Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Background

Gut-peptide hormones are crucial regulators of various physiological processes, including metabolism, digestion, behavior, and homeostasis. In a widely used model organism, a diverse range of gut-peptide hormones governs gut-brain communication, influencing food intake, energy balance, circadian rhythms, stress responses, and aging.

Objective

This review summarizes recent studies on gut-peptide hormones in , focusing on their mechanisms of action, interactions with other signaling pathways, and their relevance to human orthologs.

Methods

The PubMed database was searched for studies on gut-peptide hormones in published in the past decade.

Results

The functions of gut-peptide hormones were reviewed, including DH31, Bursicon (Burs), Tachykinins (Tks), Hedgehog (Hh), Pigment-dispersing factor (PDF), Neuropeptide F (NPF), Short neuropeptide F (sNPF), Allatostatins (ASTs), CCHamides (CCHa), and Limostatin (Lst). These hormones regulate key physiological processes such as digestion, energy homeostasis, and metabolism through conserved pathways.

Conclusion

gut-peptide hormones are fundamental regulators of health and disease. They are conducive to exploring conserved mechanisms for developing treatments against human metabolic and aging disorders.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501397622250801062050
2025-08-06
2026-01-26
Loading full text...

Full text loading...

References

  1. CantiniG. TrabuccoM. Di FrancoA. MannucciE. LuconiM. Glucagon modulates proliferation and differentiation of human adipose precursors.J. Mol. Endocrinol.201963424926010.1530/JME‑19‑009531525727
    [Google Scholar]
  2. KraemerW.J. RatamessN.A. HymerW.C. NindlB.C. FragalaM.S. Growth hormone(s), testosterone, insulin-like growth factors, and cortisol: Roles and integration for cellular development and growth with exercise.Front. Endocrinol.2020113310.3389/fendo.2020.0003332158429
    [Google Scholar]
  3. Santana-SánchezP. Vaquero-GarcíaR. Legorreta-HaquetM.V. Chávez-SánchezL. Chávez-RuedaA.K. Hormones and B-cell development in health and autoimmunity.Front. Immunol.202415138550110.3389/fimmu.2024.138550138680484
    [Google Scholar]
  4. ZhangD. WeiY. HuangQ. ChenY. ZengK. YangW. ChenJ. ChenJ. Important hormones regulating lipid metabolism.Molecules20222720705210.3390/molecules2720705236296646
    [Google Scholar]
  5. NwakoJ.G. McCauleyH.A. Enteroendocrine cells regulate intestinal homeostasis and epithelial function.Mol. Cell. Endocrinol.202459311233910.1016/j.mce.2024.11233939111616
    [Google Scholar]
  6. CoateK.C. KliewerS.A. MangelsdorfD.J. SnapShot: Hormones of the gastrointestinal tract.Cell2014159614781478.e110.1016/j.cell.2014.11.02625480303
    [Google Scholar]
  7. NakamoriH. NiimiA. MitsuiR. HashitaniH. Lipopolysaccharide accelerates peristalsis by stimulating glucagon-like peptide-1 release from L cells in the rat proximal colon.J. Physiol.2024602194803482010.1113/JP28625839287487
    [Google Scholar]
  8. KirschA. GindlhuberJ. ZabiniD. OstoE. Bile acids and incretins as modulators of obesity-associated atherosclerosis.Front. Cardiovasc. Med.202511151014810.3389/fcvm.2024.151014839834741
    [Google Scholar]
  9. ChenF. SarverD.C. SaqibM. ZhouM. AjaS. SeldinM.M. WongG.W. CTRP13 ablation improves systemic glucose and lipid metabolism.Mol. Metab.20237810182410.1016/j.molmet.2023.10182437844630
    [Google Scholar]
  10. MelsonE. MirasA.D. PapamargaritisD. Future therapies for obesity.Clin. Med.202323433734610.7861/clinmed.2023‑014437524416
    [Google Scholar]
  11. ObradovicM. Sudar-MilovanovicE. SoskicS. EssackM. AryaS. StewartA.J. GojoboriT. IsenovicE.R. Leptin and obesity: Role and clinical implication.Front. Endocrinol.20211258588710.3389/fendo.2021.58588734084149
    [Google Scholar]
  12. RossiR.E. ElveviA. CitterioD. CoppaJ. InvernizziP. MazzaferroV. MassironiS. Gastrinoma and Zollinger Ellison syndrome: A roadmap for the management between new and old therapies.World J. Gastroenterol.202127355890590710.3748/wjg.v27.i35.589034629807
    [Google Scholar]
  13. ImperialeT.F. BirgissonS. Somatostatin or octreotide compared with H2 antagonists and placebo in the management of acute nonvariceal upper gastrointestinal hemorrhage: A meta-analysis.Ann. Intern. Med.1997127121062107110.7326/0003‑4819‑127‑12‑199712150‑000029412308
