Skip to content
2000
image of Mitochondria-Targeted Nanoformulations: New Therapeutic Strategies and Opportunities for Cancer Immunotherapy

Abstract

Introduction

Immunotherapy has revolutionized cancer treatment, however, its effectiveness remains limited by weak tumor immunogenicity and immunosuppressive microenvironments. Mitochondria have emerged as a strategic therapeutic target, given their central role in regulating immune cell activation, proliferation, and function through metabolic reprogramming and signaling pathway modulation. Mitochondria-targeted nanoformulations offer a promising approach to amplify anti-tumor immunity by enhancing immune responses at the cellular and molecular levels.

Methods

We searched the PubMed and Web of Science databases using keywords and combinations related to mitochondrial targeting, cancer, immunotherapy, and nanoformulations. The primary search timeframe focused on the last five years. The literature screening process mainly involved an initial screening based on titles and abstracts, followed by a full-text screening.

Results

Mitochondria critically govern anti-tumor immunity by controlling the activation and function of immune cells, modulating immune signaling pathways, and adjusting mitochondrial dynamics and metabolism. Recent advancements in mitochondria-targeted nanoformulations have shown potential to enhance immunity by inducing immunogenic cell death (ICD), regulating mitochondrial dynamics and metabolism, and activating key immune pathways.

Discussion

Mitochondrial-targeted is a novel strategy for activating anti-tumor immunity. Despite promising preclinical results, clinical translation remains unrealized. Future research must prioritize integrating basic and clinical studies to advance mitochondrial immunomodulation from bench to bedside.

Conclusion

Although preclinical studies demonstrate the promise of mitochondria-targeted nanoformulations, clinical translation remains unrealized. Advances in nanotechnology, immunometabolism, and AI-driven drug design hold immense potential to overcome current barriers, particularly in solid tumors. Future efforts may establish mitochondrial immunomodulation as a transformative strategy in oncology.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501397738250919154624
2025-10-14
2025-11-07
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021 71 1 7 33 10.3322/caac.21654 33433946
    [Google Scholar]
  2. Sui C. Wu H. Li X. Wang Y. Wei J. Yu J. Wu X. Cancer immunotherapy and its facilitation by nanomedicine. Biomark. Res. 2024 12 1 77 10.1186/s40364‑024‑00625‑6 39097732
    [Google Scholar]
  3. Rui R. Zhou L. He S. Cancer immunotherapies: Advances and bottlenecks. Front. Immunol. 2023 14 1212476 10.3389/fimmu.2023.1212476 37691932
    [Google Scholar]
  4. Bauer T.M. Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ. Res. 2020 126 2 280 293 10.1161/CIRCRESAHA.119.316306 31944918
    [Google Scholar]
  5. Ahn M. Ali A. Seo J.H. Mitochondrial regulation in the tumor microenvironment: Targeting mitochondria for immunotherapy. Front. Immunol. 2024 15 1453886 10.3389/fimmu.2024.1453886 39544945
    [Google Scholar]
  6. Neagu M. Constantin C. Popescu I.D. Zipeto D. Tzanakakis G. Nikitovic D. Fenga C. Stratakis C.A. Spandidos D.A. Tsatsakis A.M. Inflammation and metabolism in cancer cell—mitochondria key player. Front. Oncol. 2019 9 348 10.3389/fonc.2019.00348 31139559
    [Google Scholar]
  7. O’Sullivan T.E. Johnson L.R. Kang H.H. Sun J.C. BNIP3- and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory. Immunity 2015 43 2 331 342 10.1016/j.immuni.2015.07.012 26253785
    [Google Scholar]
  8. Zhang L. Zhang W. Li Z. Lin S. Zheng T. Hao B. Hou Y. Zhang Y. Wang K. Qin C. Yue L. Jin J. Li M. Fan L. Mitochondria dysfunction in CD8+ T cells as an important contributing factor for cancer development and a potential target for cancer treatment: A review. J. Exp. Clin. Cancer Res. 2022 41 1 227 10.1186/s13046‑022‑02439‑6 35864520
    [Google Scholar]
  9. Tábara L.C. Segawa M. Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 2025 26 2 123 146 10.1038/s41580‑024‑00785‑1 39420231
    [Google Scholar]
  10. Klein K. He K. Younes A.I. Barsoumian H.B. Chen D. Ozgen T. Mosaffa S. Patel R.R. Gu M. Novaes J. Narayanan A. Cortez M.A. Welsh J.W. Role of mitochondria in cancer immune evasion and potential therapeutic approaches. Front. Immunol. 2020 11 573326 10.3389/fimmu.2020.573326 33178201
