose-finding phase 2 trial. Lancet 2021 398 10317 2160 2172 10.1016/S0140‑6736(21)01751‑7 34798060
    [Google Scholar]
  28. Enebo L.B. Berthelsen K.K. Kankam M. Lund M.T. Rubino D.M. Satylganova A. Lau D.C.W. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2·4 mg for weight management: A randomised, controlled, phase 1b trial. Lancet 2021 397 10286 1736 1748 10.1016/S0140‑6736(21)00845‑X 33894838
    [Google Scholar]
  29. Nordisk N. Novo Nordisk A/S: CagriSema demonstrates superior weight loss in adults with obesity or overweight in the REDEFINE 1 trial. 2024 Available from: https://www.novonordisk.com/news-and-media/news-and-ir-materials/news-details.html?id=915082
  30. Cao J. Belousoff M.J. Liang Y.L. Johnson R.M. Josephs T.M. Fletcher M.M. Christopoulos A. Hay D.L. Danev R. Wootten D. Sexton P.M. A structural basis for amylin receptor phenotype. Science 2022 375 6587 eabm9609 10.1126/science.abm9609 35324283
    [Google Scholar]
  31. dal Maso E. Glukhova A. Zhu Y. Garcia-Nafria J. Tate C.G. Atanasio S. Reynolds C.A. Ramírez-Aportela E. Carazo J.M. Hick C.A. Furness S.G.B. Hay D.L. Liang Y.L. Miller L.J. Christopoulos A. Wang M.W. Wootten D. Sexton P.M. The molecular control of calcitonin receptor signaling. ACS Pharmacol. Transl. Sci. 2019 2 1 31 51 10.1021/acsptsci.8b00056 32219215
    [Google Scholar]
  32. Liang Y.L. Khoshouei M. Radjainia M. Zhang Y. Glukhova A. Tarrasch J. Thal D.M. Furness S.G.B. Christopoulos G. Coudrat T. Danev R. Baumeister W. Miller L.J. Christopoulos A. Kobilka B.K. Wootten D. Skiniotis G. Sexton P.M. Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature 2017 546 7656 118 123 10.1038/nature22327 28437792
    [Google Scholar]
  33. Keov P. Christopoulos G. Hick C.A. Glendorf T. Ballarín-González B. Wootten D. Sexton P.M. Development of a novel assay for direct assessment of selective amylin receptor activation reveals novel differences in behavior of selective and nonselective peptide agonists. Mol. Pharmacol. 2024 105 5 359 373 10.1124/molpharm.123.000865 38458773
    [Google Scholar]
  34. Sandra E. Amylin receptor subunit interactions are modulated by agonists and determine signaling. bioRxiv 2024 2024.10.09.617487 10.1101/2024.10.09.617487 39416010
    [Google Scholar]
  35. Garelja M.L. Walker C.S. Hay D.L. CGRP receptor antagonists for migraine. Are they also AMY 1 receptor antagonists? Br. J. Pharmacol. 2022 179 3 454 459 10.1111/bph.15585 34076887
    [Google Scholar]
  36. Cao J. Belousoff M.J. Danev R. Christopoulos A. Wootten D. Sexton P.M. Cryo-EM structure of the human amylin 1 receptor in complex with CGRP and Gs protein. Biochemistry 2024 63 9 1089 1096 10.1021/acs.biochem.4c00114 38603770
    [Google Scholar]
  37. Mohamed K.E. Larsen A.T. Melander S. Andersen F. Kerrn E.B. Karsdal M.A. Henriksen K. The dual amylin and calcitonin receptor agonist KBP-336 elicits a unique combination of weight loss, antinociception and bone protection – A novel disease-modifying osteoarthritis drug. Arthritis Res. Ther. 2024 26 1 129 2 10.1186/s13075‑024‑03361‑2 38997785
    [Google Scholar]
  38. Gutiérrez-Rojas I. Lozano D. Nuche-Berenguer B. Moreno P. Acitores A. Ramos-Álvarez I. Rovira A. Novials A. Martín-Crespo E. Villanueva-Peñacarrillo M.L. Esbrit P. Amylin exerts osteogenic actions with different efficacy depending on the diabetic status. Mol. Cell. Endocrinol. 2013 365 2 309 315 10.1016/j.mce.2012.11.013 23178165
    [Google Scholar]
  39. Mack C.M. Soares C.J. Wilson J.K. Athanacio J.R. Turek V.F. Trevaskis J.L. Roth J.D. Smith P.A. Gedulin B. Jodka C.M. Roland B.L. Adams S.H. Lwin A. Herich J. Laugero K.D. Vu C. Pittner R. Paterniti J.R. Jr Hanley M. Ghosh S. Parkes D.G. Davalintide (AC2307), a novel amylin-mimetic peptide: enhanced pharmacological properties over native amylin to reduce food intake and body weight. Int. J. Obes. 2010 34 2 385 395 10.1038/ijo.2009.238 19935749