    [Google Scholar]
  14. MoggiaE. KotiR. BelgaumkarA.P. FazioF. PereiraS.P. DavidsonB.R. GurusamyK.S. Pharmacological interventions for acute pancreatitis.Cochrane Database Syst. Rev.201744CD01138428431202
    [Google Scholar]
  15. RoeslerR. KentP. LuftT. SchwartsmannG. MeraliZ. Gastrin-releasing peptide receptor signaling in the integration of stress and memory.Neurobiol. Learn. Mem.2014112445210.1016/j.nlm.2013.08.01324001571
    [Google Scholar]
  16. BallazS. The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning.Rev. Neurosci.201728657358510.1515/revneuro‑2016‑008828343167
    [Google Scholar]
  17. TossellK. YuX. GiannosP. Anuncibay SotoB. NolletM. YustosR. MiraccaG. VicenteM. MiaoA. HsiehB. MaY. VyssotskiA.L. ConstandinouT. FranksN.P. WisdenW. Somatostatin neurons in prefrontal cortex initiate sleep-preparatory behavior and sleep via the preoptic and lateral hypothalamus.Nat. Neurosci.202326101805181910.1038/s41593‑023‑01430‑437735497
    [Google Scholar]
  18. MathysH. PengZ. BoixC.A. VictorM.B. LearyN. BabuS. AbdelhadyG. JiangX. NgA.P. GhafariK. KuniskyA.K. ManteroJ. GalaniK. LohiaV.N. FortierG.E. LotfiY. IveyJ. BrownH.P. PatelP.R. ChakrabortyN. BeaudwayJ.I. ImhoffE.J. KeelerC.F. McChesneyM.M. PatelH.H. PatelS.P. ThaiM.T. BennettD.A. KellisM. TsaiL.H. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology.Cell20231862043654385.e2710.1016/j.cell.2023.08.03937774677
    [Google Scholar]
  19. DienelS.J. FishK.N. LewisD.A. The nature of prefrontal cortical GABA neuron alterations in schizophrenia: markedly lower somatostatin and parvalbumin gene expression without missing neurons.Am. J. Psychiatry2023180749550710.1176/appi.ajp.2022067637073488
    [Google Scholar]
  20. Victor AtokiA. AjaP.M. ShinkafiT.S. OndariE.N. AdeniyiA.I. FasogbonI.V. DanganaR.S. ShehuU.U. Akin-AdewumiA. Exploring the versatility of Drosophila melanogaster as a model organism in biomedical research: A comprehensive review.Fly2025191242045310.1080/19336934.2024.242045339722550
    [Google Scholar]
  21. PandeyU.B. NicholsC.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery.Pharmacol. Rev.201163241143610.1124/pr.110.00329321415126
    [Google Scholar]
  22. CapoF. WilsonA. Di CaraF. The intestine of Drosophila melanogaster: An emerging versatile model system to study intestinal epithelial homeostasis and host-microbial interactions in humans.Microorganisms20197933610.3390/microorganisms709033631505811
    [Google Scholar]
  23. GuoX. LvJ. XiR. The specification and function of enteroendocrine cells in Drosophila and mammals: A comparative review.FEBS J.2022289164773479610.1111/febs.1606734115929
    [Google Scholar]
  24. Miguel-AliagaI. JasperH. LemaitreB. Anatomy and physiology of the digestive tract of Drosophila melanogaster.Genetics2018210235739610.1534/genetics.118.30022430287514
    [Google Scholar]
  25. HungR.J. HuY. KirchnerR. LiuY. XuC. ComjeanA. TattikotaS.G. LiF. SongW. Ho SuiS. PerrimonN. A cell atlas of the adult Drosophila midgut.Proc. Natl. Acad. Sci. USA202011731514152310.1073/pnas.191682011731915294
    [Google Scholar]
  26. LemaitreB. Miguel-AliagaI. The digestive tract of Drosophila melanogaster.Annu. Rev. Genet.201347137740410.1146/annurev‑genet‑111212‑13334324016187
    [Google Scholar]
  27. VeenstraJ.A. AgricolaH.J. SellamiA. Regulatory peptides in fruit fly midgut.Cell Tissue Res.2008334349951610.1007/s00441‑008‑0708‑318972134
    [Google Scholar]
  28. SteinhoffM.S. von MentzerB. GeppettiP. PothoulakisC. BunnettN.W. Tachykinins and their receptors: Contributions to physiological control and the mechanisms of disease.Physiol. Rev.201494126530110.1152/physrev.00031.201324382888
    [Google Scholar]
  29. OnagaT. Tachykinin: recent developments and novel roles in health and disease.Biomol. Concepts20145322524310.1515/bmc‑2014‑000825372755
    [Google Scholar]
  30. PoelsJ. BirseR.T. NachmanR.J. FichnaJ. JaneckaA. Vanden BroeckJ. NässelD.R. Characterization and distribution of NKD, a receptor for Drosophila tachykinin-related peptide 6.Peptides200930354555610.1016/j.peptides.2008.10.01219022310
    [Google Scholar]
  31. WintherÅ.M.E. SiviterR.J. IsaacR.E. PredelR. NässelD.R. Neuronal expression of tachykinin-related peptides and gene transcript during postembryonic development of Drosophila.J. Comp. Neurol.2003464218019610.1002/cne.1079012898611
