Skip to content
2000
Volume 26, Issue 15
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Introduction

Long intergenic non-coding RNA 01123 (LINC01123) is a lncRNA located on the human chromosome 2q13. It is upregulated in various cancers and has been identified as an oncogene. Its expression is associated with the risk and poor prognosis of multiple cancers.

Methods

A systematic literature search was conducted in PubMed, Web of Science, and Google Scholar databases using “LINC01123” as the search term. The retrieved studies were reviewed to analyze the expression patterns, oncogenic mechanisms, and clinical significance of LINC01123 in cancers.

Results

LINC01123 is activated by transcription factors such as c-Myc, ZEB1, and FOXC1. It promotes cancer progression, metastasis, and drug resistance by acting as a “molecular sponge” for miRNAs, activating signaling pathways, or interacting with proteins. Its upregulation correlates with adverse clinicopathological features and poor prognosis in multiple cancers.

Discussion

The findings suggest that LINC01123 plays a multifaceted role in cancer biology. Its ability to regulate gene expression through various mechanisms highlights its potential as both a prognostic biomarker and a therapeutic target. However, further research is needed to elucidate its mechanisms fully and to explore its clinical applications across different cancer types.

Conclusion

LINC01123 has potential as a novel prognostic biomarker and therapeutic target for cancer. Further research is needed to elucidate its mechanisms and clinical applications fully.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501398484250903074131
2025-09-11
2026-01-28
Loading full text...

Full text loading...

