Skip to content
2000
image of Betaine, a Potential Therapeutic Alternative for the Treatment of Depression

Abstract

Depression is a debilitating psychiatric disorder characterized by loss of interest, anhedonia, and social isolation, which is projected to become the leading cause of disability worldwide by 2030. Despite the greater economic and social burden imposed by depression, the precise pathophysiology underlying the development of depression remains elusive. Betaine (N, N, N-trimethylglycine), an amino acid derivative, is widely distributed in various animals and plants and has been shown to have numerous beneficial effects, including antioxidant activities, anti-inflammatory functions, regulation of energy metabolism, and reduction of endoplasmic reticulum stress. It has been used to treat Alcohol-Associated Liver Disease (AALD), type 2 diabetes, cancer, obesity, and Alzheimer's Disease (AD). Interestingly, accumulating evidence has shown that betaine exerts a significant role in alleviating depressive-like behavior in patients and animals resulting from chronic stress. Although the antidepressant effects of betaine have not been compared with traditional antidepressants with insufficient verification, based on the neurobiological mechanisms of depression, it may be a potential alternative medicine for the treatment of depression. This is the first review aiming to provide a comprehensive overview of the remarkable effects of betaine in the pathophysiology of depression. These pieces of evidence are of great importance for deepening our understanding of the antidepressant mechanism of betaine, so as to develop betaine supplements for the supplementary treatment of depression.

Loading

Article metrics loading...

/content/journals/cdt/10.2174/0113894501394957250818110931
2025-08-27
2025-09-09
Loading full text...

Full text loading...

References

  1. Depression, other common mental disorders: Global health estimates. World Health Organization Geneva 2017 24 1
    [Google Scholar]
  2. Zhang Y. Chen Y. Ma L. Depression and cardiovascular disease in elderly: Current understanding. J. Clin. Neurosci. 2018 47 1 5 10.1016/j.jocn.2017.09.022 29066229
    [Google Scholar]
  3. Graham N. Smith D.J. Comorbidity of depression and anxiety disorders in patients with hypertension. J. Hypertens. 2016 34 3 397 398 10.1097/HJH.0000000000000850 26818922
    [Google Scholar]
  4. Carney R.M. Freedland K.E. New perspectives on treatment of depression in coronary heart disease. Psychosom. Med. 2023 85 6 474 478 10.1097/PSY.0000000000001219 37234020
    [Google Scholar]
  5. Tasnim S. Auny F.M. Hassan Y. Yesmin R. Ara I. Mohiuddin M.S. Kaggwa M.M. Gozal D. Mamun M.A. Antenatal depression among women with gestational diabetes mellitus: A pilot study. Reprod. Health 2022 19 1 71 10.1186/s12978‑022‑01374‑1 35305655
    [Google Scholar]
  6. Li Z. Ruan M. Chen J. Fang Y. Major depressive disorder: Advances in neuroscience research and translational applications. Neurosci. Bull. 2021 37 6 863 880 10.1007/s12264‑021‑00638‑3 33582959
    [Google Scholar]
  7. Qi W. Jin X. Guan W. Purinergic P2X7 receptor as a potential therapeutic target in depression. Biochem. Pharmacol. 2024 219 115959 10.1016/j.bcp.2023.115959 38052270
    [Google Scholar]
  8. Guan W. Ni M.X. Gu H.J. Yang Y. CREB: A promising therapeutic target for treating psychiatric disorders. Curr. Neuropharmacol. 2024 22 14 2384 2401 10.2174/1570159X22666240206111838 38372284
    [Google Scholar]