    [Google Scholar]
  11. Bai R. Cui J. Mitochondrial immune regulation and anti-tumor immunotherapy strategies targeting mitochondria. Cancer Lett. 2023 564 216223 10.1016/j.canlet.2023.216223 37172686
    [Google Scholar]
  12. Zorova L.D. Popkov V.A. Plotnikov E.Y. Silachev D.N. Pevzner I.B. Jankauskas S.S. Babenko V.A. Zorov S.D. Balakireva A.V. Juhaszova M. Sollott S.J. Zorov D.B. Mitochondrial membrane potential. Anal. Biochem. 2018 552 50 59 10.1016/j.ab.2017.07.009 28711444
    [Google Scholar]
  13. Kalyanaraman B. Cheng G. Hardy M. Therapeutic targeting of tumor cells and tumor immune microenvironment vulnerabilities. Front. Oncol. 2022 12 816504 10.3389/fonc.2022.816504 35756631
    [Google Scholar]
  14. Liu J. Yan Y. Zhang Y. Pan X. Xia H. Zhou J. Wan F. Huang X. Zhang W. Zhang Q. Chen B. Wang Y. Lysosome-mitochondria cascade targeting nanoparticle drives robust pyroptosis for cancer immunotherapy. J. Am. Chem. Soc. 2024 146 50 34568 34582 10.1021/jacs.4c12264 39639594
    [Google Scholar]
  15. Yin D. Wang P. Hao Y. Yue W. Jiang X. Yao K. Wang Y. Hang X. Xiao A. Zhou J. Lin L. Rao Z. Wu H. Liu F. Dong Z. Wu M. Xu C. Huang J. Chang H. Fan Y. Yu X. Yu C. Chang L. Li M. A battery-free nanofluidic intracellular delivery patch for internal organs. Nature 2025 10.1038/s41586‑025‑08943‑x 40307560
    [Google Scholar]
  16. Liu Z. Yang Y. Kong X. Ren X. Xuan F. Drug-device-field integration for mitochondria-targeting dysfunction and tumor therapy by home-tailored pyroelectric nanocomposites. Biomaterials 2025 316 122990 10.1016/j.biomaterials.2024.122990 39637584
    [Google Scholar]
  17. Kenny T.C. Birsoy K. Mitochondria and cancer. Cold Spring Harb. Perspect. Med. 2024 14 12 a041534 10.1101/cshperspect.a041534 38692736
    [Google Scholar]
  18. Tabish T.A. Hussain M.Z. Fischer R.A. Casini A. Mitochondria-targeted metal–organic frameworks for cancer treatment. Mater. Today 2023 66 302 320 10.1016/j.mattod.2023.04.002
    [Google Scholar]
  19. Mani S. Swargiary G. Tyagi S. Singh M. Jha N.K. Singh K.K. Nanotherapeutic approaches to target mitochondria in cancer. Life Sci. 2021 281 119773 10.1016/j.lfs.2021.119773 34192595
    [Google Scholar]
  20. Sun Y. Yang Q. Xia X. Li X. Ruan W. Zheng M. Zou Y. Shi B. Polymeric nanoparticles for mitochondria targeting mediated robust cancer therapy. Front. Bioeng. Biotechnol. 2021 9 755727 10.3389/fbioe.2021.755727 34692665
    [Google Scholar]
  21. Xu J. Shamul J. Kwizera E. He X. Recent advancements in mitochondria-targeted nanoparticle drug delivery for cancer therapy. Nanomaterials (Basel) 2022 12 5 743 10.3390/nano12050743 35269231
    [Google Scholar]
  22. Yaqoob M.D. Xu L. Li C. Leong M.M.L. Xu D.D. Targeting mitochondria for cancer photodynamic therapy. Photodiagn. Photodyn. Ther. 2022 38 102830 10.1016/j.pdpdt.2022.102830 35341979
    [Google Scholar]
  23. Yang M.Q. Zhang S.L. Sun L. Huang L.T. Yu J. Zhang J.H. Tian Y. Han C.B. Ma J.T. Targeting mitochondria: Restoring the antitumor efficacy of exhausted T cells. Mol. Cancer 2024 23 1 260 10.1186/s12943‑024‑02175‑9 39563438
    [Google Scholar]
  24. Mitochondrial Dynamics DC C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. 2020 15 235 259 10.1146/annurev‑pathmechdis‑012419‑032711 31585519
    [Google Scholar]
  25. Anderson N.M. Simon M.C. The tumor microenvironment. Curr. Biol. 2020 30 16 R921 R925 10.1016/j.cub.2020.06.081 32810447
    [Google Scholar]
  26. Xie J.H. Li Y.Y. Jin J. The essential functions of mitochondrial dynamics in immune cells. Cell. Mol. Immunol. 2020 17 7 712 721 10.1038/s41423‑020‑0480‑1 32523116
    [Google Scholar]
  27. Wu Z. Xiao C. Long J. Huang W. You F. Li X. Mitochondrial dynamics and colorectal cancer biology: mechanisms and potential targets. Cell Commun. Signal. 2024 22 1 91 10.1186/s12964‑024‑01490‑4 38302953
    [Google Scholar]
  28. Weiner-Gorzel K. Murphy M. Mitochondrial dynamics, a new therapeutic target for triple negative breast cancer. Biochim. Biophys. Acta Rev. Cancer 2021 1875 2 188518 10.1016/j.bbcan.2021.188518 33545296
    [Google Scholar]
  29. Song J. Yi X. Gao R. Sun L. Wu Z. Zhang S. Huang L. Han C. Ma J. Impact of drp1-mediated mitochondrial dynamics on t cell immune modulation. Front. Immunol. 2022 13 873834 10.3389/fimmu.2022.873834 35432303
    [Google Scholar]
