Skip to content
2000
image of Novel Glitazones Protect Rotenone-induced Parkinsonism in Mouse Models by Targeting PGC1α

Abstract

Introduction

Parkinson’s disease (PD) is a persistent neurodegenerative condition marked by rising global rates of disability and mortality, warranting the need for new treatment options. The present investigation evaluated the protective effects of novel glitazones C7 and C25 against rotenone-induced PD in a mouse model.

Methods

Molecular docking using Discovery Studio and molecular dynamics simulations were employed to evaluate the binding ability of C7 and C25 to the PGC-1α target protein. Pharmacokinetic evaluations of C7 and C25 were performed against the standard pioglitazone in the rats model, and acute toxicity assessments were conducted following OECD guidelines 423. The neuroprotective effects of C7 were tested in a rotenone-induced mouse model of PD at doses of 10, 20, and 30 mg/kg body weight. Behavioral studies, including locomotor activity, grip strength, and catalepsy, as well as biochemical analyses such as endogenous antioxidant levels and AChE levels, were assessed.

Results

The novel compound C7 demonstrated good binding and simulation at the PGC-1α target protein. The kinetic profile of C7 was found to be good when compared to C25. Both the novel glitazones were safe at 300 mg/kg body weight when tested for oral acute toxicity. The novel compound C7 effectively alleviated symptoms related to rotenone-induced PD, demonstrating its promise as a therapeutic candidate.

Discussion

In the rotenone-induced mouse model, compound C7 exhibited a promising anti-PD effect by attenuating oxidative stress and increasing muscular activity, which merits further investigations.

Conclusion

Additional research using various induction models, along with further investigation of cellular and molecular markers in larger animal studies, is needed to validate these findings.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501395776250903093531
2025-09-08
2025-09-14
Loading full text...

Full text loading...