  9. Liu P. Liu Z. Wang J. Wang J. Gao M. Zhang Y. Yang C. Zhang A. Li G. Li X. Liu S. Liu L. Sun N. Zhang K. Immunoregulatory role of the gut microbiota in inflammatory depression. Nat. Commun. 2024 15 1 3003 10.1038/s41467‑024‑47273‑w 38589368
    [Google Scholar]
  10. Cuijpers P. van Straten A. Andersson G. van Oppen P. Psychotherapy for depression in adults: A meta-analysis of comparative outcome studies. J. Consult. Clin. Psychol. 2008 76 6 909 922 10.1037/a0013075 19045960
    [Google Scholar]
  11. Kennedy S.H. Lam R.W. McIntyre R.S. Tourjman S.V. Bhat V. Blier P. Hasnain M. Jollant F. Levitt A.J. MacQueen G.M. McInerney S.J. McIntosh D. Milev R.V. Müller D.J. Parikh S.V. Pearson N.L. Ravindran A.V. Uher R. Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder. Can. J. Psychiatry 2016 61 9 540 560 10.1177/0706743716659417 27486148
    [Google Scholar]
  12. Calder A.E. Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology 2023 48 1 104 112 10.1038/s41386‑022‑01389‑z 36123427
    [Google Scholar]
  13. Chen M. Ma S. Liu H. Dong Y. Tang J. Ni Z. Tan Y. Duan C. Li H. Huang H. Li Y. Cao X. Lingle C.J. Yang Y. Hu H. Brain region–specific action of ketamine as a rapid antidepressant. Science 2024 385 6709 eado7010 10.1126/science.ado7010 39116252
    [Google Scholar]
  14. Sheth S.A. Bijanki K.R. Metzger B. Allawala A. Pirtle V. Adkinson J.A. Myers J. Mathura R.K. Oswalt D. Tsolaki E. Xiao J. Noecker A. Strutt A.M. Cohn J.F. McIntyre C.C. Mathew S.J. Borton D. Goodman W. Pouratian N. Deep brain stimulation for depression informed by intracranial recordings. Biol. Psychiatry 2022 92 3 246 251 10.1016/j.biopsych.2021.11.007 35063186
    [Google Scholar]
  15. Runia N. Bergfeld I.O. de Kwaasteniet B.P. Luigjes J. van Laarhoven J. Notten P. Beute G. van den Munckhof P. Schuurman R. Denys D. van Wingen G.A. Deep brain stimulation normalizes amygdala responsivity in treatment-resistant depression. Mol. Psychiatry 2023 28 6 2500 2507 10.1038/s41380‑023‑02030‑1 36991129
    [Google Scholar]
  16. Oliva V. Lippi M. Paci R. Del Fabro L. Delvecchio G. Brambilla P. De Ronchi D. Fanelli G. Serretti A. Gastrointestinal side effects associated with antidepressant treatments in patients with major depressive disorder: A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021 109 110266 10.1016/j.pnpbp.2021.110266 33549697
    [Google Scholar]
  17. Healy D. Antidepressants and sexual dysfunction: A history. J. R. Soc. Med. 2020 113 4 133 135 10.1177/0141076819899299 31972096
    [Google Scholar]
  18. Alonso-Pedrero L. Bes-Rastrollo M. Marti A. Effects of antidepressant and antipsychotic use on weight gain: A systematic review. Obes. Rev. 2019 20 12 1680 1690 10.1111/obr.12934 31524318
    [Google Scholar]
  19. Day C.R. Kempson S.A. Betaine chemistry, roles, and potential use in liver disease. Biochim. Biophys. Acta, Gen. Subj. 2016 1860 6 1098 1106 10.1016/j.bbagen.2016.02.001 26850693
    [Google Scholar]
  20. Jin M. Shen Y. Pan T. Zhu T. Li X. Xu F. Betancor M.B. Jiao L. Tocher D.R. Zhou Q. Dietary betaine mitigates hepatic steatosis and inflammation induced by a high-fat-diet by modulating the sirt1/srebp-1/pparɑ pathway in juvenile black seabream (acanthopagrus schlegelii). Front. Immunol. 2021 12 694720 10.3389/fimmu.2021.694720 34248992
    [Google Scholar]
  21. Haberbosch L. Kierszniowska S. Willmitzer L. Mai K. Spranger J. Maurer L. 5-Aminovaleric acid betaine predicts impaired glucose metabolism and diabetes. Nutr. Diabetes 2023 13 1 17 10.1038/s41387‑023‑00245‑3 37730732
    [Google Scholar]
  22. Li Q. Qu M. Wang N. Wang L. Fan G. Yang C. Betaine protects rats against ischemia/reperfusion injury-induced brain damage. J. Neurophysiol. 2022 127 2 444 451 10.1152/jn.00400.2021 35020521