  30. Buck M.D. O’Sullivan D. Klein Geltink R.I. Curtis J.D. Chang C.H. Sanin D.E. Qiu J. Kretz O. Braas D. van der Windt G.J.W. Chen Q. Huang S.C.C. O’Neill C.M. Edelson B.T. Pearce E.J. Sesaki H. Huber T.B. Rambold A.S. Pearce E.L. Mitochondrial dynamics controls t cell fate through metabolic programming. Cell 2016 166 1 63 76 10.1016/j.cell.2016.05.035 27293185
    [Google Scholar]
  31. Kawano I. Bazila B. Ježek P. Dlasková A. Mitochondrial dynamics and cristae shape changes during metabolic reprogramming. Antioxid. Redox Signal. 2023 39 10-12 684 707 10.1089/ars.2023.0268 37212238
    [Google Scholar]
  32. Sainero-Alcolado L. Liaño-Pons J. Ruiz-Pérez M.V. Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ. 2022 29 7 1304 1317 10.1038/s41418‑022‑01022‑y 35831624
    [Google Scholar]
  33. Bao D. Zhao J. Zhou X. Yang Q. Chen Y. Zhu J. Yuan P. Yang J. Qin T. Wan S. Xing J. Mitochondrial fission-induced mtDNA stress promotes tumor-associated macrophage infiltration and HCC progression. Oncogene 2019 38 25 5007 5020 10.1038/s41388‑019‑0772‑z 30894684
    [Google Scholar]
  34. Lu Y. Fan X. Pan Q. He B. Pu Y. A mitochondria-targeted anticancer copper dithiocarbamate amplifies immunogenic cuproptosis and macrophage polarization. J. Mater. Chem. B Mater. Biol. Med. 2024 12 8 2006 2014 10.1039/D3TB02886K 38291990
    [Google Scholar]
  35. Riley J.S. Tait S.W.G. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020 21 4 e49799 10.15252/embr.201949799 32202065
    [Google Scholar]
  36. Liang X. Wang D. Zhao Y. Wang X. Yao S. Huang W. Yang Y. Dong X. Zhang L. Yang J. Tumor microenvironment-responsive manganese-based nano-modulator activate the cGAS-STING pathway to enhance innate immune system response. J. Nanobiotechnology 2024 22 1 535 10.1186/s12951‑024‑02809‑6 39227944
    [Google Scholar]
  37. Lu T. Zhang Z. Bi Z. Lan T. Zeng H. Liu Y. Mo F. Yang J. Chen S. He X. Hong W. Zhang Z. Pi R. Ren W. Tian X. Wei Y. Luo M. Wei X. TFAM deficiency in dendritic cells leads to mitochondrial dysfunction and enhanced antitumor immunity through cGAS-STING pathway. J. Immunother. Cancer 2023 11 3 e005430 10.1136/jitc‑2022‑005430 36858460
    [Google Scholar]
  38. Hu M. Zhou M. Bao X. Pan D. Jiao M. Liu X. Li F. Li C.Y. ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation. J. Clin. Invest. 2021 131 3 e139333 10.1172/JCI139333 33290271
    [Google Scholar]
  39. Chen S. Liao Z. Xu P. Mitochondrial control of innate immune responses. Front. Immunol. 2023 14 1166214 10.3389/fimmu.2023.1166214 37325622
    [Google Scholar]
  40. Chin E.N. Sulpizio A. Lairson L.L. Targeting sting to promote antitumor immunity. Trends Cell Biol. 2023 33 3 189 203 10.1016/j.tcb.2022.06.010 35931610
    [Google Scholar]
  41. Xu M.M. Pu Y. Han D. Shi Y. Cao X. Liang H. Chen X. Li X.D. Deng L. Chen Z.J. Weichselbaum R.R. Fu Y.X. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity 2017 47 2 363 373.e5 10.1016/j.immuni.2017.07.016 28801234
    [Google Scholar]
  42. Liu J. Xiang J. Jin C. Ye L. Wang L. Gao Y. Lv N. Zhang J. You F. Qiao H. Shi L. Medicinal plant-derived mtDNA via nanovesicles induces the cGAS-STING pathway to remold tumor-associated macrophages for tumor regression. J. Nanobiotechnology 2023 21 1 78 10.1186/s12951‑023‑01835‑0 36879291
    [Google Scholar]
  43. Zhong Z. Liang S. Sanchez-Lopez E. He F. Shalapour S. Lin X. Wong J. Ding S. Seki E. Schnabl B. Hevener A.L. Greenberg H.B. Kisseleva T. Karin M. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 2018 560 7717 198 203 10.1038/s41586‑018‑0372‑z 30046112
    [Google Scholar]
  44. Fitzgerald K.A. Kagan J.C. Toll-like receptors and the control of immunity. Cell 2020 180 6 1044 1066 10.1016/j.cell.2020.02.041 32164908
    [Google Scholar]
  45. Sies H. Belousov V.V. Chandel N.S. Davies M.J. Jones D.P. Mann G.E. Murphy M.P. Yamamoto M. Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022 23 7 499 515 10.1038/s41580‑022‑00456‑z 35190722
    [Google Scholar]
  46. Kuo C.L. Ponneri Babuharisankar A. Lin Y.C. Lien H.W. Lo Y.K. Chou H.Y. Tangeda V. Cheng L.C. Cheng A.N. Lee A.Y.L. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: Foe or friend? J. Biomed. Sci. 2022 29 1 74 10.1186/s12929‑022‑00859‑2 36154922
    [Google Scholar]
  47. Cheung E.C. Vousden K.H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022 22 5 280 297 10.1038/s41568‑021‑00435‑0 35102280
    [Google Scholar]