References

  1. Bloem B.R. Okun M.S. Klein C. Parkinson’s disease. Lancet 2021 397 10291 2284 2303 10.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  2. Tolosa E. Garrido A. Scholz S.W. Poewe W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021 20 5 385 397 10.1016/S1474‑4422(21)00030‑2 33894193
    [Google Scholar]
  3. Ben-Shlomo Y. Darweesh S. Llibre-Guerra J. Marras C. San Luciano M. Tanner C. The epidemiology of Parkinson’s disease. Lancet 2024 403 10423 283 292 10.1016/S0140‑6736(23)01419‑8 38245248
    [Google Scholar]
  4. Ball N. Teo W.P. Chandra S. Chapman J. Parkinson’s disease and the environment. Front. Neurol. 2019 10 218 10.3389/fneur.2019.00218 30941085
    [Google Scholar]
  5. Chia S.J. Tan E.K. Chao Y.X. Historical perspective: Models of Parkinson’s disease. Int. J. Mol. Sci. 2020 21 7 2464 10.3390/ijms21072464 32252301
    [Google Scholar]
  6. Zubelzu M. Morera-Herreras T. Irastorza G. Gómez-Esteban J.C. Murueta-Goyena A. Plasma and serum alpha-synuclein as a biomarker in Parkinson’s disease: A meta-analysis. Parkinsonism Relat. Disord. 2022 99 107 115 10.1016/j.parkreldis.2022.06.001 35717321
    [Google Scholar]
  7. Zheng Y. Li S. Yang C. Yu Z. Jiang Y. Feng T. Comparison of biospecimens for α-synuclein seed amplification assays in Parkinson’s disease: A systematic review and network meta-analysis. Eur. J. Neurol. 2023 30 12 3949 3967 10.1111/ene.16041 37573472
    [Google Scholar]
  8. Basellini M.J. Kothuis J.M. Comincini A. Pezzoli G. Cappelletti G. Mazzetti S. Pathological pathways and alpha-synuclein in parkinson’s disease: A view from the periphery. Front. Biosci. 2023 28 2 33 10.31083/j.fbl2802033 36866559
    [Google Scholar]
  9. Murphy J. McKernan D.P. The effect of aggregated alpha synuclein on synaptic and axonal proteins in Parkinson’s disease—A systematic review. Biomolecules 2022 12 9 1199 10.3390/biom12091199 36139038
    [Google Scholar]
  10. Ganguly U. Singh S. Pal S. Prasad S. Agrawal B.K. Saini R.V. Chakrabarti S. Alpha-synuclein as a biomarker of Parkinson’s disease: Good, but not good enough. Front. Aging Neurosci. 2021 13 702639 10.3389/fnagi.2021.702639 34305577
    [Google Scholar]
  11. Srinivasan E. Chandrasekhar G. Chandrasekar P. Anbarasu K. Vickram A.S. Karunakaran R. Rajasekaran R. Srikumar P.S. Alpha-synuclein aggregation in Parkinson’s disease. Front. Med. 2021 8 736978 10.3389/fmed.2021.736978 34733860
    [Google Scholar]
  12. Emin D. Zhang Y.P. Lobanova E. Miller A. Li X. Xia Z. Dakin H. Sideris D.I. Lam J.Y.L. Ranasinghe R.T. Kouli A. Zhao Y. De S. Knowles T.P.J. Vendruscolo M. Ruggeri F.S. Aigbirhio F.I. Williams-Gray C.H. Klenerman D. Small soluble α-synuclein aggregates are the toxic species in Parkinson’s disease. Nat. Commun. 2022 13 1 5512 10.1038/s41467‑022‑33252‑6 36127374
    [Google Scholar]
  13. Haque M.E. Akther M. Azam S. Kim I.S. Lin Y. Lee Y.H. Choi D.K. Targeting α-synuclein aggregation and its role in mitochondrial dysfunction in Parkinson’s disease. Br. J. Pharmacol. 2022 179 1 23 45 10.1111/bph.15684 34528272
    [Google Scholar]
  14. Kim M.S. Ra E.A. Kweon S.H. Seo B.A. Ko H.S. Oh Y. Lee G. Advanced human iPSC-based preclinical model for Parkinson’s disease with optogenetic alpha-synuclein aggregation. Cell Stem Cell 2023 30 7 973 986.e11 10.1016/j.stem.2023.05.015 37339636
    [Google Scholar]
  15. Wang R. Ren H. Kaznacheyeva E. Lu X. Wang G. Association of glial activation and α-synuclein pathology in Parkinson’s disease. Neurosci. Bull. 2023 39 3 479 490 10.1007/s12264‑022‑00957‑z 36229715
