Skip to content
2000
Volume 26, Issue 14
  • ISSN: 1389-4501
  • E-ISSN: 1873-5592

Abstract

Introduction

Parkinson’s disease (PD) is a persistent neurodegenerative condition marked by rising global rates of disability and mortality, warranting the need for new treatment options. The present investigation evaluated the protective effects of novel glitazones C7 and C25 against rotenone-induced PD in a mouse model.

Methods

Molecular docking using Discovery Studio and molecular dynamics simulations were employed to evaluate the binding ability of C7 and C25 to the PGC-1α target protein. Pharmacokinetic evaluations of C7 and C25 were performed against the standard pioglitazone in the rats model, and acute toxicity assessments were conducted following OECD guidelines 423. The neuroprotective effects of C7 were tested in a rotenone-induced mouse model of PD at doses of 10, 20, and 30 mg/kg body weight. Behavioral studies, including locomotor activity, grip strength, and catalepsy, as well as biochemical analyses such as endogenous antioxidant levels and AChE levels, were assessed.

Results

The novel compound C7 demonstrated good binding and simulation at the PGC-1α target protein. The kinetic profile of C7 was found to be good when compared to C25. Both the novel glitazones were safe at 300 mg/kg body weight when tested for oral acute toxicity. The novel compound C7 effectively alleviated symptoms related to rotenone-induced PD, demonstrating its promise as a therapeutic candidate.

Discussion

In the rotenone-induced mouse model, compound C7 exhibited a promising anti-PD effect by attenuating oxidative stress and increasing muscular activity, which merits further investigations.

Conclusion

Additional research using various induction models, along with further investigation of cellular and molecular markers in larger animal studies, is needed to validate these findings.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501395776250903093531
2025-09-09
2026-02-02
Loading full text...

Full text loading...