  48. Zhou J. Tang Z. Gao S. Li C. Feng Y. Zhou X. Tumor-associated macrophages: Recent insights and therapies. Front. Oncol. 2020 10 188 10.3389/fonc.2020.00188 32161718
    [Google Scholar]
  49. Canton M. Sánchez-Rodríguez R. Spera I. Venegas F.C. Favia M. Viola A. Castegna A. Reactive oxygen species in macrophages: Sources and targets. Front. Immunol. 2021 12 734229 10.3389/fimmu.2021.734229 34659222
    [Google Scholar]
  50. Weinberg F. Ramnath N. Nagrath D. Reactive oxygen species in the tumor microenvironment: An overview. Cancers (Basel) 2019 11 8 1191 10.3390/cancers11081191 31426364
    [Google Scholar]
  51. Gostner J.M. Becker K. Fuchs D. Sucher R. Redox regulation of the immune response. Redox Rep. 2013 18 3 88 94 10.1179/1351000213Y.0000000044 23601165
    [Google Scholar]
  52. Paladhi A. Daripa S. Nath A. Hira S.K. TLR7-induced mitochondrial reactive oxygen species production in monocyte-derived dendritic cells drives il-12–dependent nk cell activation and enhances antitumor immunity. J. Immunol. 2024 213 8 1255 1263 10.4049/jimmunol.2400340 39240186
    [Google Scholar]
  53. Liu Y.N. Yang J.F. Huang D.J. Ni H.H. Zhang C.X. Zhang L. He J. Gu J.M. Chen H.X. Mai H.Q. Chen Q.Y. Zhang X.S. Gao S. Li J. Hypoxia induces mitochondrial defect that promotes T cell exhaustion in tumor microenvironment through myc-regulated pathways. Front. Immunol. 2020 11 1906 10.3389/fimmu.2020.01906 32973789
    [Google Scholar]
  54. He J. Shangguan X. Zhou W. Cao Y. Zheng Q. Tu J. Hu G. Liang Z. Jiang C. Deng L. Wang S. Yang W. Zuo Y. Ma J. Cai R. Chen Y. Fan Q. Dong B. Xue W. Tan H. Qi Y. Gu J. Su B. Eugene Chin Y. Chen G. Wang Q. Wang T. Cheng J. Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development. Nat. Commun. 2021 12 1 4371 10.1038/s41467‑021‑24619‑2 34272364
    [Google Scholar]
  55. Zhang D. Man D. Lu J. Jiang Y. Ding B. Su R. Tong R. Chen J. Yang B. Zheng S. Chen D. Wu J. Mitochondrial TSPO promotes hepatocellular carcinoma progression through ferroptosis inhibition and immune evasion. Adv. Sci. 2023 10 15 2206669 10.1002/advs.202206669 36994647
    [Google Scholar]
  56. Wenes M. Jaccard A. Wyss T. Maldonado-Pérez N. Teoh S.T. Lepez A. Renaud F. Franco F. Waridel P. Yacoub Maroun C. Tschumi B. Dumauthioz N. Zhang L. Donda A. Martín F. Migliorini D. Lunt S.Y. Ho P.C. Romero P. The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function. Cell Metab. 2022 34 5 731 746.e9 10.1016/j.cmet.2022.03.013 35452600
    [Google Scholar]
  57. Li J. Fan J. Gao Y. Huang S. Huang D. Li J. Wang X. Santos H.A. Shen P. Xia B. Porous silicon nanocarriers boost the immunomodulation of mitochondria-targeted bovine serum albumins on macrophage polarization. ACS Nano 2023 17 2 1036 1053 10.1021/acsnano.2c07439 36598186
    [Google Scholar]
  58. Huang M. Xiong D. Pan J. Zhang Q. Wang Y. Myers C.R. Johnson B.D. Hardy M. Kalyanaraman B. You M. Prevention of tumor growth and dissemination by in situ vaccination with mitochondria-targeted atovaquone. Adv. Sci. 2022 9 12 2101267 10.1002/advs.202101267 35243806
    [Google Scholar]
  59. Qin J. Gong N. Liao Z. Zhang S. Timashev P. Huo S. Liang X.J. Recent progress in mitochondria-targeting-based nanotechnology for cancer treatment. Nanoscale 2021 13 15 7108 7118 10.1039/D1NR01068A 33889907
    [Google Scholar]
  60. Chen S. Sun Y. Xie Y. Liu Y. Hu H. Xie C. Xu S. Zhang Z. Zhang J. Shen Y. Xu X. Qiu N. Mitochondria-targeted icaritin nanoparticles induce immunogenic cell death in hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2025 17 2 2899 2910 10.1021/acsami.4c13433 39454053
    [Google Scholar]
  61. Peng N. Yu H. Yu W. Yang M. Chen H. Zou T. Deng K. Huang S. Liu Y. Sequential-targeting nanocarriers with pH-controlled charge reversal for enhanced mitochondria-located photodynamic-immunotherapy of cancer. Acta Biomater. 2020 105 223 238 10.1016/j.actbio.2020.01.005 31926335
    [Google Scholar]
  62. Li Q. Yang J. Chen C. Lin X. Zhou M. Zhou Z. Huang Y. A novel mitochondrial targeted hybrid peptide modified HPMA copolymers for breast cancer metastasis suppression. J. Control. Release 2020 325 38 51 10.1016/j.jconrel.2020.06.010 32598957
    [Google Scholar]
  63. Zhang W. Chen G. Chen Z. Yang X. Zhang B. Wang S. Li Z. Yang Y. Wu Y. Liu Z. Yu Z. Mitochondria-targeted polyprodrug nanoparticles induce mitochondrial stress for immunogenic chemo-photodynamic therapy of ovarian cancer. J. Control. Release 2024 371 470 483 10.1016/j.jconrel.2024.06.014 38849094