    [Google Scholar]
  16. Rouaud T. Corbillé A.G. Leclair-Visonneau L. de Guilhem de Lataillade A. Lionnet A. Preterre C. Damier P. Derkinderen P. Pathophysiology of Parkinson’s disease: Mitochondria, alpha-synuclein and much more…. Rev. Neurol. 2021 177 3 260 271 10.1016/j.neurol.2020.07.016 33032797
    [Google Scholar]
  17. Li W. Fu Y. Halliday G.M. Sue C.M. PARK genes link mitochondrial dysfunction and alpha-synuclein pathology in sporadic Parkinson’s disease. Front. Cell Dev. Biol. 2021 9 612476 10.3389/fcell.2021.612476 34295884
    [Google Scholar]
  18. van der Gaag B.L. Deshayes N.A.C. Breve J.J.P. Bol J.G.J.M. Jonker A.J. Hoozemans J.J.M. Courade J.P. van de Berg W.D.J. Distinct tau and alpha-synuclein molecular signatures in Alzheimer’s disease with and without Lewy bodies and Parkinson’s disease with dementia. Acta Neuropathol. 2024 147 1 14 10.1007/s00401‑023‑02657‑y 38198008
    [Google Scholar]
  19. Zhang S. Liu Y.Q. Jia C. Lim Y.J. Feng G. Xu E. Long H. Kimura Y. Tao Y. Zhao C. Wang C. Liu Z. Hu J.J. Ma M.R. Liu Z. Jiang L. Li D. Wang R. Dawson V.L. Dawson T.M. Li Y.M. Mao X. Liu C. Mechanistic basis for receptor-mediated pathological α-synuclein fibril cell-to-cell transmission in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2021 118 26 2011196118 10.1073/pnas.2011196118 34172566
    [Google Scholar]
  20. Prymaczok N.C. De Francesco P.N. Mazzetti S. Humbert-Claude M. Tenenbaum L. Cappelletti G. Masliah E. Perello M. Riek R. Gerez J.A. Cell-to-cell transmitted alpha-synuclein recapitulates experimental Parkinson’s disease. NPJ Parkinsons Dis. 2024 10 1 10 10.1038/s41531‑023‑00618‑6 38184623
    [Google Scholar]
  21. Vankayala S.L. Warrensford L.C. Pittman A.R. Pollard B.C. Kearns F.L. Larkin J.D. Woodcock H.L. CIFDock : A novel CHARMM -based flexible receptor–flexible ligand docking protocol. J. Comput. Chem. 2022 43 2 84 95 10.1002/jcc.26759 34741467
    [Google Scholar]
  22. Suh D. Schwartz R. Gupta P.K. Zev S. Major D.T. Im W. CHARMM-GUI EnzyDocker for protein–ligand docking of multiple reactive states along a reaction coordinate in enzymes. J. Chem. Theory Comput. 2025 21 4 2118 2128 10.1021/acs.jctc.4c01691 39950957
    [Google Scholar]
  23. Guterres H. Park S.J. Zhang H. Perone T. Kim J. Im W. CHARMM-GUIhigh-throughput simulator for efficient evaluation of protein–ligand interactions with different force fields. Protein Sci. 2022 31 9 4413 10.1002/pro.4413
    [Google Scholar]
  24. Kong L. Park S.J. Im W. CHARMM-GUI PDB reader and manipulator: Covalent ligand modeling and simulation. J. Mol. Biol. 2024 436 17 168554 10.1016/j.jmb.2024.168554 39237201
    [Google Scholar]
  25. Kumar A. MacKerell A.D. Jr FFParam-v2.0: A comprehensive tool for charmm additive and drude polarizable force-field parameter optimization and validation. J. Phys. Chem. B 2024 128 18 4385 4395 10.1021/acs.jpcb.4c01314 38690986
    [Google Scholar]
  26. Allen C. Bureau H.R. McGee T.D. Jr Quirk S. Hernandez R. Benchmarking adaptive steered molecular dynamics (ASMD) on CHARMM force fields. ChemPhysChem 2022 23 17 202200175 10.1002/cphc.202200175 35594194
    [Google Scholar]
  27. dos Santos Nascimento I.J. de Moura R.O. Molecular dynamics simulations in drug discovery. Mini Rev. Med. Chem. 2024 24 11 1061 1062 10.2174/138955752411240402134719 39004837
    [Google Scholar]