References

  1. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X33848468
    [Google Scholar]
  2. TolosaE. GarridoA. ScholzS.W. PoeweW. Challenges in the diagnosis of Parkinson’s disease.Lancet Neurol.202120538539710.1016/S1474‑4422(21)00030‑233894193
    [Google Scholar]
  3. Ben-ShlomoY. DarweeshS. Llibre-GuerraJ. MarrasC. San LucianoM. TannerC. The epidemiology of Parkinson’s disease.Lancet20244031042328329210.1016/S0140‑6736(23)01419‑838245248
    [Google Scholar]
  4. BallN. TeoW.P. ChandraS. ChapmanJ. Parkinson’s disease and the environment.Front. Neurol.20191021810.3389/fneur.2019.0021830941085
    [Google Scholar]
  5. ChiaS.J. TanE.K. ChaoY.X. Historical perspective: Models of Parkinson’s disease.Int. J. Mol. Sci.2020217246410.3390/ijms2107246432252301
    [Google Scholar]
  6. ZubelzuM. Morera-HerrerasT. IrastorzaG. Gómez-EstebanJ.C. Murueta-GoyenaA. Plasma and serum alpha-synuclein as a biomarker in Parkinson’s disease: A meta-analysis.Parkinsonism Relat. Disord.20229910711510.1016/j.parkreldis.2022.06.00135717321
    [Google Scholar]
  7. ZhengY. LiS. YangC. YuZ. JiangY. FengT. Comparison of biospecimens for α-synuclein seed amplification assays in Parkinson’s disease: A systematic review and network meta-analysis.Eur. J. Neurol.202330123949396710.1111/ene.1604137573472
    [Google Scholar]
  8. BaselliniM.J. KothuisJ.M. CominciniA. PezzoliG. CappellettiG. MazzettiS. Pathological pathways and alpha-synuclein in parkinson’s disease: A view from the periphery.Front. Biosci.20232823310.31083/j.fbl280203336866559
    [Google Scholar]
  9. MurphyJ. McKernanD.P. The effect of aggregated alpha synuclein on synaptic and axonal proteins in Parkinson’s disease—A systematic review.Biomolecules2022129119910.3390/biom1209119936139038
    [Google Scholar]
  10. GangulyU. SinghS. PalS. PrasadS. AgrawalB.K. SainiR.V. ChakrabartiS. Alpha-synuclein as a biomarker of Parkinson’s disease: Good, but not good enough.Front. Aging Neurosci.20211370263910.3389/fnagi.2021.70263934305577
    [Google Scholar]
  11. SrinivasanE. ChandrasekharG. ChandrasekarP. AnbarasuK. VickramA.S. KarunakaranR. RajasekaranR. SrikumarP.S. Alpha-synuclein aggregation in Parkinson’s disease.Front. Med.2021873697810.3389/fmed.2021.73697834733860
    [Google Scholar]
  12. EminD. ZhangY.P. LobanovaE. MillerA. LiX. XiaZ. DakinH. SiderisD.I. LamJ.Y.L. RanasingheR.T. KouliA. ZhaoY. DeS. KnowlesT.P.J. VendruscoloM. RuggeriF.S. AigbirhioF.I. Williams-GrayC.H. KlenermanD. Small soluble α-synuclein aggregates are the toxic species in Parkinson’s disease.Nat. Commun.2022131551210.1038/s41467‑022‑33252‑636127374
    [Google Scholar]
  13. HaqueM.E. AktherM. AzamS. KimI.S. LinY. LeeY.H. ChoiD.K. Targeting α-synuclein aggregation and its role in mitochondrial dysfunction in Parkinson’s disease.Br. J. Pharmacol.20221791234510.1111/bph.1568434528272
    [Google Scholar]
  14. KimM.S. RaE.A. KweonS.H. SeoB.A. KoH.S. OhY. LeeG. Advanced human iPSC-based preclinical model for Parkinson’s disease with optogenetic alpha-synuclein aggregation.Cell Stem Cell2023307973986.e1110.1016/j.stem.2023.05.01537339636
    [Google Scholar]
  15. WangR. RenH. KaznacheyevaE. LuX. WangG. Association of glial activation and α-synuclein pathology in Parkinson’s disease.Neurosci. Bull.202339347949010.1007/s12264‑022‑00957‑z36229715
    [Google Scholar]
  16. RouaudT. CorbilléA.G. Leclair-VisonneauL. de Guilhem de LatailladeA. LionnetA. PreterreC. DamierP. DerkinderenP. Pathophysiology of Parkinson’s disease: Mitochondria, alpha-synuclein and much more….Rev. Neurol.2021177326027110.1016/j.neurol.2020.07.01633032797
    [Google Scholar]
  17. LiW. FuY. HallidayG.M. SueC.M. PARK genes link mitochondrial dysfunction and alpha-synuclein pathology in sporadic Parkinson’s disease.Front. Cell Dev. Biol.2021961247610.3389/fcell.2021.61247634295884
    [Google Scholar]
