Skip to content
2000
image of Therapeutic Potential of Scorpion Venom Proteins: Innovations in Cancer Treatment and Future Directions

Abstract

Cancer is a significant human health concern due to its increasing mortality rate and profound impact on public health and healthcare systems. The cytotoxic, antiproliferative, immunosuppressive, and apoptogenic properties of scorpion venom proteins and peptides have been observed in various cancer cell lines. Therefore, the purpose of this study was to investigate the potential use of proteins derived from scorpion venom in cancer treatment. In this study, the effects of different scorpion venoms on transmembrane channels, the inhibition of angiogenesis, the inhibition of invasion and metastasis, the inhibition of proliferation, and the induction of apoptosis were investigated, as were their clinical applications in the treatment of hepatocellular carcinoma and breast, cervical, prostate, colorectal, and melanoma cancers. The results showed that various scorpion venoms can suppress cell growth, stimulate apoptosis, reduce tumor size, and enhance the immune response, thereby serving as alternative drugs for treating various types of cancers and their metastasis. This review suggests a positive association between scorpion venom (SV) proteins and the treatment of these cancers. Future research should focus on understanding the underlying mechanisms, identifying biomarkers to predict response, and exploring potential combination therapies to increase the efficacy of scorpion venom proteins in cancer treatment.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501396738250904071722
2025-09-16
2025-11-07
Loading full text...

Full text loading...

References

  1. Saraswat I. Goel A. Therapeutic modulation of the microbiome in oncology: Current trends and future directions. Curr. Pharm. Biotechnol. 2025 26 5 680 699 10.2174/0113892010353600241109132441 39543873
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Tang H. Liu W. Huang K. Stereotactic ablative radiotherapy for inoperable T1-2N0M0 small-cell lung cancer. Thorac. Cancer 2022 13 7 1100 1101 10.1111/1759‑7714.14355 35178871
    [Google Scholar]
  4. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 10.1177/20503121211034366 34408877
    [Google Scholar]
  5. Uzair B. Bint-e-Irshad S. Khan B.A. Azad B. Mahmood T. Rehman M.U. Braga V.A. Scorpion venom peptides as a potential source for human drug candidates. Protein Pept. Lett. 2018 25 7 702 708 10.2174/0929866525666180614114307 29921194
    [Google Scholar]
  6. Abdel-Rahman M.A. Harrison P.L. Strong P.N. Snapshots of scorpion venomics. J. Arid Environ. 2015 112 170 176 10.1016/j.jaridenv.2014.01.007
    [Google Scholar]
  7. Ghadiri N Javidan M Sheikhi S Taştan Ö Parodi A Liao Z Bioactive peptides: An alternative therapeutic approach for cancer management. Front Immunol 2024 15 1310443 10.3389/fimmu.2024.1310443 38327525
    [Google Scholar]
  8. Ortiz E. Gurrola G.B. Schwartz E.F. Possani L.D. Scorpion venom components as potential candidates for drug development. Toxicon 2015 93 125 135 10.1016/j.toxicon.2014.11.233 25432067
    [Google Scholar]
  9. Fawzy B.S. Nafie M.S. Ali I.A.I. El-Baz L.M.F. Xu X. Abdel-Rahman M.A. Scorpion venom peptide smp24 revealed apoptotic and antiangiogenic activities in solid-ehrlich carcinoma bearing mice. Int. J. Pept. Res. Ther. 2023 29 2 29 10.1007/s10989‑023‑10494‑6
    [Google Scholar]
  10. Sarfo-Poku C. Eshun O. Lee K.H. Medical application of scorpion venom to breast cancer: A mini-review. Toxicon 2016 122 109 112 10.1016/j.toxicon.2016.09.005 27644898
    [Google Scholar]
  11. Ejaz S. Hashmi F.B. Malik W.N. Ashraf M. Nasim F.H. Iqbal M. Applications of venom proteins as potential anticancer agents. Protein Pept. Lett. 2018 25 7 688 701 10.2174/0929866524666180614102104 29921199
    [Google Scholar]
  12. Mikaelian A.G. Traboulay E. Zhang X.M. Yeritsyan E. Pedersen P.L. Ko Y.H. Matalka K.Z. Pleiotropic anticancer properties of scorpion venom peptides: rhopalurus princeps venom as an anticancer agent. Drug Des. Devel. Ther. 2020 14 881 893 10.2147/DDDT.S231008 32161447
    [Google Scholar]
  13. Yglesias-Rivera A. Sánchez-Mamposo A.M. Díaz-García A. Rodríguez-Sánchez H. Synergism of the combination of Rhopalurus junceus scorpion venom with conventional cytostatics in the ct26 tumor cell line. Asian J Biomed Pharmaceut Sci 2020 10 69 1 10.35841/2249‑622X.69.4552
    [Google Scholar]
  14. Harrison P.L. Abdel-Rahman M.A. Miller K. Strong P.N. Antimicrobial peptides from scorpion venoms. Toxicon 2014 88 115 137 10.1016/j.toxicon.2014.06.006 24951876
    [Google Scholar]
  15. Al-Asmari A.K. Islam M. Al-Zahrani A.M. in vitro analysis of the anticancer properties of scorpion venom in colorectal and breast cancer cell lines. Oncol. Lett. 2016 11 2 1256 1262 10.3892/ol.2015.4036 26893728
    [Google Scholar]
  16. Bernardes-Oliveira E. Farias K.J.S. Gomes D.L. de Araújo J.M.G. da Silva W.D. Rocha H.A.O. Donadi E.A. Fernandes-Pedrosa M.F. Crispim J.C.O. Tityus serrulatus scorpion venom induces apoptosis in cervical cancer cell lines. Evid. Based Complement. Alternat. Med. 2019 2019 1 5131042 31341494
    [Google Scholar]
  17. Al-Asmari A. Riyasdeen A. Abbasmanthiri R. Arshaduddin M. Al-Harthi F. Scorpion (Androctonus bicolor) venom exhibits cytotoxicity and induces cell cycle arrest and apoptosis in breast and colorectal cancer cell lines. Indian J. Pharmacol. 2016 48 5 537 543 10.4103/0253‑7613.190742 27721540
    [Google Scholar]