    [Google Scholar]
  40. Fletcher M.M. Keov P. Truong T.T. Mennen G. Hick C.A. Zhao P. Furness S.G.B. Kruse T. Clausen T.R. Wootten D. Sexton P.M. AM833 is a novel agonist of calcitonin family G protein-coupled receptors: Pharmacological comparison to six selective and non-selective agonists. J. Pharmacol. Exp. Ther. 2021 377 3 417 440 10.1124/jpet.121.000567 33727283
    [Google Scholar]
  41. Udawela M. Christopoulos G. Tilakaratne N. Christopoulos A. Albiston A. Sexton P.M. Distinct receptor activity-modifying protein domains differentially modulate interaction with calcitonin receptors. Mol. Pharmacol. 2006 69 6 1984 1989 10.1124/mol.105.021915 16531504
    [Google Scholar]
  42. Mack C.M. Smith P.A. Athanacio J.R. Xu K. Wilson J.K. Reynolds J.M. Jodka C.M. Lu M.G.W. Parkes D.G. Glucoregulatory effects and prolonged duration of action of davalintide: A novel amylinomimetic peptide. Diabetes Obes. Metab. 2011 13 12 1105 1113 10.1111/j.1463‑1326.2011.01465.x 21733060
    [Google Scholar]
  43. Haydock I. Takeda and Amylin take obesity combo forward as davalintide dropped. 2010 Available from: https://insights.citeline.com/SC007028/Takeda-and-Amylin-take-obesity-combo-forward-as-davalintide-dropped/
  44. Grogan K. Takeda, Amylin excited about new obesity drug. 2010 Available from: https://pharmatimes.com/news/takeda_amylin_excited_about_new_obesity_drug_981755/
  45. A research study to see how well cagrisema helps people with excess body weight lose weight (REDEFINE 1); NCT05567796. 2025 Available from: https://clinicaltrials.gov/study/NCT05567796
  46. Silverwood J. Novo Nordisk takes a hit as CagriSema underperforms in weight loss. 2024 Available from: https://www.clinicaltrialsarena.com/news/novo-nordisk-takes-a-hit-as-cagrisema-underperforms-in-weight-loss/?cf-view
  47. A research study to see how well cagrisema helps people with type 2 diabetes and excess body weight lose weight (REDEFINE 2); NCT05394519. 2025 Available from: https://clinicaltrials.gov/study/NCT05394519
  48. Andreassen K.V. Feigh M. Hjuler S.T. Gydesen S. Henriksen J.E. Beck-Nielsen H. Christiansen C. Karsdal M.A. Henriksen K. A novel oral dual amylin and calcitonin receptor agonist (KBP-042) exerts antiobesity and antidiabetic effects in rats. Am. J. Physiol. Endocrinol. Metab. 2014 307 1 E24 E33 10.1152/ajpendo.00121.2014 24801386
    [Google Scholar]
  49. Larsen A.T. Sonne N. Andreassen K.V. Gehring K. Karsdal M.A. Henriksen K. The dual amylin and calcitonin receptor agonist KBP-088 induces weight loss and improves insulin sensitivity superior to chronic amylin therapy. J. Pharmacol. Exp. Ther. 2019 370 1 35 43 10.1124/jpet.119.257576 31028106
    [Google Scholar]
  50. Larsen A.T. Sonne N. Andreassen K.V. Karsdal M.A. Henriksen K. The calcitonin receptor plays a major role in glucose regulation as a function of dual amylin and calcitonin receptor agonist therapy. J. Pharmacol. Exp. Ther. 2020 374 1 74 83 10.1124/jpet.119.263392 32317372
    [Google Scholar]
  51. Gydesen S. Hjuler S.T. Freving Z. Andreassen K.V. Sonne N. Hellgren L.I. Karsdal M.A. Henriksen K. A novel dual amylin and calcitonin receptor agonist, KBP-089, induces weight loss through a reduction in fat, but not lean mass, while improving food preference. Br. J. Pharmacol. 2017 174 7 591 602 10.1111/bph.13723 28109166
    [Google Scholar]
  52. Henriksen K. Broekhuizen K. de Boon W.M.I. Karsdal M.A. Bihlet A.R. Christiansen C. Dillingh M.R. de Kam M. Kumar R. Burggraaf J. Kamerling I.M.C. Safety, tolerability and pharmacokinetic characterisation of DACRA KBP-042 in healthy male subjects. Br. J. Clin. Pharmacol. 2021 87 12 4786 4796 10.1111/bcp.14921 34019711
    [Google Scholar]