References

  1. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  2. SchwartzS.M. Epidemiology of cancer.Clin. Chem.202470114014910.1093/clinchem/hvad20238175589
    [Google Scholar]
  3. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  4. ChangL. RuizP. ItoT. SellersW.R. Targeting pan-essential genes in cancer: Challenges and opportunities.Cancer Cell202139446647910.1016/j.ccell.2020.12.00833450197
    [Google Scholar]
  5. AdamsS.C. NambiarA.K. BresslerE.M. RautC.P. ColsonY.L. WongW.W. GrinstaffM.W. Immunotherapies for locally aggressive cancers.Adv. Drug Deliv. Rev.202421011533110.1016/j.addr.2024.11533138729264
    [Google Scholar]
  6. BhartiyaD. KapoorS. JalaliS. SatiS. KaushikK. SachidanandanC. SivasubbuS. ScariaV. Conceptual approaches for lncRNA drug discovery and future strategies.Expert Opin. Drug Discov.20127650351310.1517/17460441.2012.68205522559214
    [Google Scholar]
  7. NojimaT. ProudfootN.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics.Nat. Rev. Mol. Cell Biol.202223638940610.1038/s41580‑021‑00447‑635079163
    [Google Scholar]
  8. HashemiM. MoosaviM.S. AbedH.M. DehghaniM. AalipourM. HeydariE.A. BehroozaghdamM. EntezariM. SalimimoghadamS. GunduzE.S. TaheriazamA. MirzaeiS. SamarghandianS. Long non-coding RNA (lncRNA) H19 in human cancer: From proliferation and metastasis to therapy.Pharmacol. Res.202218410641810.1016/j.phrs.2022.10641836038043
    [Google Scholar]
  9. ZengL. LuoX. ZhangZ. WangZ. QianJ. Long non-coding FAM201A accelerates the tumorigenesis and progression of colorectal cancer through miR-3163/MACC1 axis.Transl. Oncol.20222510149010.1016/j.tranon.2022.10149036067543
    [Google Scholar]
  10. AiY. LiuS. LuoH. WuS. WeiH. TangZ. LiX. ZouC. lncRNA DCST1-AS1 facilitates oral squamous cell carcinoma by promoting M2 macrophage polarization through activating NF-κB signaling.J. Immunol. Res.202120211910.1155/2021/552423134414241
    [Google Scholar]
  11. LuoA. LanX. QiuQ. ZhouQ. LiJ. WuM. LiuP. ZhangH. LuB. LuY. LuW. LncRNA SFTA1P promotes cervical cancer progression by interaction with PTBP1 to facilitate TPM4 mRNA degradation.Cell Death Dis.2022131193610.1038/s41419‑022‑05359‑736344495
    [Google Scholar]
  12. LonsdaleJ. ThomasJ. SalvatoreM. PhillipsR. LoE. ShadS. HaszR. WaltersG. GarciaF. YoungN. FosterB. MoserM. KarasikE. GillardB. RamseyK. SullivanS. BridgeJ. MagazineH. SyronJ. FlemingJ. SiminoffL. TrainoH. MosavelM. BarkerL. JewellS. RohrerD. MaximD. FilkinsD. HarbachP. CortadilloE. BerghuisB. TurnerL. HudsonE. FeenstraK. SobinL. RobbJ. BrantonP. KorzeniewskiG. ShiveC. TaborD. QiL. GrochK. NampallyS. BuiaS. ZimmermanA. SmithA. BurgesR. RobinsonK. ValentinoK. BradburyD. CosentinoM. Diaz-MayoralN. KennedyM. EngelT. WilliamsP. EricksonK. ArdlieK. WincklerW. GetzG. DeLucaD. MacArthurD. KellisM. ThomsonA. YoungT. GelfandE. DonovanM. MengY. GrantG. MashD. MarcusY. BasileM. LiuJ. ZhuJ. TuZ. CoxN.J. NicolaeD.L. GamazonE.R. ImH.K. KonkashbaevA. PritchardJ. StevensM. FlutreT. WenX. DermitzakisE.T. LappalainenT. GuigoR. MonlongJ. SammethM. KollerD. BattleA. MostafaviS. McCarthyM. RivasM. MallerJ. RusynI. NobelA. WrightF. ShabalinA. FeoloM. SharopovaN. SturckeA. PaschalJ. AndersonJ.M. WilderE.L. DerrL.K. GreenE.D. StruewingJ.P. TempleG. VolpiS. BoyerJ.T. ThomsonE.J. GuyerM.S. NgC. AbdallahA. ColantuoniD. InselT.R. KoesterS.E. LittleA.R. BenderP.K. LehnerT. YaoY. ComptonC.C. VaughtJ.B. SawyerS. LockhartN.C. DemchokJ. MooreH.F. The Genotype-Tissue Expression (GTEx) project.Nat. Genet.201345658058510.1038/ng.265323715323
    [Google Scholar]
  13. TangZ. KangB. LiC. ChenT. ZhangZ. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis.Nucleic Acids Res.201947W1W556W56010.1093/nar/gkz43031114875
    [Google Scholar]