  18. Al-Asmari A.K. Riyasdeen A. Islam M. Scorpion venom causes upregulation of p53 and downregulation of Bcl-xL and BID protein expression by modulating signaling proteins Erk1/2 and STAT3, and DNA damage in breast and colorectal cancer cell lines. Integr. Cancer Ther. 2018 17 2 271 281 10.1177/1534735417704949 28438053
    [Google Scholar]
  19. Al-Sadoon M.K. Abdel-Maksoud M.A. Rabah D.M. Badr G. Induction of apoptosis and growth arrest in human breast carcinoma cells by a snake (Walterinnesia aegyptia) venom combined with silica nanoparticles: Crosstalk between Bcl2 and caspase 3. Cell. Physiol. Biochem. 2012 30 3 653 665 10.1159/000341446 22854437
    [Google Scholar]
  20. El-Fiky A. Eldousouky A. Elkhashab D. Effect of the egyptian sahara sand viper venom on human breast cancer: An in vitro study. J. Egypt. Soc. Parasitol. 2019 49 3 589 598 10.21608/jesp.2019.68062
    [Google Scholar]
  21. Bradshaw M.J. Saviola A.J. Fesler E. Mackessy S.P. Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines. Cytotechnology 2016 68 4 687 700 10.1007/s10616‑014‑9820‑2 25407733
    [Google Scholar]
  22. Offor B.C. Piater L.A. Snake venom toxins: Potential anticancer therapeutics. J. Appl. Toxicol. 2024 44 5 666 685 10.1002/jat.4544 37697914
    [Google Scholar]
  23. Rady I. Siddiqui I.A. Rady M. Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017 402 16 31 10.1016/j.canlet.2017.05.010 28536009
    [Google Scholar]
  24. Yu J.E. Kim Y. Hong D.E. Lee D.W. Chang J.Y. Yoo S.S. Kim M.J. Son D.J. Yun J. Han S.B. Hong J.T. Bee venom triggers autophagy-induced apoptosis in human lung cancer cells via the mtor signaling pathway. J. Oncol. 2022 2022 1 13 10.1155/2022/8916464 36590307
    [Google Scholar]
  25. Desales-Salazar E. Khusro A. Cipriano-Salazar M. Barbabosa-Pliego A. Rivas-Caceres R.R. Scorpion venoms and associated toxins as anticancer agents: Update on their application and mechanism of action. J. Appl. Toxicol. 2020 40 10 1310 1324 10.1002/jat.3976 32249452
    [Google Scholar]
  26. Ahmadi S. Knerr J.M. Argemi L. Bordon K.C.F. Pucca M.B. Cerni F.A. Arantes E.C. Çalışkan F. Laustsen A.H. Scorpion venom: Detriments and benefits. Biomedicines 2020 8 5 118 10.3390/biomedicines8050118 32408604
    [Google Scholar]
  27. Lourenço W.R. The evolution and distribution of noxious species of scorpions (Arachnida: Scorpiones). J. Venom. Anim. Toxins Incl. Trop. Dis. 2018 24 1 1 10.1186/s40409‑017‑0138‑3 29308066
    [Google Scholar]
  28. Ward M.J. Ellsworth S.A. Nystrom G.S. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon 2018 151 137 155 10.1016/j.toxicon.2018.07.007 30009779
    [Google Scholar]
  29. Simone Y. Meijden A. Armed stem to stinger: A review of the ecological roles of scorpion weapons. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021 27 e20210002 10.1590/1678‑9199‑jvatitd‑2021‑0002 34527038
    [Google Scholar]
  30. Goudet C. Chi C.W. Tytgat J. An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon 2002 40 9 1239 1258 10.1016/S0041‑0101(02)00142‑3 12220709
    [Google Scholar]
  31. Chen Y. Xu E. Sang M. Wang Z. Zhang Y. Ye J. Zhou Q. Zhao C. Hu C. Lu W. Cao P. Makatoxin-3, a thermostable Nav1.7 agonist from Buthus martensii Karsch (BmK) scorpion elicits non-narcotic analgesia in inflammatory pain models. J. Ethnopharmacol. 2022 288 114998 10.1016/j.jep.2022.114998 35063590
    [Google Scholar]
  32. Monge-Fuentes V Gomes FMM Campos GAA Neuroactive compounds obtained from arthropod venoms as new therapeutic platforms for the treatment of neurological disorders. J Venom Anim Toxins Incl Trop Dis 2015 21 31 10.1186/s40409‑015‑0031‑x 26257776
    [Google Scholar]
  33. Raza M. Shaheen F. Choudhary M.I. Sombati S. Rafiq A. Suria A. Rahman A. DeLorenzo R.J. Anticonvulsant activities of ethanolic extract and aqueous fraction isolated from Delphinium denudatum. J. Ethnopharmacol. 2001 78 1 73 78 10.1016/S0378‑8741(01)00327‑0 11585691
    [Google Scholar]
  34. Villetti G. Bregola G. Bassani F. Bergamaschi M. Rondelli I. Pietra C. Simonato M. Preclinical evaluation of CHF3381 as a novel antiepileptic agent. Neuropharmacology 2001 40 7 866 878 10.1016/S0028‑3908(01)00026‑0 11378157
    [Google Scholar]
  35. Bawaskar H.S. Bawaskar P.H. Efficacy and safety of scorpion antivenom plus prazosin compared with prazosin alone for venomous scorpion (Mesobuthus tamulus) sting: Randomised open label clinical trial. BMJ 2011 342 jan05 3 c7136 10.1136/bmj.c7136 21209062
    [Google Scholar]
  36. Shokry Zaghary M.M. Abd ElKader M.M. A comparative study of using scorpion antivenom versus scorpion antivenom and prazosin drug for scorpion stings management in Sohag University Hospitals. BMC Pharmacol. Toxicol. 2025 26 1 31 10.1186/s40360‑025‑00854‑x 39953590
    [Google Scholar]
  37. Cloudsley-Thompson J. Scorpions in mythology, folklore, and history. The biology of scorpions Stanford University Press California 1990 462 485
    [Google Scholar]
  38. Ling C. Zhang Y. Li J. Chen W. Ling C. Clinical use of toxic proteins and peptides from Tian Hua Fen and scorpion venom. Curr. Protein Pept. Sci. 2019 20 3 285 295 10.2174/1389203719666180622100641 29932034
    [Google Scholar]
  39. Jia Z. Zhu X. Zhou Y. Wu J. Cao M. Hu C. Yu L. Xu R. Chen Z. Polypeptides from traditional Chinese medicine: Comprehensive review of perspective towards cancer management. Int. J. Biol. Macromol. 2024 260 Pt 1 129423 10.1016/j.ijbiomac.2024.129423 38232868
    [Google Scholar]
  40. Shao J.H. Cui Y. Zhao M.Y. Wu C.F. Liu Y.F. Zhang J.H. Purification, characterization, and bioactivity of a new analgesic-antitumor peptide from Chinese scorpion Buthus martensii Karsch. Peptides 2014 53 89 96 10.1016/j.peptides.2013.10.023 24269605
    [Google Scholar]