  28. Choi Y.K. Kern N.R. Kim S. Kanhaiya K. Afshar Y. Jeon S.H. Jo S. Brooks B.R. Lee J. Tadmor E.B. Heinz H. Im W. CHARMM-GUI nanomaterial modeler for modeling and simulation of nanomaterial systems. J. Chem. Theory Comput. 2022 18 1 479 493 10.1021/acs.jctc.1c00996 34871001
    [Google Scholar]
  29. Patel S. Mackerell A.D. Jr Brooks C.L. III CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J. Comput. Chem. 2004 25 12 1504 1514 10.1002/jcc.20077 15224394
    [Google Scholar]
  30. Bjelkmar P. Larsson P. Cuendet M.A. Hess B. Lindahl E. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput. 2010 6 2 459 466 10.1021/ct900549r 26617301
    [Google Scholar]
  31. Lama J. Buhidma Y. Fletcher E.J.R. Duty S. Animal models of Parkinson’s disease: A guide to selecting the optimal model for your research. Neuronal Signal. 2021 5 4 NS20210026 10.1042/NS20210026 34956652
    [Google Scholar]
  32. Lange S. Inal J.M. Animal models of human disease. Int. J. Mol. Sci. 2023 24 21 15821 10.3390/ijms242115821 37958801
    [Google Scholar]
  33. Lee G.H. Kim K. Jo W. Stress evaluation of mouse husbandry environments for improving laboratory animal welfare. Animals (Basel) 2023 13 2 249 10.3390/ani13020249 36670789
    [Google Scholar]
  34. Cho E. Walsh C.A. D’Angelo-Gavrish N.M. Wilson S.R. Cirillo P.A. Smith P.C. Effects of housing density on reproductive performance, intracage ammonia, and welfare of mice continuously housed as breeders in standard mouse and rat caging. J. Am. Assoc. Lab. Anim. Sci. 2023 62 2 116 122 10.30802/AALAS‑JAALAS‑22‑000069 36878483
    [Google Scholar]
  35. Ratuski A.S. Weary D.M. Environmental enrichment for rats and mice housed in laboratories: A metareview. Animals (Basel) 2022 12 4 414 10.3390/ani12040414 35203123
    [Google Scholar]
  36. Andersson M. Pernold K. Lilja N. Frias-Beneyto R. Ulfhake B. Longitudinal study of changes in ammonia, carbon dioxide, humidity and temperature in individually ventilated cages housing female and male c57bl/6n mice during consecutive cycles of weekly and bi-weekly cage changes. Animals 2024 14 18 2735 10.3390/ani14182735 39335324
    [Google Scholar]
  37. Ahmadi-Noorbakhsh S. Farajli Abbasi M. Ghasemi M. Bayat G. Davoodian N. Sharif-Paghaleh E. Poormoosavi S.M. Rafizadeh M. Maleki M. Shirzad-Aski H. Kargar Jahromi H. Dadkhah M. Khalvati B. Safari T. Behmanesh M.A. Khoshnam S.E. Houshmand G. Talaei S.A. Anesthesia and analgesia for common research models of adult mice. Lab. Anim. Res. 2022 38 1 40 10.1186/s42826‑022‑00150‑3 36514128
    [Google Scholar]
  38. Hidayat R. Wulandari P. Protocol for anesthesia animal model in biomedical study. Bioscientia Medicina. J. Biomed. Translat. Res. 2021 5 7 619 623
    [Google Scholar]
  39. Hickman D.L. Minimal exposure times for irreversible euthanasia with carbon dioxide in mice and rats. J. Am. Assoc. Lab. Anim. Sci. 2022 61 3 283 286 10.30802/AALAS‑JAALAS‑21‑000113 35414376
    [Google Scholar]
  40. Hedenqvist P. Laboratory animal analgesia, anesthesia, and euthanasia. Handbook of Laboratory Animal Science Boca Raton, Florida CRC Press 2021 10.1201/9780429439964‑15
    [Google Scholar]
  41. Jacquez B. Choi H. Bird C.W. Linsenbardt D.N. Valenzuela C.F. Characterization of motor function in mice developmentally exposed to ethanol using the Catwalk system: Comparison with the triple horizontal bar and rotarod tests. Behav. Brain Res. 2021 396 112885 10.1016/j.bbr.2020.112885 32860829
    [Google Scholar]