  18. van der GaagB.L. DeshayesN.A.C. BreveJ.J.P. BolJ.G.J.M. JonkerA.J. HoozemansJ.J.M. CouradeJ.P. van de BergW.D.J. Distinct tau and alpha-synuclein molecular signatures in Alzheimer’s disease with and without Lewy bodies and Parkinson’s disease with dementia.Acta Neuropathol.202414711410.1007/s00401‑023‑02657‑y38198008
    [Google Scholar]
  19. ZhangS. LiuY.Q. JiaC. LimY.J. FengG. XuE. LongH. KimuraY. TaoY. ZhaoC. WangC. LiuZ. HuJ.J. MaM.R. LiuZ. JiangL. LiD. WangR. DawsonV.L. DawsonT.M. LiY.M. MaoX. LiuC. Mechanistic basis for receptor-mediated pathological α-synuclein fibril cell-to-cell transmission in Parkinson’s disease.Proc. Natl. Acad. Sci. USA202111826201119611810.1073/pnas.201119611834172566
    [Google Scholar]
  20. PrymaczokN.C. De FrancescoP.N. MazzettiS. Humbert-ClaudeM. TenenbaumL. CappellettiG. MasliahE. PerelloM. RiekR. GerezJ.A. Cell-to-cell transmitted alpha-synuclein recapitulates experimental Parkinson’s disease.NPJ Parkinsons Dis.20241011010.1038/s41531‑023‑00618‑638184623
    [Google Scholar]
  21. VankayalaS.L. WarrensfordL.C. PittmanA.R. PollardB.C. KearnsF.L. LarkinJ.D. WoodcockH.L. CIFDock : A novel CHARMM -based flexible receptor–flexible ligand docking protocol.J. Comput. Chem.2022432849510.1002/jcc.2675934741467
    [Google Scholar]
  22. SuhD. SchwartzR. GuptaP.K. ZevS. MajorD.T. ImW. CHARMM-GUI EnzyDocker for protein–ligand docking of multiple reactive states along a reaction coordinate in enzymes.J. Chem. Theory Comput.20252142118212810.1021/acs.jctc.4c0169139950957
    [Google Scholar]
  23. GuterresH. ParkS.J. ZhangH. PeroneT. KimJ. ImW. CHARMM-GUI high-throughput simulator for efficient evaluation of protein–ligand interactions with different force fields.Protein Sci.2022319441310.1002/pro.4413
    [Google Scholar]
  24. KongL. ParkS.J. ImW. CHARMM-GUI PDB reader and manipulator: Covalent ligand modeling and simulation.J. Mol. Biol.20244361716855410.1016/j.jmb.2024.16855439237201
    [Google Scholar]
  25. KumarA. MacKerellA.D.Jr FFParam-v2.0: A comprehensive tool for charmm additive and drude polarizable force-field parameter optimization and validation.J. Phys. Chem. B2024128184385439510.1021/acs.jpcb.4c0131438690986
    [Google Scholar]
  26. AllenC. BureauH.R. McGeeT.D.Jr QuirkS. HernandezR. Benchmarking adaptive steered molecular dynamics (ASMD) on CHARMM force fields.ChemPhysChem2022231720220017510.1002/cphc.20220017535594194
    [Google Scholar]
  27. dos Santos NascimentoI.J. de MouraR.O. Molecular dynamics simulations in drug discovery.Mini Rev. Med. Chem.202424111061106210.2174/13895575241124040213471939004837
    [Google Scholar]
  28. ChoiY.K. KernN.R. KimS. KanhaiyaK. AfsharY. JeonS.H. JoS. BrooksB.R. LeeJ. TadmorE.B. HeinzH. ImW. CHARMM-GUI nanomaterial modeler for modeling and simulation of nanomaterial systems.J. Chem. Theory Comput.202218147949310.1021/acs.jctc.1c0099634871001
    [Google Scholar]
  29. PatelS. MackerellA.D.Jr BrooksC.L.III CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.J. Comput. Chem.200425121504151410.1002/jcc.2007715224394
    [Google Scholar]
  30. BjelkmarP. LarssonP. CuendetM.A. HessB. LindahlE. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models.J. Chem. Theory Comput.20106245946610.1021/ct900549r26617301
    [Google Scholar]
  31. LamaJ. BuhidmaY. FletcherE.J.R. DutyS. Animal models of Parkinson’s disease: A guide to selecting the optimal model for your research.Neuronal Signal.202154NS2021002610.1042/NS2021002634956652
    [Google Scholar]
  32. LangeS. InalJ.M. Animal models of human disease.Int. J. Mol. Sci.202324211582110.3390/ijms24211582137958801
    [Google Scholar]
  33. LeeG.H. KimK. JoW. Stress evaluation of mouse husbandry environments for improving laboratory animal welfare.Animals (Basel)202313224910.3390/ani1302024936670789
    [Google Scholar]
  34. ChoE. WalshC.A. D’Angelo-GavrishN.M. WilsonS.R. CirilloP.A. SmithP.C. Effects of housing density on reproductive performance, intracage ammonia, and welfare of mice continuously housed as breeders in standard mouse and rat caging.J. Am. Assoc. Lab. Anim. Sci.202362211612210.30802/AALAS‑JAALAS‑22‑00006936878483