  41. Zhou X.H. Yang D. Zhang J.H. Liu C.M. Lei K.J. Purification and N -terminal partial sequence of anti-epilepsy peptide from venom of the scorpion Buthus martensii Karsch. Biochem. J. 1989 257 2 509 517 10.1042/bj2570509 2930463
    [Google Scholar]
  42. Gao B. Xu J. del Carmen Rodriguez M. Lanz-Mendoza H. Hernández-Rivas R. Du W. Zhu S. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie 2010 92 4 350 359 10.1016/j.biochi.2010.01.011 20097251
    [Google Scholar]
  43. Heinen T.E. Gorini da Veiga A.B. Arthropod venoms and cancer. Toxicon 2011 57 4 497 511 10.1016/j.toxicon.2011.01.002 21236287
    [Google Scholar]
  44. Suhas R. Structure, function and mechanistic aspects of scorpion venom peptides - A boon for the development of novel therapeutics. Eur. J. Med. Chem. Rep. 2022 6 100068 10.1016/j.ejmcr.2022.100068
    [Google Scholar]
  45. Cao Z. Di Z. Wu Y. Li W. Overview of scorpion species from China and their toxins. Toxins 2014 6 3 796 815 10.3390/toxins6030796 24577583
    [Google Scholar]
  46. Zheng Fan Ctriporin, a new anti-methicillin-resistant Staphylococcus aureus peptide from the venom of the scorpion Chaerilus tricostatus. Antimicrob Agents Chemother 2011 55 11 5220 5229 10.1128/AAC.00369‑11 21876042
    [Google Scholar]
  47. Chen R. Chung S.H. Engineering a potent and specific blocker of voltage-gated potassium channel Kv1.3, a target for autoimmune diseases. Biochemistry 2012 51 9 1976 1982 10.1021/bi201811j 22352687
    [Google Scholar]
  48. Rajput S.S. Mohan H. Jadhav E. Sonone S.S. Nagar V. Singh A. Chopade R.L. Awasthi K.K. Sankhla M.S. Therapeutic potential of scorpion venom in cancer treatment as anticancer agent: A review. Journal of Forensic Medicine and Toxicology 2021 38 2 105 117 10.5958/0974‑4568.2021.00044.2
    [Google Scholar]
  49. Al-Asmari A.K. Kunnathodi F. Al Saadon K. Idris M.M. nlmal analysis of scorpion venoms. J. Venom Res. 2016 7 16 20 27826410
    [Google Scholar]
  50. Gopalakrishnakone P. Cheah J. Gwee M.C.E. Black scorpion (Heterometrus longimanus) as a laboratory animal: Maintenance of a colony of scorpion for milking of venom for research, using a restraining device. Lab. Anim. 1995 29 4 456 458 10.1258/002367795780740050 8558832
    [Google Scholar]
  51. Chiariello TM Captive maintenance and venom extraction of Tityus serrulatus (Brazilian yellow scorpion) for antivenom production. J Vis Exp 2023 2023 200 10.3791/65737 37870320
    [Google Scholar]
  52. Gomes A Bhattacharjee P Mishra R Biswas AK Dasgupta SC Giri B Anticancer potential of animal venoms and toxins. Indian J Exp Biol 2010 48 2 93 103 20455317
    [Google Scholar]
  53. Al-Asmari A.K. Riyasdeen A. Islam M. Scorpion venom causes apoptosis by increasing reactive oxygen species and cell cycle arrest in MDA-MB-231 and HCT-8 cancer cell lines. J. Evid. Based Integr. Med. 2018 23 2156587217751796 10.1177/2156587217751796 29405760
    [Google Scholar]
  54. Capatina A.L. Lagos D. Brackenbury W.J. Targeting Ion channels for cancer treatment: Current progress and future challenges. Rev. Physiol. Biochem. Pharmacol. 2022 183 1 43 32865696
    [Google Scholar]
  55. Sontheimer H. An unexpected role for ion channels in brain tumor metastasis. Exp. Biol. Med. 2008 233 7 779 791 10.3181/0711‑MR‑308 18445774
    [Google Scholar]
  56. Griffin M. Khan R. Basu S. Smith S. Ion channels as therapeutic targets in high grade gliomas. Cancers 2020 12 10 3068 10.3390/cancers12103068 33096667
    [Google Scholar]
  57. Northcott P.A. Dubuc A.M. Pfister S. Taylor M.D. Molecular subgroups of medulloblastoma. Expert Rev. Neurother. 2012 12 7 871 884 10.1586/ern.12.66 22853794
    [Google Scholar]
  58. Comes N. Bielanska J. Vallejo-Gracia A. Serrano-Albarrás A. Marruecos L. Gómez D. Soler C. Condom E. Ramón y Cajal S. Hernández-Losa J. Ferreres J.C. Felipe A. The voltage-dependent K+ channels Kv1.3 and Kv1.5 in human cancer. Front. Physiol. 2013 4 283 10.3389/fphys.2013.00283 24133455
    [Google Scholar]
  59. Comes N. Serrano-Albarrás A. Capera J. Serrano-Novillo C. Condom E. Ramón y Cajal S. Ferreres J.C. Felipe A. Involvement of potassium channels in the progression of cancer to a more malignant phenotype. Biochim. Biophys. Acta Biomembr. 2015 1848 10 2477 2492 10.1016/j.bbamem.2014.12.008 25517985
    [Google Scholar]
  60. Bustin S.A. Li S.R. Dorudi S. Expression of the Ca2+-activated chloride channel genes CLCA1 and CLCA2 is downregulated in human colorectal cancer. DNA Cell Biol. 2001 20 6 331 338 10.1089/10445490152122442 11445004
    [Google Scholar]
  61. Ullrich N. Sontheimer H. Biophysical and pharmacological characterization of chloride currents in human astrocytoma cells. Am. J. Physiol. Cell Physiol. 1996 270 5 C1511 C1521 10.1152/ajpcell.1996.270.5.C1511 8967454
    [Google Scholar]
  62. Deshane J. Garner C.C. Sontheimer H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J. Biol. Chem. 2003 278 6 4135 4144 10.1074/jbc.M205662200 12454020
    [Google Scholar]
  63. McFerrin M.B. Sontheimer H. A role for ion channels in glioma cell invasion. Neuron Glia Biol. 2006 2 1 39 49 10.1017/S1740925X06000044 16520829
    [Google Scholar]
  64. Saraswat I. Goel A. Cervical cancer therapeutics: An in-depth significance of herbal and chemical approaches of nanoparticles. Anticancer. Agents Med. Chem. 2024 24 8 627 636 10.2174/0118715206289468240130051102 38299417
    [Google Scholar]
  65. DeBin J.A. Maggio J.E. Strichartz G.R. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. Cell Physiol. 1993 264 2 C361 C369 10.1152/ajpcell.1993.264.2.C361 8383429
    [Google Scholar]