  42. Widjaja J.H. Sloan D.C. Hauger J.A. Muntean B.S. Customizable open-source rotating Rod (Rotarod) enables robust low-cost assessment of motor performance in mice. eNeuro 2023 10 9 ENEURO.0123-23.2023 10.1523/ENEURO.0123‑23.2023 37673671
    [Google Scholar]
  43. Shan H.M. Maurer M.A. Schwab M.E. Four-parameter analysis in modified Rotarod test for detecting minor motor deficits in mice. BMC Biol. 2023 21 1 177 10.1186/s12915‑023‑01679‑y 37592249
    [Google Scholar]
  44. Waku I. Magalhães M.S. Alves C.O. de Oliveira A.R. Haloperidol-induced catalepsy as an animal model for parkinsonism: A systematic review of experimental studies. Eur. J. Neurosci. 2021 53 11 3743 3767 10.1111/ejn.15222 33818841
    [Google Scholar]
  45. David A.A. Oladele A.A. Philip A.O. Zabdiel A.A. Olufunso A.B. Tolulope O.O. Adebola A.O. Neuroprotective Effects of Garcinia kola ethanol Seed Extract on Haloperidol-Induced Catalepsy in Mice. Trop. J. Nat. Prod. Res. 2022 6 2 281 286
    [Google Scholar]
  46. Kumar N. James R. Sinha S. Kinra M. Anuranjana P.V. Nandakumar K. Naringin exhibited Anti-Parkinsonian like effect against haloperidol-induced catalepsy in mice. Res. J. Pharm. Tech. 2021 14 2 662 666 10.5958/0974‑360X.2021.00118.9
    [Google Scholar]
  47. Kirubakaran R. Equipments in experimental pharmacology. Introduction to Basics of Pharmacology and Toxicology Lakshmanan M. Shewade D.G. Raj G.M. Singapore Springer 2022 3 77 100 10.1007/978‑981‑19‑5343‑9_6
    [Google Scholar]
  48. Rani M. Chhikara M. Rani R. Pawar N. Evaluation of antianxiety activity of Linalyl acetate in Swiss albino Mice. Ann. Rom. Soc. Cell Biol. 2022 26 1 3470 3482
    [Google Scholar]
  49. Shukla D. Goel A. Mandal P.K. Joon S. Punjabi K. Arora Y. Kumar R. Mehta V.S. Singh P. Maroon J.C. Bansal R. Sandal K. Roy R.G. Samkaria A. Sharma S. Sandhilya S. Gaur S. Parvathi S. Joshi M. Glutathione depletion and concomitant elevation of susceptibility in patients with parkinson’s disease: State-of-the-art MR spectroscopy and neuropsychological study. ACS Chem. Neurosci. 2023 14 24 4383 4394 10.1021/acschemneuro.3c00717 38050970
    [Google Scholar]
  50. Wang H.L. Zhang J. Li Y.P. Dong L. Chen Y.Z. Potential use of glutathione as a treatment for Parkinson’s disease. Exp. Ther. Med. 2020 21 2 125 10.3892/etm.2020.9557 33376507
    [Google Scholar]
  51. El Kodsi D.N. Tokarew J.M. Sengupta R. Lengacher N.A. Chatterji A. Nguyen A.P. Boston H. Jiang Q. Palmberg C. Pileggi C. Holterman C.E. Shutinoski B. Li J. Fehr T.K. LaVoie M.J. Ratan R.R. Shaw G.S. Takanashi M. Hattori N. Kennedy C.R. Harper M.E. Holmgren A. Tomlinson J.J. Schlossmacher M.G. Parkin coregulates glutathione metabolism in adult mammalian brain. Acta Neuropathol. Commun. 2023 11 1 19 10.1186/s40478‑022‑01488‑4 36691076
    [Google Scholar]
  52. Wang Z. Wen H. Zheng C. Wang X. Yin S. Song N. Liang M. Synergistic co–cu dual-atom nanozyme with promoted catalase-like activity for parkinson’s disease treatment. ACS Appl. Mater. Interfaces 2025 17 1 583 593 10.1021/acsami.4c17416 39690140
    [Google Scholar]
  53. Alkholifi F.K. Devi S. Aldawsari M.F. Foudah A.I. Alqarni M.H. Salkini M.A. Sweilam S.H. Effects of tiliroside and lisuride co-treatment on the PI3K/Akt signal pathway: Modulating neuroinflammation and apoptosis in Parkinson’s disease. Biomedicines 2023 11 10 2735 10.3390/biomedicines11102735 37893109
    [Google Scholar]