    [Google Scholar]
  23. Kettunen H. Tiihonen K. Peuranen S. Saarinen M.T. Remus J.C. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2001 130 4 759 769 10.1016/S1095‑6433(01)00410‑X 11691612
    [Google Scholar]
  24. Craig S.A.S. Betaine in human nutrition. Am. J. Clin. Nutr. 2004 80 3 539 549 10.1093/ajcn/80.3.539 15321791
    [Google Scholar]
  25. Schwahn B.C. Hafner D. Hohlfeld T. Balkenhol N. Laryea M.D. Wendel U. Pharmacokinetics of oral betaine in healthy subjects and patients with homocystinuria. Br. J. Clin. Pharmacol. 2003 55 1 6 13 10.1046/j.1365‑2125.2003.01717.x 12534635
    [Google Scholar]
  26. Kempson S.A. Zhou Y. Danbolt N.C. The betaine/GABA transporter and betaine: Roles in brain, kidney, and liver. Front. Physiol. 2014 5 159 10.3389/fphys.2014.00159 24795654
    [Google Scholar]
  27. Lever M. Sizeland P.C.B. Bason L.M. Hayman C.M. Chambers S.T. Glycine betaine and proline betaine in human blood and urine. Biochim. Biophys. Acta, Gen. Subj. 1994 1200 3 259 264 10.1016/0304‑4165(94)90165‑1 8068711
    [Google Scholar]
  28. Lever M. Sizeland P.C.B. Bason L.M. Hayman C.M. Robson R.A. Chambers S.T. Abnormal glycine betaine content of the blood and urine of diabetic and renal patients. Clin. Chim. Acta 1994 230 1 69 79 10.1016/0009‑8981(94)90090‑6 7850995
    [Google Scholar]
  29. Sun J. Wen S. Zhou J. Ding S. Association between malnutrition and hyperhomocysteine in Alzheimer’s disease patients and diet intervention of betaine. J. Clin. Lab. Anal. 2017 31 5 e22090 10.1002/jcla.22090 28671332
    [Google Scholar]
  30. Zhang A. Pan C. Wu M. Lin Y. Chen J. Zhong N. Zhang R. Pu L. Han L. Pan H. Causal association between plasma metabolites and neurodegenerative diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024 134 111067 10.1016/j.pnpbp.2024.111067 38908505
    [Google Scholar]
  31. Di Pierro F. Orsi R. Settembre R. Role of betaine in improving the antidepressant effect of S-adenosyl-methionine in patients with mild-to-moderate depression. J. Multidiscip. Healthc. 2015 8 39 45 10.2147/JMDH.S77766 25653537
    [Google Scholar]
  32. Miao M. Du J. Che B. Guo Y. Zhang J. Ju Z. Xu T. Zhong X. Zhang Y. Zhong C. Circulating choline pathway nutrients and depression after ischemic stroke. Eur. J. Neurol. 2022 29 2 459 468 10.1111/ene.15133 34611955
    [Google Scholar]
  33. Medeiros G.C. Roy D. Kontos N. Beach S.R. Post-stroke depression: A 2020 updated review. Gen. Hosp. Psychiatry 2020 66 70 80 10.1016/j.genhosppsych.2020.06.011 32717644
    [Google Scholar]
  34. Mitro S.D. Larrabure-Torrealva G.T. Sanchez S.E. Molsberry S.A. Williams M.A. Clish C. Gelaye B. Metabolomic markers of antepartum depression and suicidal ideation. J. Affect. Disord. 2020 262 422 428 10.1016/j.jad.2019.11.061 31744743
    [Google Scholar]
  35. Chernonosov A.A. Mednova I.A. Levchuk L.A. Mazurenko E.O. Roschina O.V. Simutkin G.G. Bokhan N.A. Koval V.V. Ivanova S.A. Untargeted plasma metabolomic profiling in patients with depressive disorders: A preliminary study. Metabolites 2024 14 2 110 10.3390/metabo14020110 38393002
    [Google Scholar]
  36. Limveeraprajak N. Nakhawatchana S. Visukamol A. Siripakkaphant C. Suttajit S. Srisurapanont M. Efficacy and acceptability of S-adenosyl-L-methionine (SAMe) for depressed patients: A systematic review and meta- analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024 132 110985 10.1016/j.pnpbp.2024.110985 38423354
    [Google Scholar]
  37. Ji C. Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology 2003 124 5 1488 1499 10.1016/S0016‑5085(03)00276‑2 12730887