    [Google Scholar]
  32. MonnierD. ColasJ.F. RosayP. HenR. BorrelliE. MaroteauxL. NKD, a developmentally regulated tachykinin receptor in Drosophila.J. Biol. Chem.199226721298130210.1016/S0021‑9258(18)48429‑31370464
    [Google Scholar]
  33. XuW. LiG. ChenY. YeX. SongW. A novel antidiuretic hormone governs tumour-induced renal dysfunction.Nature2023624799142543210.1038/s41586‑023‑06833‑838057665
    [Google Scholar]
  34. ImS.H. TakleK. JoJ. BabcockD.T. MaZ. XiangY. GalkoM.J. Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila.eLife201541073510.7554/eLife.1073526575288
    [Google Scholar]
  35. WintherÅ.M.E. AcebesA. FerrúsA. Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila.Mol. Cell. Neurosci.200631339940610.1016/j.mcn.2005.10.01016289899
    [Google Scholar]
  36. KahsaiL. MartinJ.R. WintherÅ.M.E. Neuropeptides in the Drosophila central complex in modulation of locomotor behavior.J. Exp. Biol.2010213132256226510.1242/jeb.04319020543124
    [Google Scholar]
  37. LeeS.H. ChoE. YoonS.E. KimY. KimE.Y. Metabolic control of daily locomotor activity mediated by tachykinin in Drosophila.Commun. Biol.20214169310.1038/s42003‑021‑02219‑634099879
    [Google Scholar]
  38. AsahinaK. WatanabeK. DuistermarsB.J. HoopferE. GonzálezC.R. EyjólfsdóttirE.A. PeronaP. AndersonD.J. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila.Cell20141561-222123510.1016/j.cell.2013.11.04524439378
    [Google Scholar]
  39. KamareddineL. RobinsW.P. BerkeyC.D. MekalanosJ.J. WatnickP.I. The Drosophila immune deficiency pathway modulates enteroendocrine function and host metabolism.Cell Metab.2018283449462.e510.1016/j.cmet.2018.05.02629937377
    [Google Scholar]
  40. AmcheslavskyA. SongW. LiQ. NieY. BragattoI. FerrandonD. PerrimonN. IpY.T. Enteroendocrine cells support intestinal stem-cell-mediated homeostasis in Drosophila.Cell Rep.201491323910.1016/j.celrep.2014.08.05225263551
    [Google Scholar]
  41. BirseR.T. SöderbergJ.A.E. LuoJ. WintherÅ.M.E. NässelD.R. Regulation of insulin-producing cells in the adult Drosophila brain via the tachykinin peptide receptor DTKR.J. Exp. Biol.2011214244201420810.1242/jeb.06209122116763
    [Google Scholar]
  42. SöderbergJ.A.E. BirseR.T. NässelD.R. Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance.PLoS One2011651986610.1371/journal.pone.001986621572965
    [Google Scholar]
  43. SongW. VeenstraJ.A. PerrimonN. Control of lipid metabolism by tachykinin in Drosophila.Cell Rep.201491404710.1016/j.celrep.2014.08.06025263556
    [Google Scholar]
  44. RussoA.F. HayD.L. CGRP physiology, pharmacology, and therapeutic targets: Migraine and beyond.Physiol. Rev.202310321565164410.1152/physrev.00059.202136454715
    [Google Scholar]
  45. PujoJ. De PalmaG. LuJ. GalipeauH.J. SuretteM.G. CollinsS.M. BercikP. Gut microbiota modulates visceral sensitivity through calcitonin gene-related peptide (CGRP) production.Gut Microbes2023151218887410.1080/19490976.2023.218887436939195
    [Google Scholar]
  46. GodaT. DoiM. UmezakiY. MuraiI. ShimataniH. ChuM.L. NguyenV.H. OkamuraH. HamadaF.N. Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals.Genes Dev.201832214015510.1101/gad.307884.11729440246
    [Google Scholar]
  47. YoonH.J. PriceB.E. ParksR.K. AhnS.J. ChoiM.Y. Diuretic hormone 31 activates two G protein-coupled receptors with differential second messengers for diuresis in Drosophila suzukii.Insect Biochem. Mol. Biol.202316210402510.1016/j.ibmb.2023.10402537813200
    [Google Scholar]
  48. LyuS. TeraoN. NakashimaH. ItohM. TonokiA. Neuropeptide diuretic hormone 31 mediates memory and sleep via distinct neural pathways in Drosophila.Neurosci. Res.2023192112510.1016/j.neures.2023.02.00336780946
    [Google Scholar]
  49. KunstM. HughesM.E. RaccugliaD. FelixM. LiM. BarnettG. DuahJ. NitabachM.N. Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila.Curr. Biol.201424222652266410.1016/j.cub.2014.09.07725455031
    [Google Scholar]
  50. GodaT. TangX. UmezakiY. ChuM.L. KunstM. NitabachM.N. HamadaF.N. Drosophila DH31 neuropeptide and PDF receptor regulate night-onset temperature preference.J. Neurosci.20163646117391175410.1523/JNEUROSCI.0964‑16.201627852781
    [Google Scholar]