  66. Veiseh M. Gabikian P. Bahrami S.B. Veiseh O. Zhang M. Hackman R.C. Ravanpay A.C. Stroud M.R. Kusuma Y. Hansen S.J. Kwok D. Munoz N.M. Sze R.W. Grady W.M. Greenberg N.M. Ellenbogen R.G. Olson J.M. Tumor paint: A chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res. 2007 67 14 6882 6888 10.1158/0008‑5472.CAN‑06‑3948 17638899
    [Google Scholar]
  67. Boltman T. Meyer M. Ekpo O. Diagnostic and therapeutic approaches for glioblastoma and neuroblastoma cancers using chlorotoxin nanoparticles. Cancers 2023 15 13 3388 10.3390/cancers15133388 37444498
    [Google Scholar]
  68. Fu Y. An N. Li K. Zheng Y. Liang A. Chlorotoxin-conjugated nanoparticles as potential glioma-targeted drugs. J. Neurooncol. 2012 107 3 457 462 10.1007/s11060‑011‑0763‑6 22108716
    [Google Scholar]
  69. Wang Y. Li K. Han S. Tian Y. Hu P. Xu X. He Y. Pan W. Gao Y. Zhang Z. Zhang J. Wei L. Chlorotoxin targets ERα/VASP signaling pathway to combat breast cancer. Cancer Med. 2019 8 4 1679 1693 10.1002/cam4.2019 30806044
    [Google Scholar]
  70. Chung S. Sugimoto Y. Huang J. Zhang M. Iron oxide nanoparticles decorated with functional peptides for a targeted siRNA delivery to glioma cells. ACS Appl. Mater. Interfaces 2023 15 1 106 119 10.1021/acsami.2c17802 36442077
    [Google Scholar]
  71. Li J. Zeng H. You Y. Wang R. Tan T. Wang W. Yin L. Zeng Z. Zeng Y. Xie T. Active targeting of orthotopic glioma using biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin. J. Nanobiotechnology 2021 19 1 289 10.1186/s12951‑021‑01048‑3 34565383
    [Google Scholar]
  72. Chen Y. Deng Y. Zhu C. Xiang C. Anti prostate cancer therapy: Aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed. Pharmacother. 2020 127 110181 10.1016/j.biopha.2020.110181 32416561
    [Google Scholar]
  73. Aydar E. Yeo S. Djamgoz M. Palmer C. Abnormal expression, localization and interaction of canonical transient receptor potential ion channels in human breast cancer cell lines and tissues: A potential target for breast cancer diagnosis and therapy. Cancer Cell Int. 2009 9 1 23 10.1186/1475‑2867‑9‑23 19689790
    [Google Scholar]
  74. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  75. Liu B. Zhou H. Tan L. Siu K.T.H. Guan X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024 9 1 175 10.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  76. Mendes L.C. Viana G.M.M. Nencioni A.L.A. Pimenta D.C. Beraldo-Neto E. Scorpion peptides and ion channels: An insightful review of mechanisms and drug development. Toxins 2023 15 4 238 10.3390/toxins15040238 37104176
    [Google Scholar]
  77. Peruzzo R. Biasutto L. Szabò I. Leanza L. Impact of intracellular ion channels on cancer development and progression. Eur. Biophys. J. 2016 45 7 685 707 10.1007/s00249‑016‑1143‑0 27289382
    [Google Scholar]
  78. Ding J. Chua P.J. Bay B.H. Gopalakrishnakone P. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Exp. Biol. Med. 2014 239 4 387 393 10.1177/1535370213513991 24599885
    [Google Scholar]
  79. Smallwood T.B. Clark R.J. Advances in venom peptide drug discovery: Where are we at and where are we heading? Expert Opin. Drug Discov. 2021 16 10 1163 1173 10.1080/17460441.2021.1922386 33914674
    [Google Scholar]
  80. Jang S.H. Choi S.Y. Ryu P.D. Lee S.Y. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo . Eur. J. Pharmacol. 2011 651 1-3 26 32 10.1016/j.ejphar.2010.10.066 21087602
    [Google Scholar]
  81. Aissaoui D. Mlayah-Bellalouna S. Jebali J. Abdelkafi-Koubaa Z. Souid S. Moslah W. Othman H. Luis J. ElAyeb M. Marrakchi N. Essafi-Benkhadir K. Srairi-Abid N. Functional role of Kv1.1 and Kv1.3 channels in the neoplastic progression steps of three cancer cell lines, elucidated by scorpion peptides. Int. J. Biol. Macromol. 2018 111 1146 1155 10.1016/j.ijbiomac.2018.01.144 29415410
    [Google Scholar]
  82. Candia S. Garcia M.L. Latorre R. Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel. Biophys. J. 1992 63 2 583 590 10.1016/S0006‑3495(92)81630‑2 1384740
    [Google Scholar]
  83. Weaver A.K. Liu X. Sontheimer H. Role for calcium-activated potassium channels (BK) in growth control of human malignant glioma cells. J. Neurosci. Res. 2004 78 2 224 234 10.1002/jnr.20240 15378515
    [Google Scholar]
  84. Torres A.M. Bansal P. Alewood P.F. Bursill J.A. Kuchel P.W. Vandenberg J.I. Solution structure of CnErg1 (Ergtoxin), a HERG specific scorpion toxin. FEBS Lett. 2003 539 1-3 138 142 10.1016/S0014‑5793(03)00216‑3 12650941
    [Google Scholar]
  85. Asher V. Warren A. Shaw R. Sowter H. Bali A. Khan R. The role of Eag and HERG channels in cell proliferation and apoptotic cell death in SK-OV-3 ovarian cancer cell line. Cancer Cell Int. 2011 11 1 6 10.1186/1475‑2867‑11‑6 21392380
    [Google Scholar]
  86. Schwab A. Reinhardt J. Schneider S.W. Gassner B. Schuricht B. K(+) channel-dependent migration of fibroblasts and human melanoma cells. Cell. Physiol. Biochem. 1999 9 3 126 132 10.1159/000016309 10494026
    [Google Scholar]
  87. Mamelak A.N. Rosenfeld S. Bucholz R. Raubitschek A. Nabors L.B. Fiveash J.B. Shen S. Khazaeli M.B. Colcher D. Liu A. Osman M. Guthrie B. Schade-Bijur S. Hablitz D.M. Alvarez V.L. Gonda M.A. Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J. Clin. Oncol. 2006 24 22 3644 3650 10.1200/JCO.2005.05.4569 16877732
    [Google Scholar]
  88. Ojeda P.G. Wang C.K. Craik D.J. Chlorotoxin: Structure, activity, and potential uses in cancer therapy. Biopolymers 2016 106 1 25 36 10.1002/bip.22748 26418522
    [Google Scholar]
  89. Sun N. Zhao L. Qiao W. Xing Y. Zhao J. BmK CT and 125I-BmK CT suppress the invasion of glioma cells in vitro via matrix metalloproteinase-2. Mol. Med. Rep. 2017 15 5 2703 2708 10.3892/mmr.2017.6284 28260030
    [Google Scholar]