    [Google Scholar]
  38. Arumugam M.K. Chava S. Perumal S.K. Paal M.C. Rasineni K. Ganesan M. Donohue T.M. Jr Osna N.A. Kharbanda K.K. Acute ethanol-induced liver injury is prevented by betaine administration. Front. Physiol. 2022 13 940148 10.3389/fphys.2022.940148 36267591
    [Google Scholar]
  39. Di Pierro F. Settembre R. Preliminary results of a randomized controlled trial carried out with a fixed combination of S-adenosyl-L-methionine and betaine versus amitriptyline in patients with mild depression. Int. J. Gen. Med. 2015 8 73 78 10.2147/IJGM.S79518 25678811
    [Google Scholar]
  40. van Lee L. Quah P.L. Saw S.M. Yap F.K.P. Godfrey K.M. Chong Y.S. Meaney M.J. Chen H. Chong M.F.F. Maternal choline status during pregnancy, but not that of betaine, is related to antenatal mental well-being: The growing up in Singapore toward healthy outcomes cohort. Depress. Anxiety 2017 34 10 877 887 10.1002/da.22637 28471488
    [Google Scholar]
  41. Kageyama Y. Kasahara T. Morishita H. Mataga N. Deguchi Y. Tani M. Kuroda K. Hattori K. Yoshida S. Inoue K. Kato T. Search for plasma biomarkers in drug-free patients with bipolar disorder and schizophrenia using metabolome analysis. Psychiatry Clin. Neurosci. 2017 71 2 115 123 10.1111/pcn.12461 27676126
    [Google Scholar]
  42. Hui R. Xu J. Zhou M. Xie B. Zhou M. Zhang L. Cong B. Ma C. Wen D. Betaine improves METH-induced depressive-like behavior and cognitive impairment by alleviating neuroinflammation via NLRP3 inflammasome inhibition. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024 135 111093 10.1016/j.pnpbp.2024.111093 39029648
    [Google Scholar]
  43. Li W. Ali T. He K. Liu Z. Shah F.A. Ren Q. Liu Y. Jiang A. Li S. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain Behav. Immun. 2021 92 10 24 10.1016/j.bbi.2020.11.008 33181270
    [Google Scholar]
  44. Zhang Y. Jia J. Betaine mitigates amyloid-β-associated neuroinflammation by suppressing the NLRP3 and NF-κB signaling pathways in microglial cells. J. Alzheimers Dis. 2023 94 s1 S9 S19 10.3233/JAD‑230064 37334594
    [Google Scholar]
  45. Sookoian S. Puri P. Castaño G.O. Scian R. Mirshahi F. Sanyal A.J. Pirola C.J. Nonalcoholic steatohepatitis is associated with a state of betaine-insufficiency. Liver Int. 2017 37 4 611 619 10.1111/liv.13249 27614103
    [Google Scholar]
  46. Duncan Z. Kippen R. Sutton K. Ward B. Agius P.A. Quinn B. Dietze P. Correlates of anxiety and depression in a community cohort of people who smoke methamphetamine. Aust. N. Z. J. Psychiatry 2022 56 8 964 973 10.1177/00048674211048152 34558302
    [Google Scholar]
  47. Algaidi S.A. Christie L.A. Jenkinson A.M. Whalley L. Riedel G. Platt B. Long-term homocysteine exposure induces alterations in spatial learning, hippocampal signalling and synaptic plasticity. Exp. Neurol. 2006 197 1 8 21 10.1016/j.expneurol.2005.07.003 16095594
    [Google Scholar]
  48. Zhang M. Wang X.L. Shi H. Meng L.Q. Quan H.F. Yan L. Yang H.F. Peng X.D. Betaine inhibits NLRP3 inflammasome hyperactivation and regulates microglial M1/M2 phenotypic differentiation, thereby attenuating lipopolysaccharide-induced depression-like behavior. J. Immunol. Res. 2022 2022 1 14 10.1155/2022/9313436 36339940
    [Google Scholar]
  49. Qu Y. Zhang K. Pu Y. Chang L. Wang S. Tan Y. Wang X. Zhang J. Ohnishi T. Yoshikawa T. Hashimoto K. Betaine supplementation is associated with the resilience in mice after chronic social defeat stress: A role of brain–gut–microbiota axis. J. Affect. Disord. 2020 272 66 76 10.1016/j.jad.2020.03.095 32379622
    [Google Scholar]