  14. HuaQ. JinM. MiB. XuF. LiT. ZhaoL. LiuJ. HuangG. LINC01123, a c-Myc-activated long non-coding RNA, promotes proliferation and aerobic glycolysis of non-small cell lung cancer through miR-199a-5p/c-Myc axis.J. Hematol. Oncol.20191219110.1186/s13045‑019‑0773‑y31488218
    [Google Scholar]
  15. ZhangM. HanY. ZhengY. ZhangY. ZhaoX. GaoZ. LiuX. ZEB1-activated LINC01123 accelerates the malignancy in lung adenocarcinoma through NOTCH signaling pathway.Cell Death Dis.2020111198110.1038/s41419‑020‑03166‑633191397
    [Google Scholar]
  16. WangH. HeD. LINC01123 acts as an oncogenic driver in lung adenocarcinoma by regulating the miR-4766-5p/PYCR1 axis.Histol. Histopathol.202338121475148636994814
    [Google Scholar]
  17. KayE.J. PatersonK. Riera-DomingoC. SumptonD. DäbritzJ.H.M. TarditoS. BoldriniC. Hernandez-FernaudJ.R. AthineosD. DhayadeS. StepanovaE. GjergaE. NeilsonL.J. LillaS. HedleyA. KoulourasG. McGregorG. JamiesonC. JohnsonR.M. ParkM. KirschnerK. MillerC. KamphorstJ.J. Loayza-PuchF. Saez-RodriguezJ. MazzoneM. BlythK. ZagnoniM. ZanivanS. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix.Nat. Metab.20224669371010.1038/s42255‑022‑00582‑035760868
    [Google Scholar]
  18. LiY. HuangS. WeiZ. YangB. A putative competing endogenous RNA network in cisplatin-resistant lung adenocarcinoma cells identifying potentially rewarding research targets.Oncol. Lett.20201964040405210.3892/ol.2020.1148332382346
    [Google Scholar]
  19. JohnsonD.E. BurtnessB. LeemansC.R. LuiV.W.Y. BaumanJ.E. GrandisJ.R. Head and neck squamous cell carcinoma.Nat. Rev. Dis. Primers2020619210.1038/s41572‑020‑00224‑333243986
    [Google Scholar]
  20. DiaoP. SongY. GeH. WuY. LiJ. ZhangW. WangY. ChengJ. Identification of 4-lncRNA prognostic signature in head and neck squamous cell carcinoma.J. Cell. Biochem.20191206100101002010.1002/jcb.2828430548328
    [Google Scholar]
  21. LiH. YangZ. YangX. ZhangF. WangJ. WuZ. WanyanC. MengQ. GaoW. YangX. WeiJ. LINC01123 promotes immune escape by sponging miR-214-3p to regulate B7–H3 in head and neck squamous-cell carcinoma.Cell Death Dis.202213210910.1038/s41419‑022‑04542‑035115487
    [Google Scholar]
  22. QinH. WangC. HuaY. LINC01123 is associated with prognosis of oral squamous cell carcinoma and involved in tumor progression by sponging miR-34a-5p.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.20221331505910.1016/j.oooo.2021.07.01334511356
    [Google Scholar]
  23. LeeY.C. JungS.H. ShivakumarM. ChaS. ParkW.Y. WonH.H. EunY.G. BiobankP.M. KimD. Polygenic risk score-based phenome-wide association study of head and neck cancer across two large biobanks.BMC Med.202422112010.1186/s12916‑024‑03305‑238486201
    [Google Scholar]
  24. AlawyiaB. ConstantinouC. Hepatocellular carcinoma: A narrative review on current knowledge and future prospects.Curr. Treat. Options Oncol.202324771172410.1007/s11864‑023‑01098‑937103744
    [Google Scholar]
  25. XiaoZ. LiuY. ZhaoJ. LiL. HuL. LuQ. ZengZ. LiuX. HuangD. YangW. XuQ. Long noncoding RNA LINC01123 promotes the proliferation and invasion of hepatocellular carcinoma cells by modulating the miR-34a-5p/TUFT1 axis.Int. J. Biol. Sci.202016132296230510.7150/ijbs.4545732760198
    [Google Scholar]
  26. YangY. ZhangT. WuL. TUFT1 Facilitates Metastasis, Stemness, and Vincristine Resistance in Colorectal Cancer via Activation of PI3K/AKT Pathway.Biochem. Genet.20215941018103210.1007/s10528‑021‑10051‑033634374
    [Google Scholar]
  27. ZhouB. ZhanH. TinL. LiuS. XuJ. DongY. LiX. WuL. GuoW. TUFT1 regulates metastasis of pancreatic cancer through HIF1-Snail pathway induced epithelial–mesenchymal transition.Cancer Lett.20163821112010.1016/j.canlet.2016.08.01727566398
    [Google Scholar]