  51. KurogiY. ImuraE. MizunoY. HoshinoR. NouzovaM. MatsuyamaS. MizoguchiA. KondoS. TanimotoH. NoriegaF.G. NiwaR. Female reproductive dormancy in Drosophila is regulated by DH31-producing neurons projecting into the corpus allatum.Development202315010dev20118610.1242/dev.20118637218457
    [Google Scholar]
  52. LaJeunesseD.R. JohnsonB. PresnellJ.S. CatignasK. ZapotocznyG. Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells.BMC Physiol.20101011410.1186/1472‑6793‑10‑1420698983
    [Google Scholar]
  53. ParkJ.H. ChenJ. JangS. AhnT.J. KangK. ChoiM.S. KwonJ.Y. A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut.FEBS Lett.2016590449350010.1002/1873‑3468.1207326801353
    [Google Scholar]
  54. BenguettatO. JneidR. SoltysJ. LoudhaiefR. Brun-BaraleA. OsmanD. GalletA. The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria.PLoS Pathog.2018149100727910.1371/journal.ppat.100727930180210
    [Google Scholar]
  55. VandervekenM. O’DonnellM.J. Effects of diuretic hormone 31, drosokinin, and allatostatin a on transepithelial K + transport and contraction frequency in the midgut and hindgut of larval Drosophila melanogaster.Arch. Insect Biochem. Physiol.2014852769310.1002/arch.2114424408875
    [Google Scholar]
  56. KotronarouK. CharalambousA. EvangelouA. GeorgiouO. DemetriouA. ApidianakisY. Dietary stimuli, intestinal bacteria and peptide hormones regulate female Drosophila defecation rate.Metabolites202313226410.3390/metabo1302026436837883
    [Google Scholar]
  57. TakedaK. OkumuraT. TerahataM. YamaguchiM. TaniguchiK. Adachi-YamadaT. Drosophila peptide hormones allatostatin A and diuretic hormone 31 exhibiting complementary gradient distribution in posterior midgut antagonistically regulate midgut senescence and adult lifespan.Zool. Sci.2018351758510.2108/zs16021029417892
    [Google Scholar]
  58. FaddaM. HasakiogullariI. TemmermanL. BeetsI. ZelsS. SchoofsL. Regulation of feeding and metabolism by neuropeptide F and short neuropeptide F in invertebrates.Front. Endocrinol.2019106410.3389/fendo.2019.0006430837946
    [Google Scholar]
  59. ErionR. KingA.N. WuG. HogeneschJ.B. SehgalA. Neural clocks and neuropeptide F/Y regulate circadian gene expression in a peripheral metabolic tissue.eLife201651355210.7554/eLife.1355227077948
    [Google Scholar]
  60. NakazawaK. MatsuoM. NakaoK. NonakaS. NumanoR. Visible exocytosis of the non-photic signal neuropeptide Y to the suprachiasmatic nucleus in fasted transgenic mice throughout their circadian rhythms.Bioengineering202512219210.3390/bioengineering1202019240001711
    [Google Scholar]
  61. DuanH. HaoC. FanY. WangH. LiuY. HaoJ. XuC. LiuX. ZhangH. The role of neuropeptide Y and aquaporin 4 in the pathogenesis of intestinal dysfunction caused by traumatic brain injury.J. Surg. Res.201318421006101210.1016/j.jss.2013.03.09623622727
    [Google Scholar]
  62. BrownM.R. CrimJ.W. ArataR.C. CaiH.N. ChunC. ShenP. Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family.Peptides19992091035104210.1016/S0196‑9781(99)00097‑210499420
    [Google Scholar]
  63. WangC. ZhangJ. TobeS.S. BendenaW.G. Defining the contribution of select neuropeptides and their receptors in regulating sesquiterpenoid biosynthesis by Drosophila melanogaster ring gland/corpus allatum through RNAi analysis.Gen. Comp. Endocrinol.2012176334735310.1016/j.ygcen.2011.12.03922245290
    [Google Scholar]
  64. GarczynskiS.F. BrownM.R. ShenP. MurrayT.F. CrimJ.W. Characterization of a functional neuropeptide F receptor from Drosophila melanogaster.Peptides200223477378010.1016/S0196‑9781(01)00647‑711897397
    [Google Scholar]
  65. AmekuT. YoshinariY. TexadaM.J. KondoS. AmezawaK. YoshizakiG. Shimada-NiwaY. NiwaR. Midgut-derived neuropeptide F controls germline stem cell proliferation in a mating-dependent manner.PLoS Biol.2018169200500410.1371/journal.pbio.200500430248087
    [Google Scholar]
  66. LiuW. GangulyA. HuangJ. WangY. NiJ.D. GuravA.S. AguilarM.A. MontellC. Neuropeptide F regulates courtship in Drosophila through a male-specific neuronal circuit.eLife201984957410.7554/eLife.4957431403399
    [Google Scholar]
  67. ChungB.Y. RoJ. HutterS.A. MillerK.M. GuduguntlaL.S. KondoS. PletcherS.D. Drosophila neuropeptide F signaling independently regulates feeding and sleep-wake behavior.Cell Rep.201719122441245010.1016/j.celrep.2017.05.08528636933
    [Google Scholar]