  90. Rjeibi I. Mabrouk K. Mosrati H. Berenguer C. Mejdoub H. Villard C. Laffitte D. Bertin D. Ouafik L.H. Luis J. ElAyeb M. Srairi-Abid N. Purification, synthesis and characterization of AaCtx, the first chlorotoxin-like peptide from Androctonus australis scorpion venom. Peptides 2011 32 4 656 663 10.1016/j.peptides.2011.01.015 21262299
    [Google Scholar]
  91. Kirsch G.E. Skattebøl A. Possani L.D. Brown A.M. Modification of Na channel gating by an alpha scorpion toxin from Tityus serrulatus. J. Gen. Physiol. 1989 93 1 67 83 10.1085/jgp.93.1.67 2536799
    [Google Scholar]
  92. Guo X. Ma C. Du Q. Wei R. Wang L. Zhou M. Chen T. Shaw C. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: Evaluation of their antimicrobial and anticancer activities. Biochimie 2013 95 9 1784 1794 10.1016/j.biochi.2013.06.003 23770440
    [Google Scholar]
  93. Escalona M.P. Batista C.V.F. Cassulini R.R. Rios M.S. Coronas F.I. Possani L.D. A proteomic analysis of the early secondary molecular effects caused by Cn2 scorpion toxin on neuroblastoma cells. J. Proteomics 2014 111 212 223 10.1016/j.jprot.2014.04.035 24792703
    [Google Scholar]
  94. Kampo S. Ahmmed B. Zhou T. Owusu L. Anabah T.W. Doudou N.R. Kuugbee E.D. Cui Y. Lu Z. Yan Q. Wen Q.P. Scorpion venom analgesic peptide, BmK AGAP inhibits stemness, and epithelial-mesenchymal transition by down-regulating PTX3 in breast cancer. Front. Oncol. 2019 9 21 10.3389/fonc.2019.00021 30740360
    [Google Scholar]
  95. Gu Y. Liu S.L. Ju W.Z. Li C.Y. Cao P. Analgesic-antitumor peptide induces apoptosis and inhibits the proliferation of SW480 human colon cancer cells. Oncol. Lett. 2013 5 2 483 488 10.3892/ol.2012.1049 23420047
    [Google Scholar]
  96. Zhao Y. Cai X. Ye T. Huo J. Liu C. Zhang S. Cao P. Analgesic-antitumor peptide inhibits proliferation and migration of SHG-44 human malignant glioma cells. J. Cell. Biochem. 2011 112 9 2424 2434 10.1002/jcb.23166 21538480
    [Google Scholar]
  97. Guo G. Cui Y. Chen H. Zhang L. Zhao M. Chen B. Zhang J. Liu Y. Analgesic-antitumor peptide inhibits the migration and invasion of HepG2 cells by an upregulated VGSC β1 subunit. Tumour Biol. 2016 37 3 3033 3041 10.1007/s13277‑015‑4067‑x 26419595
    [Google Scholar]
  98. Kaur G. Roy B. Decoding tumor angiogenesis for therapeutic advancements: Mechanistic insights. Biomedicines 2024 12 4 827 10.3390/biomedicines12040827 38672182
    [Google Scholar]
  99. Liu Z.L. Chen H.H. Zheng L.L. Sun L.P. Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023 8 1 198 10.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  100. Prager G.W. Poettler M. Unseld M. Zielinski C.C. Angiogenesis in cancer: Anti-VEGF escape mechanisms. Transl. Lung Cancer Res. 2012 1 1 14 25 25806151
    [Google Scholar]
  101. Salem M.L. Shoukry N.M. Teleb W.K. Abdel-Daim M.M. Abdel-Rahman M.A. in vitro and in vivo antitumor effects of the Egyptian scorpion Androctonus amoreuxi venom in an Ehrlich ascites tumor model. Springerplus 2016 5 1 570 10.1186/s40064‑016‑2269‑3 27247867
    [Google Scholar]
  102. Wang X. Wang Z. Zhang Y. Jia Q. Wang Z. Zhang J. Zhang W. Mechanisms for inhibition effects of polypeptide extract from scorpion venom (PESV) on proliferation of A549 cell lines in vitro. Zhongguo Zhongyao Zazhi 2012 37 11 1620 1623 22993994
    [Google Scholar]
  103. Sui W.W. Zhang W.D. Wu L.C. Zhang Y.Y. Wang Z.P. Wang Z.X. Jia Q. Study on the mechanism of polypeptide extract from scorpion venom on inhibition of angiogenesis of H 22 hepatoma. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih 2014 34 5 581 586 24941848
    [Google Scholar]
  104. Al-Asmari A. Khan A. Investigation of in vivo potential of scorpion venom against skin tumorigenesis in mice via targeting markers associated with cancer development. Drug Des. Devel. Ther. 2016 10 3387 3397 10.2147/DDDT.S113171 27799739
    [Google Scholar]
  105. Xu T. Fan Z. Li W. Dietel B. Wu Y. Beckmann M.W. Wrosch J.K. Buchfelder M. Eyupoglu I.Y. Cao Z. Savaskan N.E. Identification of two novel Chlorotoxin derivatives CA4 and CTX-23 with chemotherapeutic and anti-angiogenic potential. Sci. Rep. 2016 6 1 19799 10.1038/srep19799 26831010
    [Google Scholar]
  106. Song Z. Wang J. Su Q. Luan M. Chen X. Xu X. The role of MMP-2 and MMP-9 in the metastasis and development of hypopharyngeal carcinoma. Rev. Bras. Otorrinolaringol. (Engl. Ed.) 2021 87 5 521 528 31882379
    [Google Scholar]
  107. Chaudhary A.K. Singh M. Bharti A.C. Asotra K. Sundaram S. Mehrotra R. Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck. J. Biomed. Sci. 2010 17 1 10 10.1186/1423‑0127‑17‑10 20152059
    [Google Scholar]
  108. Sak K. The low expression of matrix metalloproteinases: A key to longevity? Explor. Med. 2024 5 2 158 166 10.37349/emed.2024.00213
    [Google Scholar]
  109. Sincevičiūtė R. Vaitkienė P. Urbanavičiūtė R. Steponaitis G. Tamašauskas A. Skiriutė D. MMP2 is associated with glioma malignancy and patient outcome. Int. J. Clin. Exp. Pathol. 2018 11 6 3010 3018 31938426
    [Google Scholar]
  110. El-Ghlban S. Kasai T. Shigehiro T. Yin H.X. Sekhar S. Ida M. Sanchez A. Mizutani A. Kudoh T. Murakami H. Seno M. Chlorotoxin-Fc fusion inhibits release of MMP-2 from pancreatic cancer cells. BioMed Res. Int. 2014 2014 1 10 10.1155/2014/152659 24511528
    [Google Scholar]
  111. Fu Y.J. Yin L.T. Liang A.H. Zhang C.F. Wang W. Chai B.F. Yang J.Y. Fan X.J. Therapeutic potential of chlorotoxin-like neurotoxin from the Chinese scorpion for human gliomas. Neurosci. Lett. 2007 412 1 62 67 10.1016/j.neulet.2006.10.056 17166663
    [Google Scholar]