  54. Akhter N. Rafiq I. Jamil A. Chauhdary Z. Mustafa A. Nisar A. Neuroprotective effect of Thymus vulgaris on paraquat induced Parkinson’s disease. Biochem. Biophys. Res. Commun. 2025 761 151740 10.1016/j.bbrc.2025.151740 40188599
    [Google Scholar]
  55. Usama Ashhar M. Vyas P. Vohora D. Kumar Sahoo P. Nigam K. Dang S. Ali J. Baboota S. Amelioration of oxidative stress utilizing nanoemulsion loaded with bromocriptine and glutathione for the management of Parkinson’s disease. Int. J. Pharm. 2022 618 121683 10.1016/j.ijpharm.2022.121683 35314276
    [Google Scholar]
  56. Roy A. Banerjee R. Choudhury S. Chatterjee K. Mondal B. Dey S. Kumar H. Novel inflammasome and oxidative modulators in Parkinson’s disease: A prospective study. Neurosci. Lett. 2022 786 136768 10.1016/j.neulet.2022.136768 35780939
    [Google Scholar]
  57. Alqurashi M.M. Al-Abbasi F.A. Afzal M. Alghamdi A.M. Zeyadi M. Sheikh R.A. Alshehri S. Imam S.S. Sayyed N. Kazmi I. Protective effect of sterubin against neurochemical and behavioral impairments in rotenone-induced Parkinson’s disease. Braz. J. Med. Biol. Res. 2024 57 12829 10.1590/1414‑431x2023e12829 38359270
    [Google Scholar]
  58. Ahmad M.H. Fatima M. Ali M. Rizvi M.A. Mondal A.C. Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson’s disease. Neuropharmacology 2021 201 108831 10.1016/j.neuropharm.2021.108831 34655599
    [Google Scholar]
  59. Sharma N. Khurana N. Muthuraman A. Utreja P. Pharmacological evaluation of vanillic acid in rotenone-induced Parkinson’s disease rat model. Eur. J. Pharmacol. 2021 903 174112 10.1016/j.ejphar.2021.174112 33901458
    [Google Scholar]
  60. Anguchamy V. Muthuvel A. Enhancing the neuroprotective effect of squid outer skin astaxanthin against rotenone-induced neurotoxicity in in-vitro model for Parkinson’s disease. Food Chem. Toxicol. 2023 178 113846 10.1016/j.fct.2023.113846 37277017
    [Google Scholar]
  61. Homolak J. Joja M. Grabaric G. Schiatti E. Virag D. Babic Perhoc A. Knezovic A. Osmanovic Barilar J. Salkovic-Petrisic M. The absence of gastrointestinal redox dyshomeostasis in the brain-first rat model of Parkinson’s disease induced by bilateral intrastriatal 6-hydroxydopamine. Mol. Neurobiol. 2024 61 8 5481 5493 10.1007/s12035‑023‑03906‑7 38200352
    [Google Scholar]
  62. Siddique Y.H. Naz F. Mantasha I. Shahid M. Lemongrass extract alleviates oxidative stress and delayed the loss of climbing ability in transgenic Drosophila model of Parkinson’s disease. Lett. Drug Des. Discov. 2021 18 10 987 997 10.2174/1570180818666210413141434
    [Google Scholar]
  63. Park M. Ha J. Lee Y. Choi H.S. Kim B.S. Jeong Y.K. Low-moderate dose whole-brain γ-ray irradiation modulates the expressions of glial fibrillary acidic protein and intercellular adhesion molecule-1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine–induced Parkinson’s disease mouse model. Neurobiol. Aging 2023 132 175 184 10.1016/j.neurobiolaging.2023.06.015 37837733
    [Google Scholar]
  64. Nairuz T. Sangwoo-Cho Lee J.H. Photobiomodulation therapy on brain: Pioneering an innovative approach to revolutionize cognitive dynamics. Cells 2024 13 11 966 10.3390/cells13110966 38891098
    [Google Scholar]
  65. Santos J. Quimque M.T. Liman R.A. Agbay J.C. Macabeo A.P.G. Corpuz M.J.A. Wang Y.M. Lu T.T. Lin C.H. Villaflores O.B. Computational and experimental assessments of magnolol as a neuroprotective agent and utilization of UiO-66 (Zr) as Its drug delivery system. ACS Omega 2021 6 38 24382 24396 10.1021/acsomega.1c02555 34604621
    [Google Scholar]