    [Google Scholar]
  35. RatuskiA.S. WearyD.M. Environmental enrichment for rats and mice housed in laboratories: A metareview.Animals (Basel)202212441410.3390/ani1204041435203123
    [Google Scholar]
  36. AnderssonM. PernoldK. LiljaN. Frias-BeneytoR. UlfhakeB. Longitudinal study of changes in ammonia, carbon dioxide, humidity and temperature in individually ventilated cages housing female and male c57bl/6n mice during consecutive cycles of weekly and bi-weekly cage changes.Animals20241418273510.3390/ani1418273539335324
    [Google Scholar]
  37. Ahmadi-NoorbakhshS. Farajli AbbasiM. GhasemiM. BayatG. DavoodianN. Sharif-PaghalehE. PoormoosaviS.M. RafizadehM. MalekiM. Shirzad-AskiH. Kargar JahromiH. DadkhahM. KhalvatiB. SafariT. BehmaneshM.A. KhoshnamS.E. HoushmandG. TalaeiS.A. Anesthesia and analgesia for common research models of adult mice.Lab. Anim. Res.20223814010.1186/s42826‑022‑00150‑336514128
    [Google Scholar]
  38. HidayatR. WulandariP. Protocol for anesthesia animal model in biomedical study. Bioscientia Medicina.J. Biomed. Translat. Res.202157619623
    [Google Scholar]
  39. HickmanD.L. Minimal exposure times for irreversible euthanasia with carbon dioxide in mice and rats.J. Am. Assoc. Lab. Anim. Sci.202261328328610.30802/AALAS‑JAALAS‑21‑00011335414376
    [Google Scholar]
  40. HedenqvistP. Laboratory animal analgesia, anesthesia, and euthanasia.Handbook of Laboratory Animal ScienceBoca Raton, FloridaCRC Press202110.1201/9780429439964‑15
    [Google Scholar]
  41. JacquezB. ChoiH. BirdC.W. LinsenbardtD.N. ValenzuelaC.F. Characterization of motor function in mice developmentally exposed to ethanol using the Catwalk system: Comparison with the triple horizontal bar and rotarod tests.Behav. Brain Res.202139611288510.1016/j.bbr.2020.11288532860829
    [Google Scholar]
  42. WidjajaJ.H. SloanD.C. HaugerJ.A. MunteanB.S. Customizable open-source rotating Rod (Rotarod) enables robust low-cost assessment of motor performance in mice.eNeuro2023109ENEURO.0123-23.202310.1523/ENEURO.0123‑23.202337673671
    [Google Scholar]
  43. ShanH.M. MaurerM.A. SchwabM.E. Four-parameter analysis in modified Rotarod test for detecting minor motor deficits in mice.BMC Biol.202321117710.1186/s12915‑023‑01679‑y37592249
    [Google Scholar]
  44. WakuI. MagalhãesM.S. AlvesC.O. de OliveiraA.R. Haloperidol-induced catalepsy as an animal model for parkinsonism: A systematic review of experimental studies.Eur. J. Neurosci.202153113743376710.1111/ejn.1522233818841
    [Google Scholar]
  45. DavidA.A. OladeleA.A. PhilipA.O. ZabdielA.A. OlufunsoA.B. TolulopeO.O. AdebolaA.O. Neuroprotective Effects of Garcinia kola ethanol Seed Extract on Haloperidol-Induced Catalepsy in Mice.Trop. J. Nat. Prod. Res.202262281286
    [Google Scholar]
  46. KumarN. JamesR. SinhaS. KinraM. AnuranjanaP.V. NandakumarK. Naringin exhibited Anti-Parkinsonian like effect against haloperidol-induced catalepsy in mice.Res. J. Pharm. Tech.202114266266610.5958/0974‑360X.2021.00118.9
    [Google Scholar]
  47. KirubakaranR. Equipments in experimental pharmacology.Introduction to Basics of Pharmacology and ToxicologyLakshmanan M.ShewadeD.G.RajG.M. SingaporeSpringer202237710010.1007/978‑981‑19‑5343‑9_6
    [Google Scholar]
  48. RaniM. ChhikaraM. RaniR. PawarN. Evaluation of antianxiety activity of Linalyl acetate in Swiss albino Mice.Ann. Rom. Soc. Cell Biol.202226134703482
    [Google Scholar]
  49. ShuklaD. GoelA. MandalP.K. JoonS. PunjabiK. AroraY. KumarR. MehtaV.S. SinghP. MaroonJ.C. BansalR. SandalK. RoyR.G. SamkariaA. SharmaS. SandhilyaS. GaurS. ParvathiS. JoshiM. Glutathione depletion and concomitant elevation of susceptibility in patients with parkinson’s disease: State-of-the-art MR spectroscopy and neuropsychological study.ACS Chem. Neurosci.202314244383439410.1021/acschemneuro.3c0071738050970
    [Google Scholar]