  112. Fu Y.J. An N. Chan K.G. Wu Y.B. Zheng S.H. Liang A.H. A model of BmK CT in inhibiting glioma cell migration via matrix metalloproteinase-2 from experimental and molecular dynamics simulation study. Biotechnol. Lett. 2011 33 7 1309 1317 10.1007/s10529‑011‑0587‑7 21424168
    [Google Scholar]
  113. Ramesh P. Medema J.P. BCL-2 family deregulation in colorectal cancer: Potential for BH3 mimetics in therapy. Apoptosis 2020 25 5-6 305 320 10.1007/s10495‑020‑01601‑9 32335811
    [Google Scholar]
  114. Mohammad R.M. Muqbil I. Lowe L. Yedjou C. Hsu H.-Y. Lin L.-T. Siegelin M.D. Fimognari C. Kumar N.B. Dou Q.P. Yang H. Samadi A.K. Russo G.L. Spagnuolo C. Ray S.K. Chakrabarti M. Morre J.D. Coley H.M. Honoki K. Fujii H. Georgakilas A.G. Amedei A. Niccolai E. Amin A. Ashraf S.S. Helferich W.G. Yang X. Boosani C.S. Guha G. Bhakta D. Ciriolo M.R. Aquilano K. Chen S. Mohammed S.I. Keith W.N. Bilsland A. Halicka D. Nowsheen S. Azmi A.S. Broad targeting of resistance to apoptosis in cancer. Seminars in cancer biology. Elsevier 2015 10.1016/j.semcancer.2015.03.001
    [Google Scholar]
  115. D’Suze G. Rosales A. Salazar V. Sevcik C. Apoptogenic peptides from Tityus discrepans scorpion venom acting against the SKBR3 breast cancer cell line. Toxicon 2010 56 8 1497 1505 10.1016/j.toxicon.2010.09.008 20888852
    [Google Scholar]
  116. Tong-ngam P. Roytrakul S. Sritanaudomchai H. BmKn-2 scorpion venom peptide for killing oral cancer cells by apoptosis. Asian Pac. J. Cancer Prev. 2015 16 7 2807 2811 10.7314/APJCP.2015.16.7.2807 25854366
    [Google Scholar]
  117. Zargan J. Sajad M. Umar S. Naime M. Ali S. Khan H.A. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Mol. Cell. Biochem. 2011 348 1-2 173 181 10.1007/s11010‑010‑0652‑x 21061047
    [Google Scholar]
  118. Zargan J. Umar S. Sajad M. Naime M. Ali S. Khan H.A. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicol. In vitro 2011 25 8 1748 1756 10.1016/j.tiv.2011.09.002 21945044
    [Google Scholar]
  119. Li B. Lyu P. Xi X. Ge L. Mahadevappa R. Shaw C. Kwok H.F. Triggering of cancer cell cycle arrest by a novel scorpion venom-derived peptide—Gonearrestide. J. Cell. Mol. Med. 2018 22 9 4460 4473 10.1111/jcmm.13745 29993185
    [Google Scholar]
  120. Zargan J. Sajad M. Umar S. Naime M. Ali S. Khan H.A. Scorpion (Androctonus crassicauda) venom limits growth of transformed cells (SH-SY5Y and MCF-7) by cytotoxicity and cell cycle arrest. Exp. Mol. Pathol. 2011 91 1 447 454 10.1016/j.yexmp.2011.04.008 21536027
    [Google Scholar]
  121. Rapôso C. Scorpion and spider venoms in cancer treatment: State of the art, challenges, and perspectives. J. Clin. Transl. Res. 2017 3 2 233 249 10.18053/jctres.03.201702.002 30873475
    [Google Scholar]
  122. Zhang Y.Y. Wu L.C. Wang Z.P. Wang Z.X. Jia Q. Jiang G.S. Zhang W.D. Anti-proliferation effect of polypeptide extracted from scorpion venom on human prostate cancer cells in vitro . J. Clin. Med. Res. 2009 1 1 24 31 10.4021/jocmr2009.01.1220 22505961
    [Google Scholar]
  123. Coulter-Parkhill A. McClean S. Gault V.A. Irwin N. Therapeutic potential of peptides derived from animal venoms: Current views and emerging drugs for diabetes. Clin. Med. Insights Endocrinol. Diabetes 2021 14 10.1177/11795514211006071 34621137
    [Google Scholar]
  124. Dastpeyman M. Giacomin P. Wilson D. Nolan M.J. Bansal P.S. Daly N.L. A C-terminal fragment of chlorotoxin retains bioactivity and inhibits cell migration. Front. Pharmacol. 2019 10 250 10.3389/fphar.2019.00250 30949052
    [Google Scholar]
  125. Dardevet L. Rani D. Aziz T. Bazin I. Sabatier J.M. Fadl M. Brambilla E. De Waard M. Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins 2015 7 4 1079 1101 10.3390/toxins7041079 25826056
    [Google Scholar]
  126. Wu X.S. Jian X.C. Yin B. He Z.J. Development of the research on the application of chlorotoxin in imaging diagnostics and targeted therapies for tumors. Chin. J. Cancer 2010 29 6 626 630 10.5732/cjc.009.10359 20507737
    [Google Scholar]
  127. Zhao L. Zhu J. Cheng Y. Xiong Z. Tang Y. Guo L. Shi X. Zhao J. Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131 i for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl. Mater. Interfaces 2015 7 35 19798 19808 10.1021/acsami.5b05836 26291070
    [Google Scholar]
  128. Yamada M. Miller D.M. Lowe M. Rowe C. Wood D. Soyer H.P. Byrnes-Blake K. Parrish-Novak J. Ishak L. Olson J.M. Brandt G. Griffin P. Spelman L. Prow T.W. A first-in-human study of BLZ-100 (tozuleristide) demonstrates tolerability and safety in skin cancer patients. Contemp. Clin. Trials Commun. 2021 23 100830 10.1016/j.conctc.2021.100830 34401600
    [Google Scholar]
  129. Lafnoune A. Lee S.Y. Heo J.Y. Daoudi K. Darkaoui B. Chakir S. Cadi R. Mounaji K. Shum D. Seo H.R. Oukkache N. Anti-cancer activity of buthus occitanus venom on hepatocellular carcinoma in 3D cell culture. Molecules 2022 27 7 2219 10.3390/molecules27072219 35408621
    [Google Scholar]
  130. Keshavarz H. Zargan J. Bidmeshkipour A. Naghneh E. Hajinourmohammadi A. Zamani E. Low molecular weight peptides derived from Iranian Scorpion (Odontobuthus bidentatus) Venom Induces Apoptosis in the Hepatocellular Carcinoma Cell Line (HepG2) in 3D Cell Culture. Res. Sq. 2023 10.21203/rs.3.rs‑3161544/v1
    [Google Scholar]
  131. Li W. Xin Y. Chen Y. Li X. Zhang C. Bai J. Yuan J. The anti-proliferative effects and mechanisms of low molecular weight scorpion BmK venom peptides on human hepatoma and cervical carcinoma cells in vitro . Oncol. Lett. 2014 8 4 1581 1584 10.3892/ol.2014.2336 25202371
    [Google Scholar]
  132. Chai J. Yang W. Gao Y. Guo R. Peng Q. Abdel-Rahman M.A. Xu X. Antitumor effects of scorpion peptide smp43 through mitochondrial dysfunction and membrane disruption on hepatocellular carcinoma. J. Nat. Prod. 2021 84 12 3147 3160 10.1021/acs.jnatprod.1c00963 34866381