  53. Clinical trial results: A double-blind, placebo-controlled, randomized study to evaluate the efficacy and safety of KBP-042 in patients with type 2 diabetes. 2017 Available from: https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-001061-24/results
  54. Study to evaluate the efficacy and safety of KBP-042 in patients with type 2 diabetes; NCT03230786. 2018 Available from: https://clinicaltrials.gov/study/NCT03230786
  55. A clinical study to evaluate the safety, tolerability, PK, PD, and efficacy of KBP-089 in patients with t2DM; NCT03907202. 2020 Available from: https://clinicaltrials.gov/study/NCT03907202
  56. Andreassen K.V. Larsen A.T. Sonne N. Mohamed K.E. Karsdal M.A. Henriksen K. KBP-066A, a long-acting dual amylin and calcitonin receptor agonist, induces weight loss and improves glycemic control in obese and diabetic rats. Mol. Metab. 2021 53 101282 10.1016/j.molmet.2021.101282 34214708
    [Google Scholar]
  57. Sonne N. Larsen A.T. Karsdal M.A. Henriksen K. The impact of exposure profile on the efficacy of dual amylin and calcitonin receptor agonist therapy. Biomedicines 2022 10 10 2365 10.3390/biomedicines10102365 36289629
    [Google Scholar]
  58. Mathiesen D.S. Lund A. Holst J.J. Knop F.K. Lutz T.A. Bagger J.I. THERAPY OF ENDOCRINE DISEASE: Amylin and calcitonin – physiology and pharmacology. Eur. J. Endocrinol. 2022 186 6 R93 R111 10.1530/EJE‑21‑1261 35353712
    [Google Scholar]
  59. ZP 4982. 2023 Available from: https://adisinsight.springer.com/drugs/800045554
  60. Stein L.M. McGrath L.E. Lhamo R. Koch-Laskowski K. Fortin S.M. Skarbaliene J. Baader-Pagler T. Just R. Hayes M.R. Mietlicki-Baase E.G. The long-acting amylin/calcitonin receptor agonist ZP5461 suppresses food intake and body weight in male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021 321 2 R250 R259 10.1152/ajpregu.00337.2020 34259025
    [Google Scholar]
  61. Evaluation of safety and tolerability of single rising doses of BI 473494 in healthy subjects; NCT03195088. 2022 Available from: https://clinicaltrials.gov/study/NCT03195088
  62. BI 473494. 2018 Available from: https://adisinsight.springer.com/drugs/800049758
  63. Safety, tolerability, and clinical effects of petrelintide (ZP8396), a long-acting amylin analog. 2024 Available from: https://www.zealandpharma.com/media/vrypyzy1/zealand-pharma-at-obesity-week-2024.pdf
  64. Petrelintide. 2024 Available from: https://www.medchemexpress.com/petrelintide.html?locale=ko-KR
  65. Olsen Minna B. Hövelmann Ulrike Griffin Jon Knudsen Kim M. Johansen Thue Kendall David Heise Tim 92-LB: Safety, tolerability, and clinical effects of ZP8396, a novel long-acting amylin analog—A single ascending dose trial. Diabetes 2023 72 Supplement_1 92–LB 10.2337/db23‑92‑LB
    [Google Scholar]
  66. Safety, tolerability, and clinical effects of ZP8396, an amylin analog: Multiple ascending dose trial. 2023 Available from: https://www.zealandpharma.com/media/eb1azc1d/zp8396-phase1-mad-part-1-obesityweek-2023.pdf
  67. A research study looking at the safety of multiple doses of ZP8396 and how it works in the body of healthy participants; NCT05613387. 2024 Available from: https://clinicaltrials.gov/study/NCT05613387
  68. Zealand Pharma announces positive topline results from the Phase 1b 16-week multiple ascending dose clinical trial with long-acting amylin analog petrelintide. 2024 Available from: https://www.globenewswire.com/news-release/2024/06/20/2901879/0/en/Zealand-Pharma-announces-positive-topline-results-from-the-Phase-1b-16-week-multiple-ascending-dose-clinical-trial-with-long-acting-amylin-analog-petrelintide.html
  69. Griffin Jon Hövelmann Ulrike Melgaard Anita E. Macura Stanislava Hammer Mette Johansen Thue 1668-P: Novel once-weekly amylin analog Petrelintide (ZP8396) is well tolerated with improved GI tolerability after multiple dosing. Diabetes 2024 73 Supplement_1 1668–P 10.2337/db24‑1668‑P