  68. HermannC. YoshiiT. DusikV. Helfrich-FörsterC. Neuropeptide F immunoreactive clock neurons modify evening locomotor activity and free-running period in Drosophila melanogaster.J. Comp. Neurol.2012520597098710.1002/cne.2274221826659
    [Google Scholar]
  69. GaoJ. ZhangS. DengP. WuZ. LemaitreB. ZhaiZ. GuoZ. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion.Nat. Commun.2024151351410.1038/s41467‑024‑47465‑438664401
    [Google Scholar]
  70. Helfrich-FörsterC. PDF has found its receptor.Neuron200548216116310.1016/j.neuron.2005.10.00416242393
    [Google Scholar]
  71. TalsmaA.D. ChristovC.P. Terriente-FelixA. LinneweberG.A. PereaD. WaylandM. ShaferO.T. Miguel-AliagaI. Remote control of renal physiology by the intestinal neuropeptide pigment-dispersing factor in Drosophila.Proc. Natl. Acad. Sci. USA201210930121771218210.1073/pnas.120024710922778427
    [Google Scholar]
  72. GodaT. UmezakiY. AlwattariF. SeoH.W. HamadaF.N. Neuropeptides PDF and DH31 hierarchically regulate free-running rhythmicity in Drosophila circadian locomotor activity.Sci. Rep.20199183810.1038/s41598‑018‑37107‑330696873
    [Google Scholar]
  73. ChenJ. ReiherW. Hermann-LuiblC. SellamiA. CognigniP. KondoS. Helfrich-FörsterC. VeenstraJ.A. WegenerC. Allatostatin A signalling in drosophila regulates feeding and sleep and is modulated by PDF.PLoS Genet.2016129100634610.1371/journal.pgen.100634627689358
    [Google Scholar]
  74. CarlssonM.A. EnellL.E. NässelD.R. Distribution of short neuropeptide F and its receptor in neuronal circuits related to feeding in larval Drosophila.Cell Tissue Res.2013353351152310.1007/s00441‑013‑1660‑423760890
    [Google Scholar]
  75. NässelD.R. EnellL.E. SantosJ.G. WegenerC. JohardH.A.D. A large population of diverse neurons in the Drosophilacentral nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions.BMC Neurosci.2008919010.1186/1471‑2202‑9‑9018803813
    [Google Scholar]
  76. ChenW. ShiW. LiL. ZhengZ. LiT. BaiW. ZhaoZ. Regulation of sleep by the short neuropeptide F (sNPF) in Drosophila melanogaster.Insect Biochem. Mol. Biol.201343980981910.1016/j.ibmb.2013.06.00323796436
    [Google Scholar]
  77. ShenR. WangB. GiribaldiM.G. AyresJ. ThomasJ.B. MontminyM. Neuronal energy-sensing pathway promotes energy balance by modulating disease tolerance.Proc. Natl. Acad. Sci. USA201611323E3307E331410.1073/pnas.160610611327208092
    [Google Scholar]
  78. KnapekS. KahsaiL. WintherÅ.M.E. TanimotoH. NässelD.R. Short neuropeptide F acts as a functional neuromodulator for olfactory memory in Kenyon cells of Drosophila mushroom bodies.J. Neurosci.201333125340534510.1523/JNEUROSCI.2287‑12.201323516298
    [Google Scholar]
  79. VecseyC.G. PírezN. GriffithL.C. The Drosophila neuropeptides PDF and sNPF have opposing electrophysiological and molecular effects on central neurons.J. Neurophysiol.201411151033104510.1152/jn.00712.201324353297
    [Google Scholar]
  80. JuneauZ.C. StonemetzJ.M. TomaR.F. PossidenteD.R. HeinsR.C. VecseyC.G. Optogenetic activation of short neuropeptide F (sNPF) neurons induces sleep in Drosophila melanogaster.Physiol. Behav.201920614315610.1016/j.physbeh.2019.03.02730935941
    [Google Scholar]
  81. SudhakarS.R. PathakH. RehmanN. FernandesJ. VishnuS. VargheseJ. Insulin signalling elicits hunger-induced feeding in Drosophila.Dev. Biol.20204592879910.1016/j.ydbio.2019.11.01331770521
    [Google Scholar]
  82. NagyD. CusumanoP. AndreattaG. AnduagaA.M. Hermann-LuiblC. ReinhardN. GestoJ. WegenerC. MazzottaG. RosatoE. KyriacouC.P. Helfrich-FörsterC. CostaR. Peptidergic signaling from clock neurons regulates reproductive dormancy in Drosophila melanogaster.PLoS Genet.2019156100815810.1371/journal.pgen.100815831194738
    [Google Scholar]
  83. LeeK.S. KwonO.Y. LeeJ.H. KwonK. MinK.J. JungS.A. KimA.K. YouK.H. TatarM. YuK. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling.Nat. Cell Biol.200810446847510.1038/ncb171018344986
    [Google Scholar]
  84. LeeK.S. YouK.H. ChooJ.K. HanY.M. YuK. Drosophila short neuropeptide F regulates food intake and body size.J. Biol. Chem.200427949507815078910.1074/jbc.M40784220015385546
    [Google Scholar]
  85. ZhaoY. KhallafM.A. JohanssonE. DzakiN. BhatS. AlfredssonJ. DuanJ. HanssonB.S. KnadenM. AleniusM. Hedgehog-mediated gut- taste neuron axis controls sweet perception in Drosophila.Nat. Commun.2022131781010.1038/s41467‑022‑35527‑436535958
    [Google Scholar]