    [Google Scholar]
  133. Zheng T. Zhang Z. Yu Z. Wang H. Lyu X. Han C. Investigation on the mechanisms of scorpion venom in hepatocellular carcinoma model mice via untargeted metabolomics profiling. Int. Immunopharmacol. 2024 138 112578 10.1016/j.intimp.2024.112578 38959539
    [Google Scholar]
  134. Ghosh A. Roy R. Nandi M. Mukhopadhyay A. Scorpion venom–toxins that aid in drug development: A review. Int. J. Pept. Res. Ther. 2019 25 1 27 37 10.1007/s10989‑018‑9721‑x 32214927
    [Google Scholar]
  135. Nafie M.S. Abdel Daim M.M. Ali I.A.I. Nabil Z.I. Tantawy M.A. Abdel-Rahman M.A. Antitumor efficacy of the Egyptian Scorpion Venom Androctonus Australis: in vitro and in vivo study. J. Basic Appl. Zool. 2020 81 1 10 10.1186/s41936‑020‑00147‑1
    [Google Scholar]
  136. Teleb W.K. Tantawy M.A. Xu X. Hussein A.A. Abdel-Rahman M.A. Cytotoxicity and molecular alterations induced by scorpion venom antimicrobial peptide Smp43 in breast cancer cell lines MDA-MB-231 and MCF-7. Int. J. Pept. Res. Ther. 2022 29 1 8 10.1007/s10989‑022‑10474‑2
    [Google Scholar]
  137. Setayesh-Mehr Z. Asoodeh A. Ghasemi L.V. The anti-cancer effect of two extract fractions from the hemiscorpius lepturus scorpion venom. Appl. Biochem. Microbiol. 2023 59 6 850 857 10.1134/S0003683823060145
    [Google Scholar]
  138. Qin C. He B. Dai W. Zhang H. Wang X. Wang J. Zhang X. Wang G. Yin L. Zhang Q. Inhibition of metastatic tumor growth and metastasis via targeting metastatic breast cancer by chlorotoxin-modified liposomes. Mol. Pharm. 2014 11 10 3233 3241 10.1021/mp400691z 24559485
    [Google Scholar]
  139. Keshavarz Alikhani H. Zargan J. Bidmeshkipour A. Zamani E. Mosavi M. Heidari A. Hajinoormohammadi A. Iranian scorpion (Odontobuthus bidentatus) crude venom change the redox potential of MCF-7 breast cancer cell line and induce apoptosis. Mod Med Lab J 2021 4 2 28 35 10.30699/mmlj17.4.2.28
    [Google Scholar]
  140. Alhakamy N.A. Fahmy U.A. Badr Eldin S.M. Ahmed O.A.A. Aldawsari H.M. Okbazghi S.Z. Alfaleh M.A. Abdulaal W.H. Alamoudi A.J. Mady F.M. Scorpion venom-functionalized quercetin phytosomes for breast cancer management: in vitro response surface optimization and anticancer activity against MCF-7 cells. Polymers 2021 14 1 93 10.3390/polym14010093 35012116
    [Google Scholar]
  141. Said Y.M. El-Gamel N.E.A. Ali S.A. Mohamed A.F. Evaluation of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells Conditioning Medium (hWJ-MSCs-CM) or Scorpion Venom Breast Cancer Cell Line in vitro . J. Gastrointest. Cancer 2022 53 4 888 901 10.1007/s12029‑021‑00762‑3 34988906
    [Google Scholar]
  142. Khademi Z Ayat H Elahian F Ahadi AM IOD-NaTx, a scorpion Nav channel toxin induces apoptosis and inhibits growth of highly aggressive breast cancer cells. Res. Sq. 2023 10.21203/rs.3.rs‑2515292/v1
    [Google Scholar]
  143. Díaz-García A. Ruiz-Fuentes J.L. Frión-Herrera Y. Yglesias-Rivera A. Garlobo Y.R. Sánchez H.R. Aurrecochea J.C.R. López Fuentes L.X. Rhopalurus junceus scorpion venom induces antitumor effect in vitro and in vivo against a murine mammary adenocarcinoma model. Iran. J. Basic Med. Sci. 2019 22 7 759 765 32373297
    [Google Scholar]
  144. Yglesias-Rivera A. Sánchez-Rodríguez H. Soto-Febles C. Monzote L. Heteroctenus junceus Scorpion Venom Modulates the Concentration of Pro-Inflammatory Cytokines in F3II Tumor Cells. Life 2023 13 12 2287 10.3390/life13122287 38137888
    [Google Scholar]
  145. Jacobs B.A. Chetty A. Horsnell W.G.C. Schäfer G. Prince S. Smith K.A. Hookworm exposure decreases human papillomavirus uptake and cervical cancer cell migration through systemic regulation of epithelial-mesenchymal transition marker expression. Sci. Rep. 2018 8 1 11547 10.1038/s41598‑018‑30058‑9 30069018
    [Google Scholar]
  146. Machado R.J.A. Estrela A.B. Nascimento A.K.L. Melo M.M.A. Torres-Rêgo M. Lima E.O. Rocha H.A.O. Carvalho E. Silva-Junior A.A. Fernandes-Pedrosa M.F. Characterization of TistH, a multifunctional peptide from the scorpion Tityus stigmurus: Structure, cytotoxicity and antimicrobial activity. Toxicon 2016 119 362 370 10.1016/j.toxicon.2016.06.002 27267248
    [Google Scholar]
  147. Zahra S.M. Maryam R. Asghar P. The Role of the HL-10 peptide in regulating the expression of apoptosis-related genes in the hela cancer cell line. Pharm. Chem. J. 2024 57 12 1929 1933 10.1007/s11094‑024‑03098‑x
    [Google Scholar]
  148. Almaaytah A. Tarazi S. Mhaidat N. Al-Balas Q. Mukattash T.L. Mauriporin, a novel cationic α-helical peptide with selective cytotoxic activity against prostate cancer cell lines from the venom of the scorpion Androctonus mauritanicus. Int. J. Pept. Res. Ther. 2013 19 4 281 293 10.1007/s10989‑013‑9350‑3
    [Google Scholar]
  149. Al-Rabia M.W. Alhakamy N.A. Rizg W.Y. Alghaith A.F. Ahmed O.A.A. Fahmy U.A. Boosting curcumin activity against human prostatic cancer PC3 cells by utilizing scorpion venom conjugated phytosomes as promising functionalized nanovesicles. Drug Deliv. 2022 29 1 807 820 10.1080/10717544.2022.2048133 35266425
    [Google Scholar]
  150. Habib T. Hassan H. Ali F. Mahrous N. Evaluation of Leiurus quinquestriatus scorpion venom anticancer potential against Prostate Cancer Cell Lines (PC3). J. Environ. Stud. 2019 19 1 7 13 10.21608/jesj.2019.204212
    [Google Scholar]
  151. You X. Qiu J. Li Q. Zhang Q. Sheng W. Cao Y. Fu W. Astragaloside IV-PESV inhibits prostate cancer tumor growth by restoring gut microbiota and microbial metabolic homeostasis via the AGE-RAGE pathway. BMC Cancer 2024 24 1 472 10.1186/s12885‑024‑12167‑z 38622523
    [Google Scholar]