  28. YeS. SunB. WuW. YuC. TianT. LianZ. LiangQ. ZhouY. LINC01123 facilitates proliferation, invasion and chemoresistance of colon cancer cells.Biosci. Rep.2020408BSR2019406210.1042/BSR2019406232700743
    [Google Scholar]
  29. ShangT. ZhouX. ChenW. LINC01123 promotes the progression of colorectal cancer via miR-625-5p/LASP1 axis.Cancer Biother. Radiopharm.202136976577310.1089/cbr.2020.374032423238
    [Google Scholar]
  30. LiuZ. MaL. GuY. HuangY. LiangX. KongL. SunY. Long non-coding RNA LINC01123 promotes cell proliferation, migration and invasion via interacting with SRSF7 in colorectal cancer.Pathol. Res. Pract.202223215384310.1016/j.prp.2022.15384335325644
    [Google Scholar]
  31. ShangT. PangS. DongY. Knockdown of long non-coding RNA LINC01123 plays a molecular sponge on miR-625-5p to inhibit the process of colorectal cancer cells via LASP1.J. Mol. Histol.202354552153710.1007/s10735‑023‑10141‑w37676533
    [Google Scholar]
  32. VodenkovaS. BuchlerT. CervenaK. VeskrnovaV. VodickaP. VymetalkovaV. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future.Pharmacol. Ther.202020610744710.1016/j.pharmthera.2019.10744731756363
    [Google Scholar]
  33. Claesson-WelshL. WelshM. VEGFA and tumour angiogenesis.J. Intern. Med.2013273211412710.1111/joim.1201923216836
    [Google Scholar]
  34. KönigsV. de Oliveira Freitas MachadoC. ArnoldB. BlümelN. SolovyevaA. LöbbertS. SchafranekM. Ruiz De Los MozosI. WittigI. McNicollF. SchulzM.H. Müller-McNicollM. SRSF7 maintains its homeostasis through the expression of Split-ORFs and nuclear body assembly.Nat. Struct. Mol. Biol.202027326027310.1038/s41594‑020‑0385‑932123389
    [Google Scholar]
  35. YasinjanF. XingY. GengH. GuoR. YangL. LiuZ. WangH. Immunotherapy: A promising approach for glioma treatment.Front. Immunol.202314125561110.3389/fimmu.2023.125561137744349
    [Google Scholar]
  36. TianW. ZhangY. LiuH. JinH. SunT. LINC01123 potentially correlates with radioresistance in glioma through the miR-151a/CENPB axis.Neuropathology202242131510.1111/neup.1276434519373
    [Google Scholar]
  37. GambaR. FachinettiD. From evolution to function: Two sides of the same CENP-B coin?Exp. Cell Res.2020390211195910.1016/j.yexcr.2020.11195932173469
    [Google Scholar]
  38. MoscaN. AlessioN. Di PaolaA. MarrapodiM.M. GalderisiU. RussoA. RossiF. PotenzaN. Osteosarcoma in a ceRNET perspective.J. Biomed. Sci.20243115910.1186/s12929‑024‑01049‑y38835012
    [Google Scholar]
  39. PanX. TanJ. TaoT. ZhangX. WengY. WengX. XuJ. LiH. JiangY. ZhouD. ShenY. LINC01123 enhances osteosarcoma cell growth by activating the Hedgehog pathway via the miR-516b-5p/Gli1 axis.Cancer Sci.202111262260227110.1111/cas.1491333837611
    [Google Scholar]
  40. SigafoosA.N. ParadiseB.D. Fernandez-ZapicoM.E. Hedgehog/GLi signaling pathway: Transduction, regulation, and implications for disease.Cancers20211314341010.3390/cancers1314341034298625
    [Google Scholar]
  41. KatohM. Genomic testing, tumor microenvironment and targeted therapy of Hedgehog-related human cancers.Clin. Sci.2019133895397010.1042/CS2018084531036756
    [Google Scholar]
  42. ZhangX. Molecular classification of breast cancer: Relevance and challenges.Arch. Pathol. Lab. Med.20231471465110.5858/arpa.2022‑0070‑RA36136295
    [Google Scholar]
  43. GradisharW.J. MoranM.S. AbrahamJ. AbramsonV. AftR. AgneseD. AllisonK.H. AndersonB. BaileyJ. BursteinH.J. ChenN. ChewH. DangC. EliasA.D. GiordanoS.H. GoetzM.P. JankowitzR.C. JavidS.H. KrishnamurthyJ. LeitchA.M. LyonsJ. McCloskeyS. McShaneM. MortimerJ. PatelS.A. RosenbergerL.H. RugoH.S. Santa-MariaC. SchneiderB.P. SmithM.L. SolimanH. Stringer-ReasorE.M. TelliM.L. WeiM. WisinskiK.B. YeungK.T. YoungJ.S. SchonfeldR. KumarR. Breast cancer, version 3.2024, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202422533135710.6004/jnccn.2024.003539019058