  86. ZhangJ. LiuY. JiangK. JiaJ. Hedgehog signaling promotes lipolysis in adipose tissue through directly regulating Bmm/ATGL lipase.Dev. Biol.2020457112813910.1016/j.ydbio.2019.09.00931550483
    [Google Scholar]
  87. RodenfelsJ. LavrynenkoO. AyciriexS. SampaioJ.L. CarvalhoM. ShevchenkoA. EatonS. Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development.Genes Dev.201428232636265110.1101/gad.249763.11425452274
    [Google Scholar]
  88. HanH. PanC. LiuC. LvX. YangX. XiongY. LuY. WuW. HanJ. ZhouZ. JiangH. ZhangL. ZhaoY. Gut–neuron interaction via Hh signaling regulates intestinal progenitor cell differentiation in Drosophila.Cell Discov.2015111500610.1038/celldisc.2015.627462407
    [Google Scholar]
  89. TianA. JiangJ. Hedgehog fuels gut regeneration.Oncotarget2015625207502075110.18632/oncotarget.492926296978
    [Google Scholar]
  90. ZhaoY. JohanssonE. DuanJ. HanZ. AleniusM. Fat- and sugar-induced signals regulate sweet and fat taste perception in Drosophila.Cell Rep.2023421111338710.1016/j.celrep.2023.11338737934669
    [Google Scholar]
  91. WoodheadA.P. StayB. SeidelS.L. KhanM.A. TobeS.S. Primary structure of four allatostatins: Neuropeptide inhibitors of juvenile hormone synthesis.Proc. Natl. Acad. Sci. USA198986155997600110.1073/pnas.86.15.59972762309
    [Google Scholar]
  92. WegenerC. ChenJ. AllatostatinA. Allatostatin A signalling: Progress and new challenges from a paradigmatic pleiotropic invertebrate neuropeptide family.Front. Physiol.20221392052910.3389/fphys.2022.92052935812311
    [Google Scholar]
  93. LandayanD. WangB.P. ZhouJ. WolfF.W. Thirst interneurons that promote water seeking and limit feeding behavior in Drosophila. eLife2021106628610.7554/eLife.6628634018925
    [Google Scholar]
  94. HentzeJ.L. CarlssonM.A. KondoS. NässelD.R. RewitzK.F. The neuropeptide allatostatin A regulates metabolism and feeding decisions in drosophila.Sci. Rep.2015511168010.1038/srep1168026123697
    [Google Scholar]
  95. LiY. ZhouX. ChengC. DingG. ZhaoP. TanK. ChenL. PerrimonN. VeenstraJ.A. ZhangL. SongW. Gut AstA mediates sleep deprivation-induced energy wasting in Drosophila.Cell Discov.2023914910.1038/s41421‑023‑00541‑337221172
    [Google Scholar]
  96. WilliamsonM. LenzC. WintherÅ.M.E. NässelD.R. GrimmelikhuijzenC.J.P. Molecular cloning, genomic organization, and expression of a C-type (Manduca sexta-type) allatostatin preprohormone from Drosophila melanogaster.Biochem. Biophys. Res. Commun.2001282112413010.1006/bbrc.2001.456511263981
    [Google Scholar]
  97. MinS. ChaeH.S. JangY.H. ChoiS. LeeS. JeongY.T. JonesW.D. MoonS.J. KimY.J. ChungJ. Identification of a peptidergic pathway critical to satiety responses in Drosophila.Curr. Biol.201626681482010.1016/j.cub.2016.01.02926948873
    [Google Scholar]
  98. OhY. YoonS.E. ZhangQ. ChaeH.S. DaubnerováI. ShaferO.T. ChoeJ. KimY.J. A homeostatic sleep-stabilizing pathway in Drosophila composed of the sex peptide receptor and its ligand, the myoinhibitory peptide.PLoS Biol.20141210100197410.1371/journal.pbio.100197425333796
    [Google Scholar]
  99. MinS. ChungJ. Identification of a neural pathway governing satiety in Drosophila.BMB Rep.201649313713810.5483/BMBRep.2016.49.3.04626949022
    [Google Scholar]
  100. KramerS.J. ToschiA. MillerC.A. KataokaH. QuistadG.B. LiJ.P. CarneyR.L. SchooleyD.A. Identification of an allatostatin from the tobacco hornworm Manduca sexta.Proc. Natl. Acad. Sci. USA199188219458946210.1073/pnas.88.21.94581946359
    [Google Scholar]
  101. VeenstraJ.A. Allatostatin C and its paralog allatostatin double C: The arthropod somatostatins.Insect Biochem. Mol. Biol.200939316117010.1016/j.ibmb.2008.10.01419063967
    [Google Scholar]
  102. ZhangC. KimA.J. Rivera-PerezC. NoriegaF.G. KimY.J. The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response.Nat. Commun.202213196910.1038/s41467‑022‑28592‑235181671
    [Google Scholar]
  103. ZhangC. DaubnerovaI. JangY.H. KondoS. ŽitňanD. KimY.J. The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis.Proc. Natl. Acad. Sci. USA20211184201687811810.1073/pnas.201687811833479181
    [Google Scholar]
  104. JohnsonE.C. BohnL.M. BarakL.S. BirseR.T. NässelD.R. CaronM.G. TaghertP.H. Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-β-arrestin2 interactions.J. Biol. Chem.200327852521725217810.1074/jbc.M30675620014555656
    [Google Scholar]