    [Google Scholar]
  64. Jiang Q. Zhang C. Wang H. Peng T. Zhang L. Wang Y. Han W. Shi C. Mitochondria-targeting immunogenic cell death inducer improves the adoptive t-cell therapy against solid tumor. Front. Oncol. 2019 9 1196 10.3389/fonc.2019.01196 31781498
    [Google Scholar]
  65. Ge Y. Bao Y. Shao A. Jin K. Mao Z. Tong W. Ye J. Self-modifying nanoenhancers facilitating lysosomal escape for cGAS-STING cascading activation in tumor immunotherapy. Nano Today 2024 57 10.1016/j.nantod.2024.102391 102391
    [Google Scholar]
  66. Xie Q. Li Z. Liu Y. Zhang D. Su M. Niitsu H. Lu Y. Coffey R.J. Bai M. Translocator protein-targeted photodynamic therapy for direct and abscopal immunogenic cell death in colorectal cancer. Acta Biomater. 2021 134 716 729 10.1016/j.actbio.2021.07.052 34329783
    [Google Scholar]
  67. Xie Q. Su M. Liu Y. Zhang D. Li Z. Bai M. Translocator protein (TSPO)-Targeted agents for photodynamic therapy of cancer. Photodiagn. Photodyn. Ther. 2021 34 102209 10.1016/j.pdpdt.2021.102209 33561573
    [Google Scholar]
  68. Jiang W. Dong W. Li M. Guo Z. Wang Q. Liu Y. Bi Y. Zhou H. Wang Y. Nitric oxide induces immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 2022 16 3 3881 3894 10.1021/acsnano.1c09048 35238549
    [Google Scholar]
  69. Carlino M.S. Larkin J. Long G.V. Immune checkpoint inhibitors in melanoma. Lancet 2021 398 10304 1002 1014 10.1016/S0140‑6736(21)01206‑X 34509219
    [Google Scholar]
  70. Chen H. Li T. Liu Z. Tang S. Tong J. Tao Y. Zhao Z. Li N. Mao C. Shen J. Wan M. A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nat. Commun. 2023 14 1 941 10.1038/s41467‑022‑35709‑0 36804924
    [Google Scholar]
  71. Ji B. Wei M. Yang B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics 2022 12 1 434 458 10.7150/thno.67300 34987658
    [Google Scholar]
  72. Liu X. Lu Y. Li X. Luo L. You J. Nanoplatform-enhanced photodynamic therapy for the induction of immunogenic cell death. J. Control. Release 2024 365 1058 1073 10.1016/j.jconrel.2023.11.058 38056695
    [Google Scholar]
  73. Jin F. Liu D. Xu X. Ji J. Du Y. Nanomaterials-based photodynamic therapy with combined treatment improves antitumor efficacy through boosting immunogenic cell death. Int. J. Nanomedicine 2021 16 4693 4712 10.2147/IJN.S314506 34267518
    [Google Scholar]
  74. Deng H. Zhou Z. Yang W. Lin L. Wang S. Niu G. Song J. Chen X. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy. Nano Lett. 2020 20 3 1928 1933 10.1021/acs.nanolett.9b05210 32073871
    [Google Scholar]
  75. Liu X. Liu Y. Li X. Huang J. Guo X. Zhang J. Luo Z. Shi Y. Jiang M. Qin B. Du Y. Luo L. You J. ER-targeting pdt converts tumors into in situ therapeutic tumor vaccines. ACS Nano 2022 16 6 9240 9253 10.1021/acsnano.2c01669 35713245
    [Google Scholar]
  76. Zhang D. Xie Q. Liu Y. Li Z. Li H. Li S. Li Z. Cui J. Su M. Jiang X. Xue P. Bai M. Photosensitizer IR700DX-6T- and IR700DX-mbc94-mediated photodynamic therapy markedly elicits anticancer immune responses during treatment of pancreatic cancer. Pharmacol. Res. 2021 172 105811 10.1016/j.phrs.2021.105811 34390852
    [Google Scholar]
  77. Wang S.Z. Guo Y. Zhang X. Feng H-H. Wu S-Y. Zhu Y-X. Jia H-R. Duan Q-Y. Hao S-J. Wu F-G. Mitochondria-targeted photodynamic and mild-temperature photothermal therapy for realizing enhanced immunogenic cancer cell death via mitochondrial stress. Adv. Funct. Mater. 2023 33 42 2303328 10.1002/adfm.202303328
    [Google Scholar]
  78. Wang X. Qian J. Yang Z. Song Y. Pan W. Ye Y. Qin X. Yan X. Huang X. Wang X. Gao M. Zhang Y. Photodynamic modulation of endoplasmic reticulum and mitochondria network boosted cancer immunotherapy. Adv. Mater. 2024 36 4 2310964 10.1002/adma.202310964 37985146
    [Google Scholar]
  79. Duan Z. Li L. Zhan Q. Chen J. Li Q. Liu R. Tu Y. Mitochondria-targeting type-i photodynamic therapy based on phenothiazine for realizing enhanced immunogenic cancer cell death via mitochondrial oxidative stress. Int. J. Nanomedicine 2025 20 125 139 10.2147/IJN.S494970 39802375
    [Google Scholar]
  80. Xu G. Chen S. Yang H. Feng X. Li F. Zhao H. Sun L. Yan P. Chen Y. Guo G. Sun W. Song W. Chen Z.S. Wei L. Zhong W. An ER stress and mitochondrial apoptosis co-inducer for enhanced cancer immunotherapy. Cancer Lett. 2025 612 217485 10.1016/j.canlet.2025.217485 39855378
    [Google Scholar]