  66. Okoye K Hosseini S. Analysis of variance (ANOVA) in R: One-way and two-way ANOVA. R Programming: Statistical Data Analysis in Research Singapore Springer Nature 2024 187 209 10.1007/978‑981‑97‑3385‑9_9
    [Google Scholar]
  67. Wilcox R. One-way and two-way anova: Inferences about a robust, heteroscedastic measure of effect size. Methodology 2022 18 1 58 73 10.5964/meth.7769
    [Google Scholar]
  68. Nolte R.T. Wisely G.B. Westin S. Cobb J.E. Lambert M.H. Kurokawa R. Rosenfeld M.G. Willson T.M. Glass C.K. Milburn M.V. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 1998 395 6698 137 143 10.1038/25931 9744270
    [Google Scholar]
  69. Becker G. Müller A. Braune S. Büttner T. Benecke R. Greulich W. Klein W. Mark G. Rieke J. Thümler R. Early diagnosis of Parkinson’s disease. J. Neurol. 2002 249 0 1 , 40-48 10.1007/s00415‑002‑1309‑9 12522572
    [Google Scholar]
  70. Leite Silva A.B.R. Gonçalves de Oliveira R.W. Diógenes G.P. de Castro Aguiar M.F. Sallem C.C. Lima M.P.P. de Albuquerque Filho L.B. Peixoto de Medeiros S.D. Penido de Mendonça L.L. de Santiago Filho P.C. Nones D.P. da Silva Cardoso P.M.M. Ribas M.Z. Galvão S.L. Gomes G.F. Bezerra de Menezes A.R. dos Santos N.L. Mororó V.M. Duarte F.S. dos Santos J.C.C. Premotor, nonmotor and motor symptoms of Parkinson’s Disease: A new clinical state of the art. Ageing Res. Rev. 2023 84 101834 10.1016/j.arr.2022.101834 36581178
    [Google Scholar]
  71. Pringsheim T. Day G.S. Smith D.B. Rae-Grant A. Licking N. Armstrong M.J. de Bie R.M.A. Roze E. Miyasaki J.M. Hauser R.A. Espay A.J. Martello J.P. Gurwell J.A. Billinghurst L. Sullivan K. Fitts M.S. Cothros N. Hall D.A. Rafferty M. Hagerbrant L. Hastings T. O’Brien M.D. Silsbee H. Gronseth G. Lang A.E. Dopaminergic therapy for motor symptoms in early Parkinson disease practice guideline summary: A report of the AAN guideline subcommittee. Neurology 2021 97 20 942 957 10.1212/WNL.0000000000012868 34782410
    [Google Scholar]
  72. Chua C.Y. Koh M.R.E. Chia N.S.Y. Ng S.Y.E. Saffari S.E. Wen M.C. Chen R.Y.Y. Choi X. Heng D.L. Neo S.X. Tay K.Y. Au W.L. Tan E.K. Tan L.C.S. Xu Z. Subjective cognitive Complaints in early Parkinson’s disease patients with normal cognition are associated with affective symptoms. Parkinsonism Relat. Disord. 2021 82 24 28 10.1016/j.parkreldis.2020.11.013 33227684
    [Google Scholar]
  73. Kwon K.Y. Lee E.J. Lee M. Ju H. Im K. Impact of motor subtype on non-motor symptoms and fall-related features in patients with early Parkinson’s disease. Geriatr. Gerontol. Int. 2021 21 5 416 420 10.1111/ggi.14156 33780137
    [Google Scholar]
  74. Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008 79 4 368 376 10.1136/jnnp.2007.131045 18344392
    [Google Scholar]
  75. Wickremaratchi M.M. Ben-Shlomo Y. Morris H.R. The effect of onset age on the clinical features of Parkinson’s disease. Eur. J. Neurol. 2009 16 4 450 456 10.1111/j.1468‑1331.2008.02514.x 19187262
    [Google Scholar]
  76. Parisi L. RaviChandran N. Manaog M.L. Feature-driven machine learning to improve early diagnosis of Parkinson’s disease. Expert Syst. Appl. 2018 110 182 190 10.1016/j.eswa.2018.06.003
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501395776250903093531
Loading
/content/journals/cdt/10.2174/0113894501395776250903093531
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: neuroprotection ; Glitazones ; animal model ; PGC-1α ; rotenone ; thiazolidinedione
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test