  50. Mullins P.M. Yong R.J. Bhattacharyya N. Associations between chronic pain, anxiety, and depression among adults in the United States. Pain Pract. 2023 23 6 589 594 10.1111/papr.13220 36881021
    [Google Scholar]
  51. Boccella S. Perrone M. Fusco A. Bonsale R. Infantino R. Nuzzo S. Pecoraro G. Ricciardi F. Maria Morace A. Petrillo G. Leone I. Franzese M. de Novellis V. Guida F. Salvatore M. Maione S. Luongo L. Spinal neuronal activity and neuroinflammatory component in a mouse model of CFA-induced vestibulodynia. Brain Behav. Immun. 2024 119 408 415 10.1016/j.bbi.2024.04.012 38636564
    [Google Scholar]
  52. Liang Y. Chen L. Huang Y. Xie L. Liu X. Zhou W. Cao W. Chen Z. Zhong X. Betaine eliminates CFA-induced depressive-like behaviour in mice may be through inhibition of microglia and astrocyte activation and polarization. Brain Res. Bull. 2024 206 110863 10.1016/j.brainresbull.2023.110863 38145759
    [Google Scholar]
  53. Shi M.M. Xu X.F. Sun Q.M. Luo M. Liu D.D. Guo D.M. Chen L. Zhong X.L. Xu Y. Cao W.Y. Betaine prevents cognitive dysfunction by suppressing hippocampal microglial activation in chronic social isolated male mice. Phytother. Res. 2023 37 10 4755 4770 10.1002/ptr.7944 37846157
    [Google Scholar]
  54. Young L.T. Warsh J.J. Kish S.J. Shannak K. Hornykeiwicz O. Reduced brain 5-HT and elevated NE turnover and metabolites in bipolar affective disorder. Biol. Psychiatry 1994 35 2 121 127 10.1016/0006‑3223(94)91201‑7 7513191
    [Google Scholar]
  55. Kim SJ Lee MS Kim JH Lee TH Shim I Antidepressant-like effects of Lycii radicis cortex and betaine in the forced swimming test in rats. Biomol Ther 2013 Jan 21 1 79 83 10.4062/biomolther.2012.072 24009863
    [Google Scholar]
  56. Lee D.S. Jo H.G. Kim M.J. Lee H. Cheong S.H. Antioxidant and anti-stress effects of taurine against electric foot-shock-induced acute stress in rats. Adv. Exp. Med. Biol. 2019 1155 185 196 10.1007/978‑981‑13‑8023‑5_17 31468397
    [Google Scholar]
  57. Bouvier E. Brouillard F. Molet J. Claverie D. Cabungcal J-H. Cresto N. Doligez N. Rivat C. Do K.Q. Bernard C. Benoliel J-J. Becker C. Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Mol. Psychiatry 2017 22 12 1701 1713 10.1038/mp.2016.144 27646262
    [Google Scholar]
  58. Michel T.M. Frangou S. Thiemeyer D. Camara S. Jecel J. Nara K. Brunklaus A. Zoechling R. Riederer P. Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder—A postmortem study. Psychiatry Res. 2007 151 1-2 145 150 10.1016/j.psychres.2006.04.013 17296234
    [Google Scholar]
  59. Michel T.M. Thome J. Martin D. Nara K. Zwerina S. Tatschner T. Weijers H.G. Koutsilieri E. Cu, Zn- and Mn-superoxide dismutase levels in brains of patients with schizophrenic psychosis. J. Neural Transm. 2004 111 9 1191 1201 10.1007/s00702‑004‑0160‑9 15338334
    [Google Scholar]
  60. Chen L. Liu D. Mao M. Liu W. Wang Y. Liang Y. Cao W. Zhong X. Betaine ameliorates acute sever ulcerative colitis by inhibiting oxidative stress induced inflammatory pyroptosis. Mol. Nutr. Food Res. 2022 66 22 2200341 10.1002/mnfr.202200341 36069237
    [Google Scholar]
  61. Jeyhoonabadi M. Alimoahmmadi S. Hassanpour S. Hashemnia M. Betaine ameliorates depressive-like behaviors in zinc oxide nanoparticles exposed mice. Biol. Trace Elem. Res. 2022 200 11 4771 4781 10.1007/s12011‑021‑03068‑4 34993911
    [Google Scholar]
  62. Attia H. Nounou H. Shalaby M. Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxics 2018 6 2 29 10.3390/toxics6020029 29861430
    [Google Scholar]