    [Google Scholar]
  44. ZhangP. LongQ. ZengS. WenM. LuQ. FOXC1-induced LINC01123 acts as a mediator in triple negative breast cancer.Cancer Cell Int.202020119910.1186/s12935‑020‑01258‑z32514244
    [Google Scholar]
  45. YuX.Y. WangM. QianJ.J. CMaf-inducing protein promotes LUAD proliferation and metastasis by activating the MAPK/ERK pathway.Evid. Based Complement. Alternat. Med.2022202211110.1155/2022/250184636159575
    [Google Scholar]
  46. XiangR. HanX. DingK. WuZ. CMIP promotes Herceptin resistance of HER2 positive gastric cancer cells.Pathol. Res. Pract.2020216215277610.1016/j.prp.2019.15277631822364
    [Google Scholar]
  47. LheureuxS. BraunsteinM. OzaA.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine.CA Cancer J. Clin.201969428030410.3322/caac.2155931099893
    [Google Scholar]
  48. DongB. LiC. XuX. WangY. LiY. LiX. LncRNA LINC01123 promotes malignancy of ovarian cancer by targeting hsa-miR-516b-5p/VEGFA.Genes Genomics202446223123910.1007/s13258‑023‑01440‑337728844
    [Google Scholar]
  49. YanX. YuanC. WangZ. XuZ. WuZ. WangM. XuM. WangZ. SunY. Berberine modulates ovarian cancer autophagy and glycolysis through the LINC01123/P65/MAPK10 signaling axis.Phytomedicine202413515612110.1016/j.phymed.2024.15612139395322
    [Google Scholar]
  50. LizanoM. Carrillo-GarcíaA. De La Cruz-HernándezE. Castro- MuñozL. Contreras-ParedesA. Promising predictive molecular biomarkers for cervical cancer (Review).Int. J. Mol. Med.20245365010.3892/ijmm.2024.537438606495
    [Google Scholar]
  51. LiC. LiY. ZhangY. YanH. HuangC. Knockdown of LINC01123 inhibits cell viability, migration and invasion via miR-361-3p/TSPAN1 targeting in cervical cancer.Exp. Ther. Med.2021224118410.3892/etm.2021.1061834475974
    [Google Scholar]
  52. Garcia-MayeaY. MirC. CarballoL. Sánchez-GarcíaA. BatallerM. LLeonartM.E. TSPAN1, a novel tetraspanin member highly involved in carcinogenesis and chemoresistance.Biochim. Biophys. Acta Rev. Cancer20221877118867410.1016/j.bbcan.2021.18867434979155
    [Google Scholar]
  53. GuoX. PengY. SongQ. WeiJ. WangX. RuY. XuS. ChengX. LiX. WuD. ChenL. WeiB. LvX. JiG. A liquid biopsy signature for the early detection of gastric cancer in patients.Gastroenterology20231652402413.e1310.1053/j.gastro.2023.02.04436894035
    [Google Scholar]
  54. BennettC.F. SwayzeE.E. RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform.Annu. Rev. Pharmacol. Toxicol.201050125929310.1146/annurev.pharmtox.010909.10565420055705
    [Google Scholar]
  55. KulkarniJ.A. WitzigmannD. ThomsonS.B. ChenS. LeavittB.R. CullisP.R. van der MeelR. The current landscape of nucleic acid therapeutics.Nat. Nanotechnol.202116663064310.1038/s41565‑021‑00898‑034059811
    [Google Scholar]
  56. MishraS. VermaS.S. RaiV. AwastheeN. ChavaS. HuiK.M. KumarA.P. ChallagundlaK.B. SethiG. GuptaS.C. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases.Cell. Mol. Life Sci.201976101947196610.1007/s00018‑019‑03053‑030879091
    [Google Scholar]
  57. LuoW. Nasopharyngeal carcinoma ecology theory: Cancer as multidimensional spatiotemporal “unity of ecology and evolution” pathological ecosystem.Theranostics20231351607163110.7150/thno.8269037056571
    [Google Scholar]
  58. CoanM. HaefligerS. OunzainS. JohnsonR. Targeting and engineering long non-coding RNAs for cancer therapy.Nat. Rev. Genet.202425857859510.1038/s41576‑024‑00693‑238424237
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501398484250903074131
Loading
/content/journals/cdt/10.2174/0113894501398484250903074131
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarker; Cancer; LINC01123; LncRNA; molecular mechanism; therapeutic target
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test