  81. Yang S. Sun B. Liu F. Li N. Wang M. Wu P. Wu G. Fang H. He Y. Zhou W. Xiao H. Tan X. Tang L. Zhu S. Yang Q. NIR-II imaging-guided mitochondrial-targeting organic nanoparticles for multimodal synergistic tumor therapy. Small 2023 19 26 2207995 10.1002/smll.202207995 36942859
    [Google Scholar]
  82. Hu X. Zhang M. Quan C. Ren S. Chen W. Wang J. ROS-responsive and triple-synergistic mitochondria-targeted polymer micelles for efficient induction of ICD in tumor therapeutics. Bioact. Mater. 2024 36 490 507 10.1016/j.bioactmat.2024.06.038 39055351
    [Google Scholar]
  83. Wang Y. Wang W. Gu R. Chen J. Chen Q. Lin T. Wu J. Hu Y. Yuan A. In situ vaccination with mitochondria-targeting immunogenic death inducer elicits CD8 + T cell-dependent antitumor immunity to boost tumor immunotherapy. Adv. Sci. 2023 10 20 2300286 10.1002/advs.202300286 37127892
    [Google Scholar]
  84. Zhang J. Zhang D. Li Q. Jiang Y. Song A. Li Z. Luan Y. Task-specific design of immune-augmented nanoplatform to enable high-efficiency tumor immunotherapy. ACS Appl. Mater. Interfaces 2019 11 46 42904 42916 10.1021/acsami.9b13556 31657540
    [Google Scholar]
  85. Liang Y. Wang P.Y. Liu Z.Y. Sun H.F. Wang Q. Sun G.B. Zhang X. Li Y.J. Xie S.Y. Dual stimuli-responsive micelles for imaging-guided mitochondrion-targeted photothermal/photodynamic/chemo combination therapy-induced immunogenic cell death. Int. J. Nanomedicine 2023 18 4381 4402 10.2147/IJN.S410047 37551273
    [Google Scholar]
  86. Zeng S. Chen C. Zhang L. Liu X. Qian M. Cui H. Wang J. Chen Q. Peng X. Activation of pyroptosis by specific organelle-targeting photodynamic therapy to amplify immunogenic cell death for anti-tumor immunotherapy. Bioact. Mater. 2023 25 580 593 10.1016/j.bioactmat.2022.07.016 37056275
    [Google Scholar]
  87. Yu H. Tiemuer A. Yao X. Zuo M. Wang H.Y. Liu Y. Chen X. Mitochondria-specific near-infrared photoactivation of peroxynitrite upconversion luminescent nanogenerator for precision cancer gas therapy. Acta Pharm. Sin. B 2024 14 1 378 391 10.1016/j.apsb.2023.08.019 38261812
    [Google Scholar]
  88. Song M. Yuan J. Zhang G. Sun M. Zhang Y. Su X. Lv R. Zhao Y. Shi Y. Zhao L. Mitochondrial transfer of drug-loaded artificial mitochondria for enhanced anti-Glioma therapy through synergistic apoptosis/ferroptosis/immunogenic cell death. Acta Biomater. 2025 193 514 530 10.1016/j.actbio.2024.12.027 39674237
    [Google Scholar]
  89. Shen J. Sun C. Wang Z. Chu Z. Liu C. Xu X. Xia M. Zhao M. Wang C. Sequential receptor–mediated mixed-charge nanomedicine to target pancreatic cancer, inducing immunogenic cell death and reshaping the tumor microenvironment. Int. J. Pharm. 2021 601 120553 10.1016/j.ijpharm.2021.120553 33794325
    [Google Scholar]
  90. Wang Z. Sun C. Wu H. Xie J. Zhang T. Li Y. Xu X. Wang P. Wang C. Cascade targeting codelivery of ingenol-3-angelate and doxorubicin for enhancing cancer chemoimmunotherapy through synergistic effects in prostate cancer. Mater. Today Bio 2022 13 100189 10.1016/j.mtbio.2021.100189 34977528
    [Google Scholar]
  91. Zhao H.Y. Li K.H. Wang D.D. Zhang Z.L. Xu Z.J. Qi M.H. Huang S.W. A mitochondria-targeting dihydroartemisinin derivative as a reactive oxygen species -based immunogenic cell death inducer. iScience 2024 27 1 108702 10.1016/j.isci.2023.108702 38205260
    [Google Scholar]
  92. Zhu L. Li W. Liu C. Yue S. Qiao Y. Cui Y. Cheng J. Zhang M. Zhang P. Zhang B. Hou Y. Glutathione-sensitive mesoporous nanoparticles loaded with cinnamaldehyde for chemodynamic and immunological therapy of cancer. J. Mater. Chem. B Mater. Biol. Med. 2023 11 36 8717 8731 10.1039/D3TB01094E 37646819
    [Google Scholar]
  93. Wan J. Zhang X. Li Z. Mo F. Tang D. Xiao H. Wang J. Rong G. Liu T. Oxidative stress amplifiers as immunogenic cell death nanoinducers disrupting mitochondrial redox homeostasis for cancer immunotherapy. Adv. Healthc. Mater. 2023 12 9 2202710 10.1002/adhm.202202710 36527737
    [Google Scholar]
  94. Ren J. Zhou J. Liu H. Jiao X. Cao Y. Xu Z. Kang Y. Xue P. Ultrasound (US)-activated redox dyshomeostasis therapy reinforced by immunogenic cell death (ICD) through a mitochondrial targeting liposomal nanosystem. Theranostics 2021 11 19 9470 9491 10.7150/thno.62984 34646381
    [Google Scholar]
  95. Zheng D. Liu J. Xie L. Wang Y. Ding Y. Peng R. Cui M. Wang L. Zhang Y. Zhang C. Yang Z. Enzyme-instructed and mitochondria-targeting peptide self-assembly to efficiently induce immunogenic cell death. Acta Pharm. Sin. B 2022 12 6 2740 2750 10.1016/j.apsb.2021.07.005 35755291