    [Google Scholar]
  70. Roche strikes $5.3 billion amylin deal. Nat. Biotechnol. 2025 43 4 460 461 10.1038/s41587‑025‑02657‑1 40229374
    [Google Scholar]
  71. Nicze M. Dec A. Borówka M. Krzyżak D. Bołdys A. Bułdak Ł. Okopień B. Molecular mechanisms behind obesity and their potential exploitation in current and future therapy. Int. J. Mol. Sci. 2024 25 15 8202 10.3390/ijms25158202 39125772
    [Google Scholar]
  72. Nordisk N. Novo Nordisk successfully completes phase 1b/2a trial with subcutaneous amycretin in people with overweight or obesity. 2025 Available from: https://www.novonordisk.com/content/nncorp/global/en/news-and-media/news-and-ir-materials/news-details.html?id=915251
  73. Hornigold D. Characterisation of AZD6234, a novel amylin receptor selective agonist peptide, in rodent models of weight loss and aversion. Available from: https://www.easd.org/media-centre/home.html%20#!resources/b-characterisation-of-azd6234-a-novel-amylin-receptor-selective-agonist-peptide-in-rodent-models-of-weight-loss-and-aversion-b
  74. A study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of AZD6234 after repeat dose administration in participants who are overweight or obese. 2023 Available from: https://www.astrazenecaclinicaltrials.com/study/D8750C00002/
  75. Assess the safety, tolerability, and pharmacokinetics of AZD6234 following single ascending dose administration to healthy subjects who are overweight or obese; NCT05511025. 2023 Available from: https://clinicaltrials.gov/study/NCT05511025
  76. A study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of AZD6234 after repeat dose administration in participants who are overweight or obese; NCT06132841. 2025 Available from: https://clinicaltrials.gov/study/NCT06132841
  77. A study in participants with obesity or overweight with at least one weight-related comorbidity (APRICUS); NCT06595238. 2025 Available from: https://clinicaltrials.gov/study/NCT06595238
  78. Gubra announces positive GUBamy Phase 1 SAD data. 2024 Available from: https://www.gubra.dk/mfn_news/gubra-announces-positive-gubamy-phase-1-sad-data/
  79. A two-part first-in-human study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of GUB014295. 2025 Available from: https://clinicaltrials.gov/study/NCT06144684
  80. Eloralintide. 2025 Available from: https://synapse.patsnap.com/drug/30ab69e9d8ca47bba5338d6c29cd266f
  81. Eloralintide by Eli Lilly and Co for Obesity: Likelihood of Approval. 2024 Available from: https://www.pharmaceutical-technology.com/data-insights/eloralintide-eli-lilly-and-co-obesity-likelihood-of-approval/
  82. Eloralintide (Synonyms: LY-3841136). 2025 Available from: https://www.medchemexpress.com/eloralintide.html?srsltid=AfmBOorh-DoVEJBsO74wFTBIeGQ94wW7EArizVOfIVfReL4s5LVzH-gB
  83. A study of LY3841136 compared with placebo in adult participants with obesity or overweight; NCT06230523. 2025 Available from: https://clinicaltrials.gov/study/NCT06230523
  84. Lilly E. A study of LY3841136 compared with placebo in adult participants with obesity or overweight. 2025 Available from: https://trials.lilly.com/en-US/trial/454455
    [Google Scholar]
  85. A study of LY3841136 in overweight and obese participants; NCT06345066. 2025 Available from: https://clinicaltrials.gov/study/NCT06345066
  86. Lilly E. A study of LY3841136 in overweight and obese participants. 2024 Available from: https://trials.lilly.com/en-US/trial/471555
    [Google Scholar]
  87. A study of LY3841136 in Japanese participants with obesity or overweight; NCT06297616. 2025 Available from: https://clinicaltrials.gov/study/NCT06297616