  63. Haramipour P. Asghari A. Hassanpour S. Jahandideh A. Anti-depressant effect of betaine mediates via nitrergic and serotoninergic systems in ovariectomized mice. Arch. Razi Inst. 2021 76 5 1404 1417 10.22092/ari.2020.352221.1553 35355756
    [Google Scholar]
  64. Xu Q. Sun L. Chen Q. Jiao C. Wang Y. Li H. Xie J. Zhu F. Wang J. Zhang W. Xie L. Wu H. Zuo Z. Chen X. Gut microbiota dysbiosis contributes to depression-like behaviors via hippocampal NLRP3-mediated neuroinflammation in a postpartum depression mouse model. Brain Behav. Immun. 2024 119 220 235 10.1016/j.bbi.2024.04.002 38599497
    [Google Scholar]
  65. Sales AJ Maciel IS Crestani CC Guimarães FS Joca SRL S-adenosyl-l-methionine antidepressant-like effects involve activation of 5-HT(1A) receptors. Neurochem Int 2023 162 105442 10.1016/j.neuint.2022.105442 36402294
    [Google Scholar]
  66. Zhang K. Wang F. Zhai M. He M. Hu Y. Feng L. Li Y. Yang J. Wu C. Hyperactive neuronal autophagy depletes BDNF and impairs adult hippocampal neurogenesis in a corticosterone-induced mouse model of depression. Theranostics 2023 13 3 1059 1075 10.7150/thno.81067 36793868
    [Google Scholar]
  67. Liu W. Zhong X. Yi Y. Xie L. Zhou W. Cao W. Chen L. Prophylactic effects of betaine on depression and anxiety behaviors in mice with dextran sulfate sodium-induced colitis. J. Agric. Food Chem. 2024 72 38 21041 21051 10.1021/acs.jafc.4c05547 39276097
    [Google Scholar]
  68. Komoto M. Asada A. Ohshima Y. Miyanaga K. Morimoto H. Yasukawa T. Morito K. Takayama K. Uozumi Y. Nagasawa K. Dextran sulfate sodium-induced colitis in C57BL/6J mice increases their susceptibility to chronic unpredictable mild stress that induces depressive-like behavior. Life Sci. 2022 289 120217 10.1016/j.lfs.2021.120217 34896162
    [Google Scholar]
  69. Barberio B. Zamani M. Black C.J. Savarino E.V. Ford A.C. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2021 6 5 359 370 10.1016/S2468‑1253(21)00014‑5 33721557
    [Google Scholar]
  70. Rhee T.G. Shim S.R. Forester B.P. Nierenberg A.A. McIntyre R.S. Papakostas G.I. Krystal J.H. Sanacora G. Wilkinson S.T. Efficacy and safety of ketamine vs electroconvulsive therapy among patients with major depressive episode. JAMA Psychiatry 2022 79 12 1162 1172 10.1001/jamapsychiatry.2022.3352 36260324
    [Google Scholar]
  71. Lin J.C. Chan M.H. Lee M.Y. Chen Y.C. Chen H.H. N,N-dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016 71 7 13 10.1016/j.pnpbp.2016.06.002 27296677
    [Google Scholar]
  72. Lin J.C. Lee M.Y. Chan M.H. Chen Y.C. Chen H.H. Betaine enhances antidepressant-like, but blocks psychotomimetic effects of ketamine in mice. Psychopharmacology 2016 233 17 3223 3235 10.1007/s00213‑016‑4359‑x 27363702
    [Google Scholar]
  73. Chen H. Lee M. Modulatory role for sarcosine, N, N-dimethylglycine and betaine in NMDA receptor activation. Basic Clin Pharmacol Toxicol 2014 115 203
    [Google Scholar]
  74. Wei I.H. Chen K.T. Tsai M.H. Wu C.H. Lane H.Y. Huang C.C. Acute amino acid d -serine administration, similar to ketamine, produces antidepressant-like effects through identical mechanisms. J. Agric. Food Chem. 2017 65 49 10792 10803 10.1021/acs.jafc.7b04217 29161812
    [Google Scholar]
  75. Yang S.Y. Hong C.J. Huang Y.H. Tsai S.J. The effects of glycine transporter I inhibitor, N-methylglycine (sarcosine), on ketamine-induced alterations in sensorimotor gating and regional brain c-Fos expression in rats. Neurosci. Lett. 2010 469 1 127 130 10.1016/j.neulet.2009.11.058 19944746
    [Google Scholar]
  76. Hsiao Y.C. Lee M.Y. Chan M.H. Chen H.H. NMDA receptor glycine binding site modulators for prevention and treatment of ketamine use disorder. Pharmaceuticals. 16 6 812 2023 37375760 10.3390/ph16060812