    [Google Scholar]
  96. Jiang H. Fu H. Guo Y. Hu P. Shi J. Evoking tumor associated macrophages by mitochondria-targeted magnetothermal immunogenic cell death for cancer immunotherapy. Biomaterials 2022 289 121799 10.1016/j.biomaterials.2022.121799 36152515
    [Google Scholar]
  97. Liu S. Tian H. Ming H. Zhang T. Gao Y. Liu R. Chen L. Yang C. Nice E.C. Huang C. Bao J. Gao W. Shi Z. Mitochondrial-targeted CS@KET/P780 nanoplatform for site-specific delivery and high-efficiency cancer immunotherapy in hepatocellular carcinoma. Adv. Sci. 2024 11 14 2308027 10.1002/advs.202308027 38308137
    [Google Scholar]
  98. Wang Y. Li H. Niu G. Li Y. Huang Z. Cheng S. Zhang K. Li H. Fu Q. Jiang Y. Boosting sono-immunotherapy of prostate carcinoma through amplifying domino-effect of mitochondrial oxidative stress using biodegradable cascade-targeting nanocomposites. ACS Nano 2024 18 acsnano.3c12511 10.1021/acsnano.3c12511 38332473
    [Google Scholar]
  99. Peng M. Dong H. Shao M. Zhang X. Sun J. Ding C. Han X. Yang Q. Sang X. Cao G. Self-heating mitochondrion-induced free radical blast for immunogenic cell death stimulation and HCC immunotherapy. J. Control. Release 2024 366 694 711 10.1016/j.jconrel.2024.01.022 38228273
    [Google Scholar]
  100. Guo W. Chen Z. Wu Q. Tan L. Ren X. Fu C. Cao F. Gu D. Meng X. Prepared MW-immunosensitizers precisely release no to downregulate HIF-1α expression and enhance immunogenic cell death. Small 2024 20 17 2308055 10.1002/smll.202308055 38037766
    [Google Scholar]
  101. Li Y. Liu J. Weichselbaum R.R. Lin W. Mitochondria-targeted multifunctional nanoparticles combine cuproptosis and programmed cell death-1 downregulation for cancer immunotherapy. Adv. Sci. 2024 11 35 2403520 10.1002/advs.202403520 39013093
    [Google Scholar]
  102. Hou X. Pan D. Zhong D. Gong Q. Luo K. Dendronized polymer-derived nanomedicines for mitochondrial dynamics regulation and immune modulation. Adv. Mater. 2024 36 25 2400582 10.1002/adma.202400582 38477381
    [Google Scholar]
  103. Ye Y. Ren K. Dong Y. Yang L. Zhang D. Yuan Z. Ma N. Song Y. Huang X. Qiao H. Mitochondria-targeting pyroptosis amplifier of lonidamine-modified black phosphorus nanosheets for glioblastoma treatments. ACS Appl. Mater. Interfaces 2023 15 22 26285 26297 10.1021/acsami.3c01559 37220137
    [Google Scholar]
  104. Xiong D. Yin Z. Huang M. Wang Y. Hardy M. Kalyanaraman B. Wong S.T. You M. Mitochondria-targeted atovaquone promotes anti-lung cancer immunity by reshaping tumor microenvironment and enhancing energy metabolism of anti-tumor immune cells. Cancer Commun. (Lond.) 2024 44 3 448 452 10.1002/cac2.12500 37930151
    [Google Scholar]
  105. Chen Y. Tian H. Zhang X. Nice E.C. Huang C. Zhang H. Zheng S. Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming. J. Nanobiotechnology 2024 22 1 801 10.1186/s12951‑024‑03059‑2 39731102
    [Google Scholar]
  106. Zhao X. Cheng H. Wang Q. Nie W. Yang Y. Yang X. Zhang K. Shi J. Liu J. Regulating photosensitizer metabolism with dnazyme-loaded nanoparticles for amplified mitochondria-targeting photodynamic immunotherapy. ACS Nano 2023 17 14 13746 13759 10.1021/acsnano.3c03308 37438324
    [Google Scholar]
  107. Lei J. Zhang W. Ma L. He Y. Liang H. Zhang X. Li G. Feng X. Tan L. Yang C. Sonodynamic amplification of cGAS-STING activation by cobalt-based nanoagonist against bone and metastatic tumor. Biomaterials 2023 302 122295 10.1016/j.biomaterials.2023.122295 37666101
    [Google Scholar]
  108. Liu S. Jiang Y. Cheng X. Wang Y. Fang T. Yan X. Tang H. You Q. Mitochondria-targeting nanozyme for catalytical therapy and radiotherapy with activation of cGAS-STING. Colloids Surf. B Biointerfaces 2024 244 114137 10.1016/j.colsurfb.2024.114137 39116601
    [Google Scholar]
  109. Wang X.D. Liu Y.S. Chen M.D. Hu M.H. Discovery of a triphenylamine-based ligand that targets mitochondrial DNA G-quadruplexes and activates the cGAS-STING immunomodulatory pathway. Eur. J. Med. Chem. 2024 269 116361 10.1016/j.ejmech.2024.116361 38547736
    [Google Scholar]
  110. Gao F. Qiu X. Baddi S. He S. Wang S. Zhao C. Dou X. Feng C. Chiral nanofibers of camptothecin trigger pyroptosis for enhanced immunotherapy. Angew. Chem. Int. Ed. 2025 64 13 e202423446 10.1002/anie.202423446
    [Google Scholar]