  88. A study to investigate weight management with LY3841136 and tirzepatide (LY3298176), alone or in combination, in adult participants with obesity or overweight with type 2 diabetes; NCT06603571. 2025 Available from: https://clinicaltrials.gov/study/NCT06603571
  89. Lee S. Development of the novel amylin and calcitonin receptor activators by peptide mutagenesis. Arch. Biochem. Biophys. 2024 762 110191 10.1016/j.abb.2024.110191 39481742
    [Google Scholar]
  90. Lee S. Modulation of amylin and calcitonin receptor activation by hybrid peptides. Peptides 2024 182 171314 10.1016/j.peptides.2024.171314 39454962
    [Google Scholar]
  91. Wan Q. Okashah N. Inoue A. Nehmé R. Carpenter B. Tate C.G. Lambert N.A. Mini G protein probes for active G protein–coupled receptors (GPCRs) in live cells. J. Biol. Chem. 2018 293 19 7466 7473 10.1074/jbc.RA118.001975 29523687
    [Google Scholar]
  92. England C.G. Ehlerding E.B. Cai W. NanoLuc: A small luciferase is brightening up the field of bioluminescence. Bioconjug. Chem. 2016 27 5 1175 1187 10.1021/acs.bioconjchem.6b00112 27045664
    [Google Scholar]
  93. Lee M.F. Poh C.L. Strategies to improve the physicochemical properties of peptide-based drugs. Pharm. Res. 2023 40 3 617 632 10.1007/s11095‑023‑03486‑0 36869247
    [Google Scholar]
  94. Jamaluddin A. Chuang C.L. Williams E.T. Siow A. Yang S.H. Harris P.W.R. Petersen J.S.S.M. Bower R.L. Chand S. Brimble M.A. Walker C.S. Hay D.L. Loomes K.M. Lipidated calcitonin gene-related peptide (CGRP) peptide antagonists retain CGRP receptor activity and attenuate CGRP action in vivo. Front. Pharmacol. 2022 13 832589 10.3389/fphar.2022.832589 35341216
    [Google Scholar]
  95. Knudsen L.B. Lau J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 2019 10 155 10.3389/fendo.2019.00155 31031702
    [Google Scholar]
  96. Wilding J.P.H. Batterham R.L. Calanna S. Davies M. Van Gaal L.F. Lingvay I. McGowan B.M. Rosenstock J. Tran M.T.D. Wadden T.A. Wharton S. Yokote K. Zeuthen N. Kushner R.F. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 2021 384 11 989 1002 10.1056/NEJMoa2032183 33567185
    [Google Scholar]
  97. McLatchie L.M. Fraser N.J. Main M.J. Wise A. Brown J. Thompson N. Solari R. Lee M.G. Foord S.M. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998 393 6683 333 339 10.1038/30666 9620797
    [Google Scholar]
  98. Hay D.L. Garelja M.L. Poyner D.R. Walker C.S. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br. J. Pharmacol. 2018 175 1 3 17 10.1111/bph.14075 29059473
    [Google Scholar]
  99. Ogunlaja O.I. Goadsby P.J. Headache: Treatment update. eNeurologicalSci 2022 29 100420 10.1016/j.ensci.2022.100420 36636337
    [Google Scholar]
  100. Garelja M.L. Alexander T.I. Bennie A. Nimick M. Petersen J. Walker C.S. Pharmacological characterisation of erenumab, Aimovig, at two calcitonin gene-related peptide responsive receptors. Br. J. Pharmacol. 2023 11 21 10.1111/bph.16218 37580864
    [Google Scholar]
  101. Pan K.S. Siow A. Hay D.L. Walker C.S. Antagonism of CGRP signaling by rimegepant at two receptors. Front. Pharmacol. 2020 11 1240 10.3389/fphar.2020.01240 32973499
    [Google Scholar]
  102. Ghanizada H. Al-Karagholi M.A.M. Walker C.S. Arngrim N. Rees T. Petersen J. Siow A. Mørch-Rasmussen M. Tan S. O’Carroll S.J. Harris P. Skovgaard L.T. Jørgensen N.R. Brimble M. Waite J.S. Rea B.J. Sowers L.P. Russo A.F. Hay D.L. Ashina M. Amylin analog pramlintide induces migraine-like attacks in patients. Ann. Neurol. 2021 89 6 1157 1171 10.1002/ana.26072 33772845
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501398624250819070004
Loading
/content/journals/cdt/10.2174/0113894501398624250819070004
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: potency ; calcitonin ; affinity ; peptide hormone ; Amylin ; obesity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test