  105. KreienkampH.J. LarussonH.J. WitteI. RoederT. BirgülN. HönckH.H. HarderS. EllinghausenG. BuckF. RichterD. Functional annotation of two orphan G-protein-coupled receptors, Drostar1 and -2, from Drosophila melanogaster and their ligands by reverse pharmacology.J. Biol. Chem.200227742399373994310.1074/jbc.M20693120012167655
    [Google Scholar]
  106. KubrakO. KoyamaT. AhrentløvN. JensenL. MalitaA. NaseemM.T. LassenM. NagyS. TexadaM.J. HalbergK.V. RewitzK. The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress.Nat. Commun.202213169210.1038/s41467‑022‑28268‑x35121731
    [Google Scholar]
  107. RollerL. YamanakaN. WatanabeK. DaubnerováI. ŽitňanD. KataokaH. TanakaY. The unique evolution of neuropeptide genes in the silkworm Bombyx mori.Insect Biochem. Mol. Biol.200838121147115710.1016/j.ibmb.2008.04.00919280707
    [Google Scholar]
  108. HansenK.K. HauserF. WilliamsonM. WeberS.B. GrimmelikhuijzenC.J.P. The Drosophila genes CG14593 and CG30106 code for G-protein-coupled receptors specifically activated by the neuropeptides CCHamide-1 and CCHamide-2.Biochem. Biophys. Res. Commun.2011404118418910.1016/j.bbrc.2010.11.08921110953
    [Google Scholar]
  109. FujiwaraY. Hermann-LuiblC. KatsuraM. SekiguchiM. IdaT. Helfrich-FörsterC. YoshiiT. The CCHamide1 neuropeptide expressed in the anterior dorsal neuron 1 conveys a circadian signal to the ventral lateral neurons in Drosophila melanogaster. Front. Physiol.20189127610.3389/fphys.2018.0127630246807
    [Google Scholar]
  110. BlauJ. YoungM.W. Cycling vrille expression is required for a functional Drosophila clock.Cell199999666167110.1016/S0092‑8674(00)81554‑810612401
    [Google Scholar]
  111. TitosI. JuginovićA. VaccaroA. NambaraK. GorelikP. MazorO. RoguljaD. A gut-secreted peptide suppresses arousability from sleep.Cell2023186713821397.e2110.1016/j.cell.2023.02.02236958331
    [Google Scholar]
  112. FarhanA. GulatiJ. Groβe-WildeE. VogelH. HanssonB.S. KnadenM. The CCHamide 1 receptor modulates sensory perception and olfactory behavior in starved Drosophila.Sci. Rep.201331276510.1038/srep0276524067446
    [Google Scholar]
  113. RenG.R. HauserF. RewitzK.F. KondoS. EngelbrechtA.F. DidriksenA.K. SchjøttS.R. SembachF.E. LiS. SøgaardK.C. SøndergaardL. GrimmelikhuijzenC.J.P. CCHamide-2 is an orexigenic brain-gut peptide in Drosophila.PLoS One2015107013301710.1371/journal.pone.013301726168160
    [Google Scholar]
  114. LiS. Torre-MuruzabalT. SøgaardK.C. RenG.R. HauserF. EngelsenS.M. PødenphanthM.D. DesjardinsA. GrimmelikhuijzenC.J.P. Expression patterns of the Drosophila neuropeptide CCHamide-2 and its receptor may suggest hormonal signaling from the gut to the brain.PLoS One20138107613110.1371/journal.pone.007613124098432
    [Google Scholar]
  115. SanoH. Coupling of growth to nutritional status: The role of novel periphery-to-brain signaling by the CCHa2 peptide in Drosophila melanogaster.Fly (Austin)20159418318710.1080/19336934.2016.116236126980588
    [Google Scholar]
  116. TaghertP.H. SanoH. NakamuraA. The nutrient-responsive hormone CCHamide-2 controls growth by regulating insulin-like peptides in the brain of Drosophila melanogaster.PLoS Genet.2015115
    [Google Scholar]
  117. JinK. WilsonK.A. BeckJ.N. NelsonC.S. BrownridgeG.W.III HarrisonB.R. DjukovicD. RafteryD. BremR.B. YuS. DrtonM. ShojaieA. KapahiP. PromislowD. Genetic and metabolomic architecture of variation in diet restriction-mediated lifespan extension in Drosophila.PLoS Genet.2020167100883510.1371/journal.pgen.100883532644988
    [Google Scholar]
  118. XiaoC. LiuN. ProvinceH. PiñolR.A. GavrilovaO. ReitmanM.L. BRS3 in both MC4R- and SIM1-expressing neurons regulates energy homeostasis in mice.Mol. Metab.20203610096910.1016/j.molmet.2020.02.01232229422
    [Google Scholar]
  119. YamagataN. ImanishiY. WuH. KondoS. SanoH. TanimotoH. Nutrient responding peptide hormone CCHamide-2 consolidates appetitive memory.Front. Behav. Neurosci.20221698606410.3389/fnbeh.2022.98606436338876
    [Google Scholar]
  120. González SegarraA.J. PontesG. JourjineN. Del ToroA. ScottK. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion.eLife202312RP8814310.7554/eLife.88143.337732734
    [Google Scholar]
  121. ZhangZ. LiJ. WangY. LiZ. LiuX. ZhangS. Neuropeptide Bursicon and its receptor-mediated the transition from summer-form to winter-form of Cacopsylla chinensis. eLife202413RP9729810.7554/eLife.97298.339514284