  111. Bai Y. Hua J. Zhao J. Wang S. Huang M. Wang Y. Luo Y. Zhao S. Liang H. A silver-induced absorption red-shifted dual-targeted nanodiagnosis-treatment agent for nir-ii photoacoustic imaging-guided photothermal and ros simultaneously enhanced immune checkpoint blockade antitumor therapy. Adv. Sci. 2024 11 11 2306375 10.1002/advs.202306375 38161215
    [Google Scholar]
  112. Malinee M. Pandian G.N. Sugiyama H. Targeted epigenetic induction of mitochondrial biogenesis enhances antitumor immunity in mouse model. Cell Chem. Biol. 2022 29 3 463 475.e6 10.1016/j.chembiol.2021.08.001 34520746
    [Google Scholar]
  113. Ding Q. Tang W. Li X. Ding Y. Chen X. Cao W. Wang X. Mo W. Su Z. Zhang Q. Guo H. Mitochondrial-targeted brequinar liposome boosted mitochondrial-related ferroptosis for promoting checkpoint blockade immunotherapy in bladder cancer. J. Control. Release 2023 363 221 234 10.1016/j.jconrel.2023.09.024 37717657
    [Google Scholar]
  114. Li Q. Chen C. Kong J. Li L. Li J. Huang Y. Stimuli-responsive nano vehicle enhances cancer immunotherapy by coordinating mitochondria-targeted immunogenic cell death and PD-L1 blockade. Acta Pharm. Sin. B 2022 12 5 2533 2549 10.1016/j.apsb.2021.11.005 35646521
    [Google Scholar]
  115. Jin J. Yuan P. Yu W. Lin J. Xu A. Xu X. Lou J. Yu T. Qian C. Liu B. Song J. Li L. Piao Y. Xie T. Shen Y. Tao H. Tang J. Mitochondria-targeting polymer micelle of dichloroacetate induced pyroptosis to enhance osteosarcoma immunotherapy. ACS Nano 2022 16 7 10327 10340 10.1021/acsnano.2c00192 35737477
    [Google Scholar]
  116. Li F. Wen Z. Wu C. Yang Z. Wang Z. Diao W. Chen D. Xu Z. Lu Y. Liu W. Simultaneous activation of immunogenic cell death and cgas-sting pathway by liver- and mitochondria-targeted gold(i) complexes for chemoimmunotherapy of hepatocellular carcinoma. J. Med. Chem. 2024 67 3 1982 2003 10.1021/acs.jmedchem.3c01785 38261008
    [Google Scholar]
  117. Liao X. Cao Y. Zhong W. Zheng D. Jin L. Yao Y. Yang C. A multifunctional nanoparticle dual loading with chlorin e6 and sting agonist for combinatorial therapy of melanoma. ACS Appl. Bio Mater. 2024 7 10 6768 6779 10.1021/acsabm.4c00896 39289781
    [Google Scholar]
  118. Zhao M. Li J. Liu J. Xu M. Ji H. Wu S. Chen D. Hu H. Charge-switchable nanoparticles enhance Cancer immunotherapy based on mitochondrial dynamic regulation and immunogenic cell death induction. J. Control. Release 2021 335 320 332 10.1016/j.jconrel.2021.05.036 34062192
    [Google Scholar]
  119. Zhou Z. Li C. Li C. Zhou L. Tan S. Hou W. Xie C. Wang L. Shen J. Xiong W. Mitochondria-targeted nanoadjuvants induced multi-functional immune-microenvironment remodeling to sensitize tumor radio-immunotherapy. Adv. Sci. 2024 11 26 2400297 10.1002/advs.202400297 38704675
    [Google Scholar]
  120. Li J Lu W Yang Y Xiang R Ling Y Yu C Zhou Y Hybrid Nanomaterials for Cancer Immunotherapy. Adv Sci (Weinh) 2023 10 6 e2204932 10.1002/advs.202204932
    [Google Scholar]
  121. Liew S.S. Qin X. Zhou J. Li L. Huang W. Yao S.Q. Smart design of nanomaterials for mitochondria-targeted nanotherapeutics. Angew. Chem. Int. Ed. 2021 60 5 2232 2256 10.1002/anie.201915826 32128948
    [Google Scholar]
  122. Zeng Z. Fang C. Zhang Y. Chen C.X. Zhang Y.F. Zhang K. Mitochondria-targeted nanocarriers promote highly efficient cancer therapy: A review. Front. Bioeng. Biotechnol. 2021 9 784602 10.3389/fbioe.2021.784602 34869294
    [Google Scholar]
  123. Rodriguez B.L. Gibbons D.L. MEK inhibition invigorates chemoimmunotherapy by tumor mitophagy-induced CXCL10 expression. Cell Rep. Med. 2022 3 1 100506 10.1016/j.xcrm.2021.100506 35106515
    [Google Scholar]
  124. Lee H. Lee S. Baek G. Kim A. Kang B.C. Seo H. Kim J.S. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat. Commun. 2021 12 1 1190 10.1038/s41467‑021‑21464‑1 33608520
    [Google Scholar]
  125. Jia X.H. Geng L.Y. Jiang P.P. Xu H. Nan K.J. Yao Y. Jiang L.L. Sun H. Qin T.J. Guo H. The biomarkers related to immune related adverse events caused by immune checkpoint inhibitors. J. Exp. Clin. Cancer Res. 2020 39 1 284 10.1186/s13046‑020‑01749‑x 33317597
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501397738250919154624
Loading
/content/journals/cdt/10.2174/0113894501397738250919154624
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keywords: mitochondria ; nanoformulations ; immunotherapy ; targeted therapy ; Cancer ; mitochondria-targeted
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test