  50. WangH.L. ZhangJ. LiY.P. DongL. ChenY.Z. Potential use of glutathione as a treatment for Parkinson’s disease.Exp. Ther. Med.202021212510.3892/etm.2020.955733376507
    [Google Scholar]
  51. El KodsiD.N. TokarewJ.M. SenguptaR. LengacherN.A. ChatterjiA. NguyenA.P. BostonH. JiangQ. PalmbergC. PileggiC. HoltermanC.E. ShutinoskiB. LiJ. FehrT.K. LaVoieM.J. RatanR.R. ShawG.S. TakanashiM. HattoriN. KennedyC.R. HarperM.E. HolmgrenA. TomlinsonJ.J. SchlossmacherM.G. Parkin coregulates glutathione metabolism in adult mammalian brain.Acta Neuropathol. Commun.20231111910.1186/s40478‑022‑01488‑436691076
    [Google Scholar]
  52. WangZ. WenH. ZhengC. WangX. YinS. SongN. LiangM. Synergistic co–cu dual-atom nanozyme with promoted catalase-like activity for parkinson’s disease treatment.ACS Appl. Mater. Interfaces202517158359310.1021/acsami.4c1741639690140
    [Google Scholar]
  53. AlkholifiF.K. DeviS. AldawsariM.F. FoudahA.I. AlqarniM.H. SalkiniM.A. SweilamS.H. Effects of tiliroside and lisuride co-treatment on the PI3K/Akt signal pathway: Modulating neuroinflammation and apoptosis in Parkinson’s disease.Biomedicines20231110273510.3390/biomedicines1110273537893109
    [Google Scholar]
  54. AkhterN. RafiqI. JamilA. ChauhdaryZ. MustafaA. NisarA. Neuroprotective effect of Thymus vulgaris on paraquat induced Parkinson’s disease.Biochem. Biophys. Res. Commun.202576115174010.1016/j.bbrc.2025.15174040188599
    [Google Scholar]
  55. Usama AshharM. VyasP. VohoraD. Kumar SahooP. NigamK. DangS. AliJ. BabootaS. Amelioration of oxidative stress utilizing nanoemulsion loaded with bromocriptine and glutathione for the management of Parkinson’s disease.Int. J. Pharm.202261812168310.1016/j.ijpharm.2022.12168335314276
    [Google Scholar]
  56. RoyA. BanerjeeR. ChoudhuryS. ChatterjeeK. MondalB. DeyS. KumarH. Novel inflammasome and oxidative modulators in Parkinson’s disease: A prospective study.Neurosci. Lett.202278613676810.1016/j.neulet.2022.13676835780939
    [Google Scholar]
  57. AlqurashiM.M. Al-AbbasiF.A. AfzalM. AlghamdiA.M. ZeyadiM. SheikhR.A. AlshehriS. ImamS.S. SayyedN. KazmiI. Protective effect of sterubin against neurochemical and behavioral impairments in rotenone-induced Parkinson’s disease.Braz. J. Med. Biol. Res.2024571282910.1590/1414‑431x2023e1282938359270
    [Google Scholar]
  58. AhmadM.H. FatimaM. AliM. RizviM.A. MondalA.C. Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson’s disease.Neuropharmacology202120110883110.1016/j.neuropharm.2021.10883134655599
    [Google Scholar]
  59. SharmaN. KhuranaN. MuthuramanA. UtrejaP. Pharmacological evaluation of vanillic acid in rotenone-induced Parkinson’s disease rat model.Eur. J. Pharmacol.202190317411210.1016/j.ejphar.2021.17411233901458
    [Google Scholar]
  60. AnguchamyV. MuthuvelA. Enhancing the neuroprotective effect of squid outer skin astaxanthin against rotenone-induced neurotoxicity in in-vitro model for Parkinson’s disease.Food Chem. Toxicol.202317811384610.1016/j.fct.2023.11384637277017
    [Google Scholar]
  61. HomolakJ. JojaM. GrabaricG. SchiattiE. ViragD. Babic PerhocA. KnezovicA. Osmanovic BarilarJ. Salkovic-PetrisicM. The absence of gastrointestinal redox dyshomeostasis in the brain-first rat model of Parkinson’s disease induced by bilateral intrastriatal 6-hydroxydopamine.Mol. Neurobiol.20246185481549310.1007/s12035‑023‑03906‑738200352
    [Google Scholar]
  62. SiddiqueY.H. NazF. MantashaI. ShahidM. Lemongrass extract alleviates oxidative stress and delayed the loss of climbing ability in transgenic Drosophila model of Parkinson’s disease.Lett. Drug Des. Discov.2021181098799710.2174/1570180818666210413141434
    [Google Scholar]
  63. ParkM. HaJ. LeeY. ChoiH.S. KimB.S. JeongY.K. Low-moderate dose whole-brain γ-ray irradiation modulates the expressions of glial fibrillary acidic protein and intercellular adhesion molecule-1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine–induced Parkinson’s disease mouse model.Neurobiol. Aging202313217518410.1016/j.neurobiolaging.2023.06.01537837733