    [Google Scholar]
  122. MendiveF.M. Van LoyT. ClaeysenS. PoelsJ. WilliamsonM. HauserF. GrimmelikhuijzenC.J.P. VassartG. Vanden BroeckJ. Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2.FEBS Lett.2005579102171217610.1016/j.febslet.2005.03.00615811337
    [Google Scholar]
  123. DongS. ZhangH. ChenX. StanleyD. YuX. SongQ. The neuropeptide bursicon acts in cuticle metabolism.Arch. Insect Biochem. Physiol.2015892879710.1002/arch.2122725821138
    [Google Scholar]
  124. HoneggerH.W. MarketD. PierceL.A. DeweyE.M. KostronB. WilsonM. ChoiD. KlukasK.A. MesceK.A. Cellular localization of bursicon using antisera against partial peptide sequences of this insect cuticle-sclerotizing neurohormone.J. Comp. Neurol.2002452216317710.1002/cne.1035712271490
    [Google Scholar]
  125. PeabodyN.C. DiaoF. LuanH. WangH. DeweyE.M. HoneggerH.W. WhiteB.H. Bursicon functions within the Drosophila CNS to modulate wing expansion behavior, hormone secretion, and cell death.J. Neurosci.20082853143791439110.1523/JNEUROSCI.2842‑08.200819118171
    [Google Scholar]
  126. KubrakO. JørgensenA.F. KoyamaT. LassenM. NagyS. HaldJ. MazzoniG. MadsenD. HansenJ.B. LarsenM.R. TexadaM.J. HansenJ.L. HalbergK.V. RewitzK. LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance.Nat. Commun.2024151612610.1038/s41467‑024‑50468‑w39033139
    [Google Scholar]
  127. ScopellitiA. BauerC. YuY. ZhangT. KruspigB. MurphyD.J. VidalM. MaddocksO.D.K. CorderoJ.B. A neuronal relay mediates a nutrient responsive gut/fat body axis regulating energy homeostasis in adult Drosophila.Cell Metab.2019292269284.e1010.1016/j.cmet.2018.09.02130344016
    [Google Scholar]
  128. ScopellitiA. CorderoJ.B. DiaoF. StrathdeeK. WhiteB.H. SansomO.J. VidalM. Local control of intestinal stem cell homeostasis by enteroendocrine cells in the adult Drosophila midgut.Curr. Biol.201424111199121110.1016/j.cub.2014.04.00724814146
    [Google Scholar]
  129. AlfaR.W. ParkS. SkellyK.R. PoffenbergerG. JainN. GuX. KockelL. WangJ. LiuY. PowersA.C. KimS.K. Suppression of insulin production and secretion by a decretin hormone.Cell Metab.201521232333410.1016/j.cmet.2015.01.00625651184
    [Google Scholar]
  130. ZhangW. SakodaH. MiuraA. ShimizuK. MoriK. MiyazatoM. TakayamaK. HayashiY. NakazatoM. Neuromedin U suppresses glucose-stimulated insulin secretion in pancreatic β cells.Biochem. Biophys. Res. Commun.2017493167768310.1016/j.bbrc.2017.08.13228864416
    [Google Scholar]
  131. MeadE.B. LeeM. TrammellC.E. GoodmanA.G. Drosophila melanogaster limostatin and its human ortholog promote west nile virus infection.Insects202415644610.3390/insects1506044638921161
    [Google Scholar]
  132. QiY. LeeN.J. IpC.K. EnriquezR. TasanR. ZhangL. HerzogH. NPY derived from AGRP neurons controls feeding via Y1 and energy expenditure and food foraging behaviour via Y2 signalling.Mol. Metab.20225910145510.1016/j.molmet.2022.10145535167990
    [Google Scholar]
  133. QiY. LeeN.J. IpC.K. EnriquezR. TasanR. ZhangL. HerzogH. Agrp-negative arcuate NPY neurons drive feeding under positive energy balance via altering leptin responsiveness in POMC neurons.Cell Metab.2023356979995.e710.1016/j.cmet.2023.04.02037201523
    [Google Scholar]
  134. ZhangL. ClarkT. GopalasingamG. NeelyG.G. HerzogH. Ninjin’yoeito modulates feeding and activity under negative energy balance conditions via the NPY system.Neuropeptides20218710214910.1016/j.npep.2021.10214933882337
    [Google Scholar]
  135. JoyeD.A.M. RohrK.E. KellerD. IndaT. TelegaA. PancholiH. Carmona-AlcocerV. EvansJ.A. Reduced VIP expression affects circadian clock function in VIP-IRES-CRE mice (JAX 010908).J. Biol. Rhythms202035434035210.1177/074873042092557332460660
    [Google Scholar]
  136. VentzkeK. OsterH. JöhrenO. Diurnal regulation of the orexin/hypocretin system in mice.Neuroscience2019421596810.1016/j.neuroscience.2019.10.00231678347
    [Google Scholar]
  137. HamnettR. CheshamJ.E. MaywoodE.S. HastingsM.H. The cell-autonomous clock of VIP receptor VPAC2 cells regulates period and coherence of circadian behavior.J. Neurosci.202141350251210.1523/JNEUROSCI.2015‑20.202033234609
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501397622250801062050
Loading
/content/journals/cdt/10.2174/0113894501397622250801062050
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test