    [Google Scholar]
  77. Chen S.T. Hsieh C.P. Lee M.Y. Chen L.C. Huang C.M. Chen H.H. Chan M.H. Betaine prevents and reverses the behavioral deficits and synaptic dysfunction induced by repeated ketamine exposure in mice. Biomed. Pharmacother. 2021 144 112369 10.1016/j.biopha.2021.112369 34715446
    [Google Scholar]
  78. Kofod J. Elfving B. Nielsen E.H. Mors O. Köhler-Forsberg O. Depression and inflammation: Correlation between changes in inflammatory markers with antidepressant response and long-term prognosis. Eur. Neuropsychopharmacol. 2022 54 116 125 10.1016/j.euroneuro.2021.09.006 34598835
    [Google Scholar]
  79. Zhang B. Wang P.P. Hu K.L. Li L.N. Yu X. Lu Y. Chang H.S. Antidepressant-like effect and mechanism of action of honokiol on the mouse lipopolysaccharide (LPS) depression model. Molecules 2019 24 11 2035 10.3390/molecules24112035 31141940
    [Google Scholar]
  80. Fusar-Poli L. Vozza L. Gabbiadini A. Vanella A. Concas I. Tinacci S. Petralia A. Signorelli M.S. Aguglia E. Curcumin for depression: A meta-analysis. Crit. Rev. Food Sci. Nutr. 2020 60 15 2643 2653 10.1080/10408398.2019.1653260 31423805
    [Google Scholar]
  81. Yang W. Huang L. Gao J. Wen S. Tai Y. Chen M. Huang Z. Liu R. Tang C. Li J. Betaine attenuates chronic alcohol-induced fatty liver by broadly regulating hepatic lipid metabolism. Mol. Med. Rep. 2017 16 4 5225 5234 10.3892/mmr.2017.7295 28849079
    [Google Scholar]
  82. Luo Q. Hu Y. Chen X. Luo Y. Chen J. Wang H. Effects of gut microbiota and metabolites on heart failure and its risk factors: A two-sample mendelian randomization study. Front. Nutr. 2022 9 899746 10.3389/fnut.2022.899746 35799593
    [Google Scholar]
  83. Alfthan G. Tapani K. Nissinen K. Saarela J. Aro A. The effect of low doses of betaine on plasma homocysteine in healthy volunteers. Br. J. Nutr. 2004 92 4 665 669 10.1079/BJN20041253 15522136
    [Google Scholar]
  84. Yu D.Y. Xu Z.R. Li W.F. Effects of betaine on growth performance and carcass characteristics in growing pigs. Asian-Australas. J. Anim. Sci. 2004 17 12 1700 1704 10.5713/ajas.2004.1700
    [Google Scholar]
  85. Barak A.J. Beckenhauer H.C. Tuma D.J. Betaine, ethanol, and the liver: A review. Alcohol 1996 13 4 395 398 10.1016/0741‑8329(96)00030‑4 8836329
    [Google Scholar]
  86. Ren Y. Chen Z.Z. Sun X.L. Duan H.J. Tian J.S. Wang J.Y. Yang H. Metabolomic analysis to detect urinary molecular changes associated with bipolar depression. Neurosci. Lett. 2021 742 135515 10.1016/j.neulet.2020.135515 33227370
    [Google Scholar]
  87. Setoyama D. Kato T.A. Hashimoto R. Kunugi H. Hattori K. Hayakawa K. Sato-Kasai M. Shimokawa N. Kaneko S. Yoshida S. Goto Y. Yasuda Y. Yamamori H. Ohgidani M. Sagata N. Miura D. Kang D. Kanba S. Plasma metabolites predict severity of depression and suicidal ideation in psychiatric patients-A multicenter pilot analysis. PLoS One 2016 11 12 e0165267 10.1371/journal.pone.0165267 27984586
    [Google Scholar]
  88. Gawande D. Barewar S. Taksande J. Umekar M. Ghule B. Taksande B. Kotagale N. Achyranthes asperaameliorates stress induced depression in mice by regulating neuroinflammatory cytokines. J. Tradit. Complement. Med. 2022 12 6 545 555 10.1016/j.jtcme.2022.06.001 36325246
    [Google Scholar]
/content/journals/cdt/10.2174/0113894501394957250818110931
Loading
/content/journals/cdt/10.2174/0113894501394957250818110931
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: antidepressants ; betaine ; animal models ; mechanism ; antidepressant-like effects ; Depression
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test