    [Google Scholar]
  64. NairuzT. Sangwoo-Cho LeeJ.H. Photobiomodulation therapy on brain: Pioneering an innovative approach to revolutionize cognitive dynamics.Cells2024131196610.3390/cells1311096638891098
    [Google Scholar]
  65. SantosJ. QuimqueM.T. LimanR.A. AgbayJ.C. MacabeoA.P.G. CorpuzM.J.A. WangY.M. LuT.T. LinC.H. VillafloresO.B. Computational and experimental assessments of magnolol as a neuroprotective agent and utilization of UiO-66 (Zr) as Its drug delivery system.ACS Omega2021638243822439610.1021/acsomega.1c0255534604621
    [Google Scholar]
  66. OkoyeK HosseiniS. Analysis of variance (ANOVA) in R: One-way and two-way ANOVA.R Programming: Statistical Data Analysis in ResearchSingaporeSpringer Nature202418720910.1007/978‑981‑97‑3385‑9_9
    [Google Scholar]
  67. WilcoxR. One-way and two-way anova: Inferences about a robust, heteroscedastic measure of effect size.Methodology2022181587310.5964/meth.7769
    [Google Scholar]
  68. NolteR.T. WiselyG.B. WestinS. CobbJ.E. LambertM.H. KurokawaR. RosenfeldM.G. WillsonT.M. GlassC.K. MilburnM.V. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ.Nature1998395669813714310.1038/259319744270
    [Google Scholar]
  69. BeckerG. MüllerA. BrauneS. BüttnerT. BeneckeR. GreulichW. KleinW. MarkG. RiekeJ. ThümlerR. Early diagnosis of Parkinson’s disease.J. Neurol.200224901, 40-4810.1007/s00415‑002‑1309‑912522572
    [Google Scholar]
  70. Leite SilvaA.B.R. Gonçalves de OliveiraR.W. DiógenesG.P. de Castro AguiarM.F. SallemC.C. LimaM.P.P. de Albuquerque FilhoL.B. Peixoto de MedeirosS.D. Penido de MendonçaL.L. de Santiago FilhoP.C. NonesD.P. da Silva CardosoP.M.M. RibasM.Z. GalvãoS.L. GomesG.F. Bezerra de MenezesA.R. dos SantosN.L. MororóV.M. DuarteF.S. dos SantosJ.C.C. Premotor, nonmotor and motor symptoms of Parkinson’s Disease: A new clinical state of the art.Ageing Res. Rev.20238410183410.1016/j.arr.2022.10183436581178
    [Google Scholar]
  71. PringsheimT. DayG.S. SmithD.B. Rae-GrantA. LickingN. ArmstrongM.J. de BieR.M.A. RozeE. MiyasakiJ.M. HauserR.A. EspayA.J. MartelloJ.P. GurwellJ.A. BillinghurstL. SullivanK. FittsM.S. CothrosN. HallD.A. RaffertyM. HagerbrantL. HastingsT. O’BrienM.D. SilsbeeH. GronsethG. LangA.E. Dopaminergic therapy for motor symptoms in early Parkinson disease practice guideline summary: A report of the AAN guideline subcommittee.Neurology2021972094295710.1212/WNL.000000000001286834782410
    [Google Scholar]
  72. ChuaC.Y. KohM.R.E. ChiaN.S.Y. NgS.Y.E. SaffariS.E. WenM.C. ChenR.Y.Y. ChoiX. HengD.L. NeoS.X. TayK.Y. AuW.L. TanE.K. TanL.C.S. XuZ. Subjective cognitive Complaints in early Parkinson’s disease patients with normal cognition are associated with affective symptoms.Parkinsonism Relat. Disord.202182242810.1016/j.parkreldis.2020.11.01333227684
    [Google Scholar]
  73. KwonK.Y. LeeE.J. LeeM. JuH. ImK. Impact of motor subtype on non-motor symptoms and fall-related features in patients with early Parkinson’s disease.Geriatr. Gerontol. Int.202121541642010.1111/ggi.1415633780137
    [Google Scholar]
  74. JankovicJ. Parkinson’s disease: Clinical features and diagnosis.J. Neurol. Neurosurg. Psychiatry200879436837610.1136/jnnp.2007.13104518344392
    [Google Scholar]
  75. WickremaratchiM.M. Ben-ShlomoY. MorrisH.R. The effect of onset age on the clinical features of Parkinson’s disease.Eur. J. Neurol.200916445045610.1111/j.1468‑1331.2008.02514.x19187262
    [Google Scholar]
  76. ParisiL. RaviChandranN. ManaogM.L. Feature-driven machine learning to improve early diagnosis of Parkinson’s disease.Expert Syst. Appl.201811018219010.1016/j.eswa.2018.06.003
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501395776250903093531
Loading
/content/journals/cdt/10.2174/0113894501395776250903093531
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): animal model; Glitazones; neuroprotection; PGC-1α; rotenone; thiazolidinedione
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test