  152. Committee K.C. Bluegrass Coalition for Colorectal Screening KMA Cancer Committee Colorectal cancer facts. J. Ky. Med. Assoc. 2005 103 3 118 15816658
    [Google Scholar]
  153. Aitken J.B. Naumovski N. Curry B. Grupen C.G. Gibb Z. Aitken R.J. Characterization of an L-amino acid oxidase in equine spermatozoa. Biol Reprod 2015 92 5 125 10.1095/biolreprod.114.126052 25740544
    [Google Scholar]
  154. Al-Asmari A. Ullah Z. Al Balowi A. Islam M. in vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: A nano-liposomal delivery approach. Int. J. Nanomedicine 2017 12 559 574 10.2147/IJN.S123514 28144138
    [Google Scholar]
  155. Gerges M.M. Abdel-Rahman M.A. Rahmy T.R. Sharma P.P. Mehana A.E. Cytotoxic activity and mechanism of action of Smp43 scorpion peptide against colorectal cancer cell line HCT-116. Toxin Rev. 2024 43 3 370 383 10.1080/15569543.2024.2344471
    [Google Scholar]
  156. Moradi M. Najafi R. Amini R. Solgi R. Tanzadehpanah H. Esfahani A.M. Saidijam M. Remarkable apoptotic pathway of Hemiscorpius lepturus scorpion venom on CT26 cell line. Cell Biol. Toxicol. 2019 35 4 373 385 10.1007/s10565‑018‑09455‑3 30617443
    [Google Scholar]
  157. Saginala K. Barsouk A. Aluru J.S. Rawla P. Barsouk A. Epidemiology of Melanoma. Med. Sci. 2021 9 4 63 10.3390/medsci9040063 34698235
    [Google Scholar]
  158. Norberg E. Orrenius S. Zhivotovsky B. Mitochondrial regulation of cell death: Processing of apoptosis-inducing factor (AIF). Biochem. Biophys. Res. Commun. 2010 396 1 95 100 10.1016/j.bbrc.2010.02.163 20494118
    [Google Scholar]
  159. Nabi G. Ahmad N. Ullah S. Dr G. Khan S. Therapeutic applications of scorpion venom in cancer: Mini review. J. Biol. Life Sci. 2014 6 1 57 10.5296/jbls.v6i1.6418
    [Google Scholar]
  160. Quast S.A. Berger A. Buttstädt N. Friebel K. Schönherr R. Eberle J. General Sensitization of melanoma cells for TRAIL-induced apoptosis by the potassium channel inhibitor TRAM-34 depends on release of SMAC. PLoS One 2012 7 6 e39290 10.1371/journal.pone.0039290 22723988
    [Google Scholar]
  161. Wang W.X. Ji Y.H. Scorpion venom induces glioma cell apoptosis in vivo and inhibits glioma tumor growth in vitro . J. Neurooncol. 2005 73 1 1 7 10.1007/s11060‑004‑4205‑6 15933810
    [Google Scholar]
  162. Gómez Rave L.J. Muñoz Bravo A.X. Sierra Castrillo J. Román Marín L.M. Corredor Pereira C. Scorpion venom: New promise in the treatment of cancer. Acta Biol Colomb 2019 24 2 213 223 10.15446/abc.v24n2.71512
    [Google Scholar]
  163. Kesavan K. Ratliff J. Johnson E.W. Dahlberg W. Asara J.M. Misra P. Frangioni J.V. Jacoby D.B. Annexin A2 is a molecular target for TM601, a peptide with tumor-targeting and anti-angiogenic effects. J. Biol. Chem. 2010 285 7 4366 4374 10.1074/jbc.M109.066092 20018898
    [Google Scholar]
  164. Gupta S.D. Gomes A. Debnath A. Saha A. Gomes A. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: Through mitochondrial pathway and inhibition of heat shock proteins. Chem. Biol. Interact. 2010 183 2 293 303 10.1016/j.cbi.2009.11.006 19913524
    [Google Scholar]
  165. Das Gupta S. Debnath A. Saha A. Giri B. Tripathi G. Vedasiromoni J.R. Gomes A. Gomes A. Indian black scorpion (Heterometrus bengalensis Koch) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leuk. Res. 2007 31 6 817 825 10.1016/j.leukres.2006.06.004 16876244
    [Google Scholar]
  166. Daniele-Silva A. Machado R.J.A. Monteiro N.K.V. Estrela A.B. Santos E.C.G. Carvalho E. Araújo Júnior R.F. Melo-Silveira R.F. Rocha H.A.O. Silva-Júnior A.A. Fernandes-Pedrosa M.F. Stigmurin and TsAP-2 from Tityus stigmurus scorpion venom: Assessment of structure and therapeutic potential in experimental sepsis. Toxicon 2016 121 10 21 10.1016/j.toxicon.2016.08.016 27567704
    [Google Scholar]
  167. Krayem N. Abdelkefi-Koubaa Z. Marrakchi N. Gargouri Y. Luis J. Native and recombinant phospholipases A2 of Scorpio maurus venom glands impair angiogenesis by targeting integrins α5β1 and αvβ3. Int. J. Biol. Macromol. 2018 116 305 315 10.1016/j.ijbiomac.2018.04.141 29715557
    [Google Scholar]
  168. Guo R. Liu J. Chai J. Gao Y. Abdel-Rahman M.A. Xu X. Scorpion peptide Smp24 exhibits a potent antitumor effect on human lung cancer cells by damaging the membrane and cytoskeleton in vivo and in vitro . Toxins 2022 14 7 438 10.3390/toxins14070438 35878176
    [Google Scholar]
  169. Song X. Zhang G. Sun A. Guo J. Tian Z. Wang H. Liu Y. Scorpion venom component III inhibits cell proliferation by modulating NF-κB activation in human leukemia cells. Exp. Ther. Med. 2012 4 1 146 150 10.3892/etm.2012.548 23060939
    [Google Scholar]
  170. Salama W. Saleh A. Mostafa M. Optimizing the therapeutic dose of Leiurus quinquestratus scorpion venom in type-2 diabetic mellitus rats. Biological and Biomedical Journal 2024 2 2 132 147 10.21608/bbj.2024.273446.1021
    [Google Scholar]
  171. Nosouhian M. Rastegari A.A. Shahanipour K. Ahadi A.M. Sajjadieh M.S. Anticancer potentiality of Hottentotta saulcyi scorpion curd venom against breast cancer: An in vitro and in vivo study. Sci. Rep. 2024 14 1 24607 10.1038/s41598‑024‑75183‑w 39427017
    [Google Scholar]
  172. Catterall W.A. Structure and function of voltage-gated sodium channels at atomic resolution. Exp. Physiol. 2014 99 1 35 51 10.1113/expphysiol.2013.071969 24097157
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501396738250904071722
Loading
/content/journals/cdt/10.2174/0113894501396738250904071722
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: toxin ; Apoptosis ; bioactive peptide ; scorpion venom ; cancer therapy ; immunomodulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test